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Abstract—This paper provides an analysis of the Shanghai 

Stock Exchange Composite Index Movement Forecasting for 

the period 1999-2009 using two competing non-linear models, 

univariate Markov Regime Switching model and Artificial 

Neural Network Model (RBF). The experiment shows that RBF 

is a useful method for forecasting the regime duration of the 

Moving Trends of Stock Composite Index. The framework 

employed also proves useful for forecasting Stock Composite 

Index turning points. The empirical results in this paper show 

that ANN method is preferable to Markov-Switching model to 

some extent. 

 

Index Terms—Artificial neural networks, Nonparametric 

Estimation, RBF, Regime switching. 

 

I. INTRODUCTION 

Many studies conclude that stock returns can be predicted 

by means of macroeconomic variables with an important 

business cycle component. Due to the fact that the change in 

regime should be considered as a random event and not 

predictable, which could motivate to analyze the Shanghai 

Stock Exchange Composite Index within this context. There 

is much empirical support that macroeconomic conditions 

should affect aggregate equity prices, accordingly, 

macroeconomic factors would be possibly used for security 

returns. Merton (1973) and Ross (1976) argued that variables 

are natural candidates for the common risk factors underlying 

security returns.  

In recent years, Markov Regime Switching models and 

Neural Networks have been successfully used for modeling 

financial time series. Markov Regime Switching models seek 

to capture such discrete shifts in the behavior of financial 

variables by allowing the parameters of the underlying 

data-generating process to take on different values in 

different time periods. Briefly, a framework is established 

with two states for capturing two different forecasting 

alternatives. The rationale behind the use of these models 

stems from the fact that the dynamic changes in Stock Index 

may be characterized by regime shifts, which means that by 

allowing the Stock Index to be dependent upon the ―state of 

the market‖. The ANN methodology is preferred to the 

alternative non-linear models as it is nonparametric and thus 

appropriate in estimating any non-linear function without a 

priori assumptions about the properties of the data.  

 
Manuscript received December 9, 2009. 
 David Liu is with Department of Mathematical Sciences, Xi‘an Jiaotong 

Liverpool University, SIP, Suzhou, China 215123 (corresponding author, 

phone: 86-0512-88161610; e-mail: David.Liu@ xjtlu.edu.cn).  
Lei Zhang is with Department of Mathematical Sciences, Xi‘an Jiaotong 

Liverpool University, SIP, Suzhou, China 215123; PhD student of The 

University of Liverpool (e-mail: lainey3120@live.cn). 

In order to study the dynamics of the regime switching of 

Moving Trends which evolved in the Shanghai Stock 

Exchange Market, the Composite Index is first modeled in 

regime switching within a univariate Markov-Switching 

framework (MRS). One key feature of the MRS model is to 

estimate the probabilities of a specific state at a time. Past 

research has developed the econometric methods for 

estimating parameters in regime-switching models, and 

demonstrated how regime-switching models can characterize 

time series behavior of some variables, which is better than 

the existing single-regime models.  

The concept about Markov Switching Regimes firstly 

dates back to ―Microeconomic Theory: A Mathematical 

Approach‖ [1]. Hamilton (1989) applied this model to the 

study of the United States business cycles and regime shifts 

from positive to negative growth rates in real GNP [2]. 

Hamilton (1989) extended Markov regime-switching models 

to the case of auto correlated dependent data. Hamilton and 

Lin (1996), also report that economic recessions are a main 

factor in explaining conditionally switching moments of 

stock market volatility[3-4]. Similar evidences of regime 

switching in the volatility of stock returns have been found by 

Hamilton and Susmel (1994), Edwards and Susmel (2001), 

Coe (2002) and Kanas (2002)[5-8].  

Secondly, this paper deals with application of neural 

network method, a Radial Basis Function (RBF), on the 

prediction of the moving trends of the Shanghai Stock. RBFs 

have been employed in time series prediction with success as 

they can be trained to find complex relationships in the data 

(Chen, Cowan and Grant. 1991) [9].  

A large number of successful applications have shown that 

ANN models have received considerable attention as a useful 

vehicle for forecasting financial variables and for time-series 

modeling and forecasting (Swanson and White, 1995, Zhang, 

Patuwo and Hu, 1998) [10-11]. In the early days, these 

studies focused on estimating the level of the return on stock 

price index. Current studies reflect an interest in selecting the 

predictive factors as a variety of input variables to forecast 

stock returns by applying neural networks. Several 

techniques such as regression coefficients (Kimoto et al. 

1990, Qi and Maddala, 1999), autocorrelations (Desai and 

Bharati, 1998), backward stepwise regression (Motiwalla and 

Wahab, 2000), and genetic algorithms (Motiwalla and 

Wahab, 2000, Kim and Han, ect 2002) have been employed 

by researchers to perform variable subset selection [12-13]. 

In addition, several researchers (Leung et al. (2000), Gencay 

(1998), and Pantazopoulos et al. (1998)), subjectively 

selected the subsets of variables based on empirical 

evaluations [14]. 

The objective of this paper is not only to examine the 

feasibility of the two non-linear models but present an effort 

on improving the accuracy of RBF in terms of data 
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pre-processing and parameter selection. Both non-linear 

models are able to find non-linear relationships in ‗real-world‘ 

financial series. Especially, the ANN method performs better 

on the duration prediction compared to the non-linear 

Markov-Switching model.  

The paper is organized as follows. Section 2 is Data 

Description and Preliminary Statistics. Section 3 presents the 

research methodology. Section 4 presents and discusses the 

empirical results. The final section provides with summary 

and conclusion. 

 

II. DATA DESCRIPTION AND PRELIMINARY STATISTICS 

A. Data Description 

This paper adopts two non-linear models, Univariate 

Markov Switching model and Artificial Neural Network 

Model with respect to the behavior of Chinese Stock 

Exchange Composite Index using data for the period from 

1999 to 2009. As the Shanghai Stock Exchange is the primary 

stock market in China and Shanghai A Share Composite is 

the main index reflection of Chinese Stock Market, this 

research adopts the Shanghai Composite (A Share). The data 

consist of daily observations of the Shanghai Stock Exchange 

Market general price index for the period 29 October 1999 to 

31 August 2009, excluding all weekends and holidays giving 

a total of 2369 observations. For both the MRS and the ANN 

models, the series are taken in natural logarithms.  

B. Preliminary Statistics 

In this part we will explore the relationship among 

Shanghai Composite and Consumer Price Index, Retail Price 

Index, Corporate Goods Price Index, Social Retail Goods 

Index, Money Supply, Consumer Confidence Index, Stock 

Trading by using various t-tests, and regression analysis to 

pick out the most relevant variables as the influence factors in 

our research.  

   By using regression analysis we test the hypothesis and 

identify correlations between the variables. In the following 

multiple regression analysis we will test the following 

hypothesis and see whether they hold true: 

03210  KH    

1H At least some of the   is not equal 0 (regression 

insignificant) 

In Table 1, R-Square ( 2R ) is the proportion of variance in 

the dependent variable (Shanghai Composite Index) which 

can be predicted from the independent variables. This value 

indicates that 80% of the variance in Shanghai Composite 

Index can be predicted from the variables Consumer Price 

Index, Retail Price Index, Corporate Goods Price Index, 

Social Retail Goods Index, Money Supply, Consumer 

Confidence Index, and Stock Trading. It is worth pointing out 

that this is an overall measure of the strength of association, 

and does not reflect the extent to which any particular 

independent variable is associated with the dependent 

variable.  

In Table 2, the p-value is compared to alpha level 

(typically 0.05). This gives the F-test which is significant as 

p-value =0.000. This means that we reject the null that Stock 

Trading, Consumer Price Index, Consumer Confidence Index, 

Corporate Goods Price Index, Money Supply have no effect 

on Shanghai Composite. 

We could say that the group of variables awareness, 

intention, preference and attitude can be used to reliably 

predict loyalty (the dependent variable). The p=value (Sig.) 

from the F-test in ANOVA table is 0.000, which is less than 

0.001 implying that we reject the null hypothesis that the 

regression coefficients (β‘s) are all simultaneously 

correlated. 

By looking at the Sig. column in particular, we gather that 

Stock Trading, Consumer Price Index, Consumer Confidence 

Index, Corporate Goods Price Index, Money Supply are 

variables with p-values less than .02 and hence VERY 

significant.  

Then look at Fig.1 and Fig. 2, the correlation numbers 

measure the strength and direction of the linear relationship 

between the dependent and independent variables. In the 

scatterplots we show the plot of observed cum prob and the 

expected cum prob. To show these correlations visually we 

use partial regression plots. Correlation points tend to form 

along a line going from the bottom left to the upper right, 

which is the same as saying that the correlation is positive. 

We conclude that Stock Trading, Consumer Price Index, 

Consumer Confidence Index, Corporate Goods Price Index, 

Money Supply and their correlation with Shanghai 

Composite Index is positive because the points tend to form 

along this line. 

Due to CPI Index, CGPI Index and Money Supply 

Increased Ratio (M1 Increased Ratio –M2 Increased Ratio) 

are the most correlated influence factors with Share 

Composite among other factors. Therefore, we choose 

macroeconomic indicators as mentioned by Qi and Maddala 

(1999), CPI Index, CGPI Index and Money Supply Increased 

Ratio (M1 Increased Ratio –M2 Increased Ratio) as well as a 

data set from Shanghai Stock Exchange Market are used for 

the experiments to test the forecasting accuracy of RBF [12]. 

Typically, Fig.3 and Fig.4 show the developments of 

Shanghai Composite index with CPI, CGPI and MS along 

time. 

 

III. EMPIRICAL MODELS 

In this section, the univariate Markov Switching Model 

developed by Hamilton (1989) was adopted to explore 

regime switching of the Shanghai Stock Exchange 

Composite Index, followed by developing an artificial neural 

network (ANN) – a RBF method to predict stock index 

moving trends. We use the RBF method to find the 

relationship of CPI Index, CGPI Index and Money Supply 

Increased Ratio with Stock Composite Index. Using the 

Matlab Neural Network Toolbox, RBF Network is designed 

in a more efficient design (newrb). Finally, the forecasting 

performances of these two competing non-linear models are 

compared. 

A. Markov Regime Switching Model and Estimation 

Markov Regime Switching Model 

The comparison of the in sample forecasts is done on the 

basis of the Markov Switching/Hamilton filter mathematical 

notation, using the Marcelo Perlin (21 June 2009 updated) 

forecasting modeling.  

A potentially useful approach to model nonlinearities in 

time series is to assume different behavior (structural break) 

in one subsample (or regime) to another. If the dates of the 

regimes switches are known, modeling can be worked out 

with dummy variables. For example, consider the following 

regression model: yt = Xt
′βSt

+ εt   (t=1, … T, )             (1) 
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Where, εt~NID (0, σ2
St

),  βSt
= β0 1 − St + β1St     

σ2
St

=σ2
0(1 − St) + σ2

1St  , St = 0 or 1,  Regime 0 or 1 .   

Usually it is assumed that the possible difference between 

the regimes is a mean and volatility shift, but no 

autoregressive change. That is: 

yt = μtSt + ∅(yt−1 − μSt−1
) + ϵt  ,        (2) 

ϵt~NID (0, σ2
St

)  

Where, μtSt =μ0(1 − St)+ μ1St , if St ( t=1, …, T ) is 

known a priori, then the problem is just a usual dummy 

variable autoregression problem. 

In practice, however, the prevailing regime is not usually 

directly observable. Denote then P (St  = j|St−1  = i) =Pij , (i, j 

= 0, 1), called transition probabilities, with Pi0+Pi1 = 1, i = 
0, 1. This kind of process, where the current state depends 

only on the state before, is called a Markov process, and the 

model a Markov switching model in the mean and the 

variance. The probabilities in a Markov process can be 

conveniently presented in matrix form: 

 
P(St = 0)
P(St = 1)

 = 
p00 p10

p01 p11
   

P(St−1 = 0)
P(St−1 = 1)

  

Estimation of the transition probabilities Pij  is usually done 

(numerically) by maximum likelihood as follows. The 

conditional probability densities function for the observations 

yt  given the state variables, St−1  and the previous 

observations Ft−1= yt−1 , yt−2 , …   is 

f (yt|St , St−1 , Ft−1 ) =  

1

 2πσS t
2

 exp
 −

[y t−μt S t−∅(y t−1−μS t−1
)]2

2σS t
2  

           (3) 

ϵt = yt−μtSt − ∅(yt−1 − μSt−1
) ~NID (0, σ2

St
). 

The chain rule for conditional probabilities yields then for 

the joint probability density function for the 

variables yt  , St , St−1 , given past information  Ft−1 .                        

f( yt , St , St−1| Ft−1 )=f( yt  |St , St−1  , Ft−1 )P( St , St−1  |Ft−1 ), 
such that the log-likelihood function to be maximized with 

respect to the unknown parameters becomes lt θ =

log   f (yt  |St , St−1 , Ft−1  ) P(St , St−1  |Ft−1)1
St−1=0

1
St =0   

θ = (p, q, ∅, μ0, μ1 , σ0
2 , σ1

2)                                                  (4) 

and the transition probabilities: 

p = P St = 0 St−1 = 0 , and q = P St = 1 St−1 = 1 . 
Steady state probabilities P(S0 = 1/F0 ) and P(S0 = 0/
F0) are called the steady state probabilities, and, given the 

transition probabilities p and q, are obtained as: 

P(S0 = 1/F0) =
1−p

2−q−p
 ,  P(S0 = 0/F0) =

1−q

2−q−p
 . 

Stock Composite Index Moving Trends Estimation 

In our case, we have 3 explanatory variables X1t ,X2t , X3t  in 

a Gaussian framework (Normal distribution) and the input 

argument S, which is equal to S= [1 1 1 1], then the model 

for the mean equation is: 

yt = X1tβ1,St
+ X2tβ2,St

+ X3tβ3,St
+ εt                         (5) 

(εt~NID (0, σ2
St

)) 

Where, St  represent the state at time t, that is, St  =1....K, (K 
is the number of states); σ2

St
- Error variance at state St ; βSt

- 

beta coefficient for explanatory variable i at state St  , where i 

goes from 1 to n; εt - residual vector which follows a 

particular distribution (in this case Normal). 

With this change in the input argument S, the coefficients 

and the model‘s variance are switching according to the 

transition probabilities. Therefore, the logic is clear: the first 

elements of input argument S control the switching dynamic 

of the mean equation, while the last terms control the 

switching dynamic of the residual vector, including 

distribution parameters. 

Based on Gaussian maximum likelihood, the equations are 

represented as following:  

State 1 (=1) 

yt = X1tβ1,1 + X2tβ2,1 + X3tβ3,1 + εt  
State 2 (=2) 

yt = X1tβ1,2 + X2tβ2,2 + X3tβ3,2 + εt  
With: 

 
p11 p21

p12 p22
  

as the transition matrix, which controls the probability of a 

regime switch from state j (column j) to state i (row i). The 

sum of each column in P is equal to one, since they represent 

full probabilities of the process for each state.  

B. Radial Basis Function neural networks 

An ANN model represents an attempt to estimate certain 

features of the way in which the brain processes information. 

The specific type of ANN employed in this study is the 

Radial Basis Function (RBF), the most widely used of the 

many types of neural networks. RBFs were first used to solve 

the interpolation problem-fitting a curve exactly through a set 

of points (Powell, 1987).  

Fausett defines radial basis functions as ―activation 

functions with a local field of response at the output (Fausett, 

1994)‖ [15]. The RBF neural networks are trained to generate 

both time series forecasts and certainty factors.  

The RBF neural network is composed of three layers of 

nodes (Fig.5). The first is the input layer that feeds the input 

data to each of the nodes in the second or hidden layer. The 

second layer of nodes differs greatly from other neural 

networks in that each node represents a data cluster which is 

centered at a particular point and has a given radius. The third 

and final layer consists of only one node. It acts to sum the 

outputs of the second layer of nodes to yield the decision 

value (Moody and Darken, 1989) [16]. 

The ith neurons input of a hidden layer is: ki
q

=

   W1ji − Xj
q
 

2

j × bli  and output is:  

ri
q

= exp  − ki
q
 

2
 = exp    W1ji − Xj

q
 

2

j

× b1i  

= exp  −   W1i − Xj
q
 × b1i 

2

  

Where b1i resents threshold value,  Xj  is the input feature 

vector and the approximant output ri
q
 is differentiable with 

respect to the weights W1i. 

When an input vector is fed into each node of the hidden 

layer simultaneously, each node then calculates the distance 

from the input vector to its own center. That distance value is 

transformed via some function, and the result is output from 

the node. That value output from the hidden layer node is 

multiplied by a constant or weighting value. That product is 

fed into the third layer node which sums all the products and 

any numeric constant inputs. Lastly, the third layer node 

outputs the decision value (Fig. 6). 

A Gaussian basis function for the hidden units given as Zj 

for j=1, 2, … J, where 

Zj = exp  
− X − μj 

2

2σ2
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μj  and σjare mean and the standard deviation respectively, 

of the jth unit receptive field and the norm is Euclidean. 

Networks of this type can generate any real-valued output, 

but in our applications where we have a priori knowledge of 

the range of the desired outputs, it is computationally more 

efficient to apply some nonlinear transfer function to the 

outputs to reflect that knowledge. 

In order to obtain the tendency of A Share Composite 

Index, we examine the sample performance of quarterly 

returns (totally 40 quarters) forecasts for the Shanghai Stock 

Exchange Market from October 1999 to August 2009, using 

three exogenous macroeconomic variables, the CPI, CGPI 

and Money Supply (M1-M2, Increased on annual basis) as 

the inputs to the model. We use a Radial Basis Function 

network based on the learning algorithm presented above. 

Using the Matlab Neural Network Toolbox, the RBF network 

is created using an efficient design (newrb). According to 

Hagan, Demuth and Beale (1996), a small spread constant 

can result in a steep radial basis curve while a large spread 

constant results in a smooth radial basis curve [17]; therefore 

it is better to force a small number of neurons to respond to an 

input. Our interest goes to obtain a single consensus forecast 

output, the sign of the prediction only, which will be 

compared to the real sign of the prediction variable. After 

several tests and changes to the spread, at last we find 

spread=4 is quite satisfied for out test. As a good starting 

value for the spread constant is between 2 and 8 (Hagan 

Demuth and Beale, 1996), we set the first nine columns of y‘ 

as the test samples [17].   

 

IV. EMPIRICAL RESULTS 

A. Stock Composite Index Moving Trends Estimation by 

MRS  

Table 3 shows the estimated coefficients of the proposed 

MRS along with the necessary test statistics for evaluation of 

Stock Composite Index Moving Trends. The Likelihood 

Ratio test for the null hypothesis of linearity is statistically 

significant and this suggests that linearity is strongly rejected. 

The results in Table 3 further highlight several other points: 

First, value of the switching variable at state 1 is 0.7506, at 

state 2 value of the switching variable is -0.0161; secondly, 

the model‘s standard deviation σ takes the values of 0.0893 

and 0.0688 for regime 1 and regime 2 respectively; these 

values help us to identify regime 1 as the upward regime and 

regime 2 as the downward regime. Second, the duration 

measure shows that the upward regime lasts approximately 

57 months, whereas the high volatility regime lasts 

approximately 24 months. 

As we use the quarterly data for estimating the Moving 

Trends, the smoothed probabilities and filtered state 

probabilities lines seem exiguous. Fig.7 reveals the resulting 

smoothed probabilities of being in up and down moving 

trends regimes along the Shanghai Stock Exchange Market 

general price index. Moreover, filtered States Probabilities 

was shown in Fig.8, several periods of the sample are 

characterized by moving downwards associated with the 

presence of a rational bubble in the capital market of China 

from 1999 to 2009. 

B. Radial Basis Function neural networks 

Interestingly, the best results we obtained from RBF 

training are 100% correct approximations of the sign of the 

test set, and 90% of the series on the training set. This 

conclusion on one hand is consensus with the discovery by 

Hamilton and Lin (1996) the Stock Market and the Business 

Cycle. Hamilton and Lin (1996) argued that the analysis of 

macroeconomic fundamentals is certainly a satisfactory 

explanation for stock volatility. To our best knowledge, the 

fluctuations in the level of macroeconomic variables such as 

CPI and CGPI and other economic activity are a key 

determinant of the level of stock returns. On the other hand, 

in a related application, Girosi and Poggio (1990) also show 

that RBFs have the "best" approximation property-there is 

always a choice for the parameters that is better than any 

other possible choice-a property that is not shared by 

MLPs[18].  

Due to the Normal Distributions intervals, we classify the 

outputs by the following forms: 

y’=F(x) = 
F x = 1   if x ≥ 0.5

F x = 0   if x < 0.5
  

Table 4 gives the results of the outputs. From x we could 

know that the duration of regime 1 is 24 quarters and regime 

0 is 16 quarters. The comparisons of MRS and RBF models 

could be seen in Table 5. It is clear that the RBF model 

outperforms the MRS model on the regime duration 

estimation. 

 

V. CONCLUSION 

In this article, we compare the forecasting performance of 

two nonlinear models to address issues with respect to the 

behaviors of aggregate stock returns of Chinese Stock Market. 

Rigorous comparisons between the two nonlinear estimation 

methods have been made. From the Markov-Regime 

Switching model, it can be concluded that real output growth 

is subject to abrupt changes in the mean associated with 

economy states. On the other hand, the ANN method 

developed with the prediction algorithm to obtain abnormal 

stock returns, indicates that stock returns should take into 

account the level of the influence generated by 

macroeconomic variables. Further study will concentrate on 

prediction of market volatility using this research framework.  

 

APPENDIX 

Table 1 Model Summary 

 

Model R R Square 

Adjusted R 

Square 

Std. Error of 

the Estimate 

   

1 .653a .427 .422 768.26969 
  

2 .773b .597 .590 647.06456 
  

3 .834c .695 .688 564.83973 
  

4 .873d .763 .755 500.42457 
  

5 .894e .800 .791 461.69574 
  

a. Predictors: (Constant), Stock Trading 

b. Predictors: (Constant), Stock Trading, Consumer Price Index 

c. Predictors: (Constant), Stock Trading, Consumer Price Index, Consumer 

Confidence Index 
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d. Predictors: (Constant), Stock Trading, Consumer Price Index, Consumer 

Confidence Index, Corporate Goods Price Index 

e. Predictors: (Constant), Stock Trading, Consumer Price Index, Consumer 

Confidence Index, Corporate Goods Price Index, Money Supply 

f. Dependent Variable: Shanghai Composite 
 

 

Table 2 ANOVA 

 

Model Sum of 

Squares df 

Mean 

Square F Sig. 

1 Regression 5.323E7 1 5.323E7 90.178 .000a 

Residual 7.142E7 121 590238.317   

 Total 1.246E8 122    

2 Regression 7.440E7 2 3.720E7 88.851 .000b 

Residual 5.024E7 120 418692.539   

Total 1.246E8 122    

3 Regression 8.668E7 3 2.889E7 90.561 .000c 

Residual 3.797E7 119 319043.922   

Total 1.246E8 122    

4 Regression 9.510E7 4 2.377E7 94.934 .000d 

Residual 2.955E7 118 250424.748   

Total 1.246E8 122    

5 Regression 9.971E7 5 1.994E7 93.549 .000e 

Residual 2.494E7 117 213162.957   

Total 1.246E8 122    

a. Predictors: (Constant), Stock Trading 
   

b. Predictors: (Constant), Stock Trading, Consumer Price Index 
 

c. Predictors: (Constant), Stock Trading, Consumer Price Index, Consumer 

Confidence Index 

d. Predictors: (Constant), Stock Trading, Consumer Price Index, Consumer 

Confidence Index, Corporate Goods Price Index 

e. Predictors: (Constant), Stock Trading, Consumer Price Index, Consumer 

Confidence Index, Corporate Goods Price Index, Money Supply 

f. Dependent Variable: Shanghai Composite 
   

 

 

Table 3 Stock Index Moving Trends Estimation by MRS 

 
Parameters Estimate Std err 

μ0 0.7506 0.0866 

μ1 -0.0161 0.0627 

σ0
2 0.0893 0.0078 

σ1
2 0.0688 0.0076 

Expected duration 56.98 time periods 23.58 time periods 

Transition Probabilities 

p(regime1) 0.98  

q(regime0) 0.96  

Final log Likelihood 119.9846 

Distribution Assumption -> Normal 

 

 

Table 4 RBF Training Output 

 
x y‘ T x y‘ T 

0.80937 1 1 0.031984 0 0 

0.30922 0 0 0.80774 1 0 

0.96807 1 1 0.68064 1 0 

1.0459 1 1 0.74969 1 0 

-0.011928 0 0 0.54251 1 1 

0.92 1 1 0.91874 1 1 

0.81828 1 1 0.50662 1 1 

0.054912 0 0 0.44189 0 1 

0.34783 0 0 0.59748 1 1 

0.80987 1 1 0.69514 1 1 

1.1605 1 1 1.0795 1 1 

0.66608 1 1 0.16416 0 0 

0.22703 0 0 0.97289 1 1 

0.45323 0 0 -0.1197 0 0 

0.69459 1 1 0.028258 0 0 

0.16862 0 0 0.087562 0 0 

0.83891 1 1 -0.084324 0 0 

0.61556 1 1 1.0243 1 1 

1.0808 1 1 0.98467 1 1 

-0.089779 0 0 0.0032105 0 0 

 

Table 5 Regime Comparison of Stock Index Moving Trends 

 

Model Regime 1 Regime 0 

Observed Durations 66 months 54 months 

Markov-Switching 57 months 24 months 

Radial Basis Function 72 months 48 months 

 

 
 
Fig.1:  Frequency against Regression Residual  

 
 

Fig.2:  Normal P-P Plot Regression Standardized Residual  
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Fig.3:  China CPI, CGPI and Shanghai A Share Composite 

Index  

 

 
 

Fig.4: China Money Supply Increased (annual basis) and 

Shanghai A Share Composite Index Ratio  

 

 

 

 

 

 
 

Fig.5: RBF Network Architecture 

 

    

   

    

 

  
Fig.6: RBF network hidden layer neurons input and output 

 
 

Fig.7:  Smoothed States Probabilities (Moving Trends) 

 
Fig. 8:  Filtered States Probabilities (Moving Trends) 
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