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Abstract—For the renewal risk model with subex-

ponential claim sizes, we establish for the finite time

ruin probability a lower asymptotic estimate as ini-

tial surplus increases, subject to the demand that it

should hold uniformly over all time horizons in an

infinite interval. This extends a recent work partly

on the topic from the case of Pareto-type claim sizes

to the case of subexponential claim sizes and, simpli-

fies the proof of lower bound in Leipus and Siaulys

(2006).
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1 Introduction

Consider the renewal risk model, in which the claim sizes
Zi, i = 1, 2, . . ., form a sequence of independent, iden-
tically distributed (i.i.d.), nonnegative random variables
with common distribution B, while the inter-occurrence
times θi, i = 1, 2, . . ., form another sequence of i.i.d. pos-
itive random variables with common finite mean 1/λ. We
assume that the two sequences {Zi, i = 1, 2, . . .} and
{θi, i = 1, 2, . . .} are mutually independent. The loca-

tions of claims τk =
∑k

i=1 θi, k = 1, 2, . . ., constitute a
renewal counting process

N(t) = #{k = 1, 2, . . . : τk ∈ (0, t]}, t ≥ 0, (1.1)

with a mean function λ(t) = EN(t) ∼ λt as t → ∞. The
surplus process is then defined as

R(t) = x+ ct−
N(t)∑
i=1

Zi, t ≥ 0, (1.2)

where R(0) = x ≥ 0 denotes the initial surplus, c > 0
denotes the constant premium rate, and a summation
over an empty set of index is 0 by convention.

We write

ψ(x; t) = Pr

(
inf

0≤s≤t
R(s) < 0

∣∣∣∣ R(0) = x

)
, t ≥ 0,
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and

ψ(x;∞) = lim
t→∞ψ(x; t)

= Pr

(
inf

0≤s<∞
R(s) < 0

∣∣∣∣ R(0) = x

)
,

which are, respectively, the probabilities of ruin by time
t and of ultimate ruin. In order for the ultimate ruin not
to be certain, it is natural to assume the safety loading
condition

μ =
c

λ
− EZ1 > 0. (1.3)

We refer readers to Asmussen (1984, 2000) for a nice re-
views on the study of the finite time ruin probability
and to Tang (2004b) for a list of references devoted to
this study. Our goal in the current paper is to derive
an asymptotic lower estimate as the initial surplus x in-
creases for the finite time ruin probability ψ(x; t), subject
to the requirement that the asymptotic result should hold
uniformly over all time horizons t in an infinite interval.

Hereafter, all limit relationships are for x → ∞ unless
stated otherwise. For two positive functions a(·) and
b(·), we write a(x) � b(x) if lim sup a(x)/b(x) ≤ 1,
write a(x) � b(x) if lim inf a(x)/b(x) ≥ 1, and write
a(x) ∼ b(x) if both. As done in the main result of this
paper, we shall assign a certain uniformity property to
some asymptotic relations under discussion. Let us take
an example to clarify the meaning of uniformity. For two
positive bivariate functions a(·; ·) and b(·; ·), we say that
the asymptotic relation a(x; t) ∼ b(x; t) holds uniformly
over all t in a nonempty set Δ if

lim
x→∞ sup

t∈Δ

∣∣∣∣a(x; t)b(x; t)
− 1

∣∣∣∣ = 0.

That is, for each fixed ε > 0, there exists some x0 > 0
irrespective to t such that the two-sided inequality

(1− ε)b(x; t) ≤ a(x; t) ≤ (1 + ε)b(x; t)

holds for all x ≥ x0 and t ∈ Δ. This is further equivalent
to that both a(x) � b(x) and a(x) � b(x) hold uniformly
over all t ∈ Δ. Admittedly, results that hold with such a
uniformity property are of higher theoretical and practi-
cal interest.
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We shall only consider the case of heavy-tailed claim sizes.
The most important class of heavy-tailed distributions is
the subexponential class. By definition, a distribution F
on [0,∞) is said to be subexponential, written as F ∈ S,
if its right tail F = 1− F satisfies F (x) > 0 for all x and
the relation

F ∗2(x) ∼ 2F (x) (1.4)

holds, where F ∗2 denotes the convolution of F with it-
self. More generally, a distribution F on (−∞,∞) is still
said to be subexponential if the distribution F+(x) =
F (x)1(0≤x<∞) is subexponential, where 1A denotes the
indicator function of A. It is well known that every subex-
ponential distribution F is long tailed, written as F ∈ L,
in the sense that the relation

F (x+ y) ∼ F (x) (1.5)

holds for each fixed real number y; see, for example, Em-
brechts et al. (1997, Lemma 1.3.5).

Very often the class S appears to be too wide to pos-
sess desirable probabilistic properties. For this reason,
researchers in applied probability have introduced many
subclasses of S to meet certain special requirements. In
this regard, Korshunov (2001) introduced the class of
strongly subexponential distributions. For a distribution
F on (−∞,∞) with 0 < m =

∫∞
0

F (u)du < ∞ and for
each fixed l ∈ (0,∞], we write

Fl(x) =

{
min

{
1,
∫ x+l

x
F (u)du

}
, x ≥ 0,

1, x < 0.

Clearly, for each l ∈ (0,∞] the function Fl defines a stan-
dard distribution on [0,∞). In the terminology of Kor-
shunov (2001), the distribution F is said to be strongly
subexponential, denoted by F ∈ S∗, if the relation

lim
x→∞

F ∗2
l (x)

Fl(x)
= 2 (1.6)

holds uniformly over all l ∈ [1,∞]. It is easy to check that
relation (1.6) with an arbitrarily fixed number l ∈ [1,∞)
implies F ∈ S; see Kaas and Tang (2003). Hence, S∗
is a subclass of S. From the discussions of Korshunov
(2001), we see that the class S∗ covers almost all useful
subexponential distributions with m < ∞. Specifically,
the class S∗ contains all Pareto-like distributions with
m < ∞, all lognormal-like distributions, and all heavy-
tailed Weibull-like distributions.

The main result of this paper is the following:

Theorem 1.1. Consider the renewal model with the
safety loading condition (1.3), which is introduced at the
very beginning of this paper. If B ∈ L, then for every
positive function f(·) with f(x) → ∞, it holds uniformly
over all t ∈ [f(x),∞] that

ψ (x; t) � 1

μ

∫ x+μλt

x

B(u)du. (1.7)

When t = ∞, formula (1.7) is reduced to

ψ (x;∞) � 1

μ

∫ ∞

x

B(u)du, (1.8)

which is well known, first established by Veraverbeke
(1977) and Embrechts and Veraverbeke (1982).

Tang (2004b) established (1.7) in the form of equivalence
in the renewal model under the assumption, among oth-
ers, that the distribution B is consistently varying tailed
in the sense that

lim
l↗1

lim sup
x→∞

B(lx)

B(x)
= 1.

Hence, his result works essentially only for the case of
Pareto-like claim sizes. Recently, under the three as-
sumptions as following:

(1) There exists a nonnegative function q: R+ → R+

such that

Q(u) =

∫ u

0

q(v)dv, u ∈ R+

and lim sup
u→∞

uq(u)

Q(u)
=: r is finite;

(2) The hazard rate q(u) satisfies lim infu→∞ uq(u) ≥
max

{
1, 1

1−r

}
;

(3) The random variable θ is such that P (0 ≤ θ < ε)
and P (θ = 0) = 1 for every positive ε > 0,

Leipus and Siaulys (2006) obtained that, in the renewal
risk model with the safety loading condition (1.3), if B ∈
S∗, then for every positive function f(·) with f(x) → ∞,
it holds uniformly over all t ∈ [f(x), γx] that

ψ (x; t) ∼ 1

μ

∫ x+μλt

x

B(u)du. (1.9)

Analyzing this result carefully, one could see that, firstly,
the assumptions it demands seem to be too strong to be
suitable for more general case. Secondly, the proof of
their results is too complicated to be pretty mathemati-
cally. Finally, that fact that class LL is much bigger than
class S∗ illustrates the wider range of usage of Theorem
1.1.

Below is the extension to the Theorem of Korshunov
(2001); See also Tang (2004a):

Lemma 1.1. Let {Xi, i = 1, 2, . . .} be a sequence of i.i.d.
random variables with common distribution F and finite
mean EX1 = −μ < 0. If F ∈ L, then it holds uniformly
over all n = 1, 2, . . . that

Pr

(
max

1≤k≤n

k∑
i=1

Xi > x

)
� 1

μ

∫ x+μn

x

F (u)du. (1.10)
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2 The proof of the main result

Proof. Since, by definition, B ∈ L implies BI ∈ S, by
virtue of relation (1.8), it suffices to prove the uniformity
of (1.7) over all t ∈ [f(x),∞). For arbitrarily fixed δ > 0,
we write

M−(δ) = min
0≤k<∞

(
(1 + δ)k

λ
− τk

)
,

which is nonpositive and finite almost surely. From the
equivalent definition of finite time ruin probability

ψ (x; t) = Pr

(
max

0≤k≤N(t)

(
k∑

i=1

Zi − cτk

)
> x

)
, t > 0,

(2.1)
for each fixed L > 0, we have

ψ (x; t)

= Pr

(
max

0≤k≤N(t)

(
k∑

i=1

(
Zi − c(1 + δ)

λ

)

+ c

(
(1 + δ)k

λ
− τk

))
> x

)

≥ Pr

(
max

0≤k≤N(t)

k∑
i=1

(
Zi − c(1 + δ)

λ

)
> x+ cL,

+ M−(δ) > −L)

=
∞∑

n=1

Pr

(
max

0≤k≤n

k∑
i=1

(
Zi − c(1 + δ)

λ

)

> x+ cL) Pr (N(t) = n,M−(δ) > −L) . (2.2)

We write

μ2(δ) =
c(1 + δ)

λ
− EZ1 > 0.

Applying Lemma 1.1, it holds uniformly over all n =
1, 2, . . . that

Pr

(
max

0≤k≤n

k∑
i=1

(
Zi − c(1 + δ)

λ

)
> x+ cL

)

� 1

μ2(δ)

∫ x+μ2(δ)n

x

B (u+ cL) du.

Substituting this into (2.2) and considering an arbitrarily
fixed number 0 < l < 1, we have that, uniformly over all
t ∈ [f(x),∞),

ψ (x; t)

� 1

μ2(δ)

∞∑
n=1

∫ x+μ2(δ)n

x

B (u+ cL) du · Pr (N(t) = n,

M−(δ) > −L)

≥ 1

μ2(δ)

∑
n≥(1−l)λt

∫ x+μn

x

B (u+ cL) du · Pr (N(t) = n,

M−(δ) > −L)

≥ 1

μ2(δ)

∫ x+(1−l)μλt

x

B (u+ cL) du · Pr
(
N(t)

λt
≥ 1− l,

M−(δ) > −L) . (2.3)

We apply an elementary inequality, Pr (AB) ≥ Pr(A) +
Pr(B)− 1, to obtain that

Pr

(
N(t)

λt
≥ 1− l, M−(δ) > −L

)

≥ Pr

(
N(t)

λt
≥ 1− l

)
+ Pr (M−(δ) > −L)− 1.

As t → ∞, it is well known that N(t)/λt → 1 holds
almost surely; see, for example, Section 2.5 of Embrechts
et al. (1997). Hence for each ε > 0, we may find some
x0 > 0 and L0 > 0 such that the inequality

Pr

(
N(t)

λt
≥ 1− l,M−(δ) > −L0

)
≥ 1− ε

holds for all t ∈ [f(x0),∞). Substitution of this into (2.3)
with L = L0 gives that, uniformly over all t ∈ [f(x),∞),

ψ (x; t)

� 1− ε

μ2(δ)

∫ x+(1−l)μλt

x

B (u+ cL0) du

∼ 1− ε

μ2(δ)

(∫ x+μλt

x

−
∫ x+μλt

x+(1−l)μλt

)
B (u) du

≥ 1− ε

μ2(δ)

∫ x+μλt

x

B (u) du

⎛
⎝1−

∫ x+μλt

x+(1−l)μλt
B (u) du∫ x+(1−l)μλt

x
B (u) du

⎞
⎠

≥ 1− ε

μ2(δ)

∫ x+μλt

x

B (u) du ( 1

− lμλtB (x+ (1− l)μλt)

(1− l)μλtB (x+ (1− l)μλt)

)

=
1− ε

μ2(δ)

1− 2l

1− l

∫ x+μλt

x

B (u) du.

Since the constants δ > 0, 0 < l < 1, and ε > 0 can be
arbitrarily small, we finally obtain the desired relation
(1.7) with the indicated uniformity property.
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