

Abstract—Non-preemptive schedulers remain a very popular

choice for practitioners of resource constrained real-time

embedded systems. This paper is concerned with the

non-preemptive version of the Earliest Deadline First algorithm

(npEDF). Although several key results indicate that npEDF

should be considered a viable choice for use in

resource-constrained real-time systems, these systems have

traditionally been implemented using static, table-driven

approaches such as the ‘cyclic executive’. This is perhaps due to

several popular misconceptions regarding the basic operation,

optimality and robustness of the npEDF algorithm, leading to a

general lack of coverage in the wider academic community. This

paper will attempt to redress this balance by showing that the

supposed ‘problems’ attributed to npEDF either simply do not

hold, or can be easily overcome by adopting an appropriate

implementation. Examples are given to highlight the fact that

npEDF generally outperforms other non-preemptive software

architectures when scheduling periodic and sporadic tasks. The

paper concludes with the observation that npEDF should in fact

be considered as the algorithm of choice for such systems.

Index Terms— Deadline Scheduling, Embedded Systems,

Non-Preemptive Scheduling, Real-Time Systems.

I. INTRODUCTION

This paper is concerned with the non-preemptive

scheduling of recurring (periodic / sporadic) task models,

with applications to resource-constrained, single-processor

real-time and embedded systems. In particular, the paper is

concerned with scheduler architectures for use with such

systems, consisting of a small amount of hardware (typically

a timer / interrupt controller) and software. In this context, the

two main aspects (requirements) of a scheduler can be stated

as follows:

Task activation: this is the process of deciding at which

points in time a task becomes ready for execution (is

activated). Periodic tasks are normally activated via a timer;

event driven (sporadic) tasks can be either directly activated

by interrupts or by polling an interrupt status flag.

Task dispatching: Real-time systems are required to

perform specific processing in a timely fashion; when

multiple tasks are simultaneously active, then some form of

scheduling algorithm is normally required to process the

events in an appropriate order.

These two main aspects of scheduling are illustrated in

Fig. 1. The performance of scheduling algorithms and

techniques is an area worthy of study; the seminal paper of

Manuscript received 1st February, 2010, accepted 21st March 2010.
1M. Short is with the Electronics & Control Group, Teesside University,

Middlesbrough, UK (phone: +44(0)16423422528; e-mail: m.short@

tees.ac.uk).

Liu & Layland [1], published in 1973, spawned a multitude

of research and a significant body of results can now be found

in the literature. Liu & Layland were the first to discuss

deadline-driven scheduling techniques.

Fig. 1: Aspects of real-time embedded scheduling.

It is known that when task preemption is allowed, this

technique – also known as Earliest Deadline First (EDF) -

allows the full utilization of the CPU, and is optimal on a

single processor under a wide variety of different operating

constraints ([1][2][3]). However, for developers of systems

with severe resource constraints, preemptive scheduling

techniques may not be viable; the study of non-preemptive

alternatives is justified for the following (non-exhaustive) list

of reasons [4][5][6][7]:

• Non-preemptive scheduling algorithms are easier to

implement than their preemptive counterparts, and can

exhibit dramatically lower runtime overheads;

• Non-preemptive scheduling naturally guarantees

exclusive access to resources, eliminating the need for

complex resource access protocols;

• Preemptive systems require individual task stacks

whereas non-preemptive tasks can share a common stack,

leading to vastly reduced memory requirements;

• Exploratory studies seem to indicate that preemptive

systems are more susceptible to transient errors such as

electromagnetic disturbances than their non-preemptive

counterparts.

Despite these advantages, non-preemptive scheduling is

also known to have several associated problems; task

response times will be (in general) longer, event-driven

(sporadic) task executions are not as well supported (if at all),

and when preemption is not allowed, in general scheduling

problems become NP-Complete or NP-Hard [8]. This paper

is concerned with systems implementing the non-preemptive

version of EDF (npEDF). The main motivating factors for the

current work are as follows. Although the treatment of

npEDF has been (comparatively) small in the literature,

The Case For Non-preemptive, Deadline-driven

Scheduling In Real-time Embedded Systems

Michael Short
1

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

several key results exist that indicate npEDF can overcome

most (perhaps not all) of the problems associated with

non-preemption; as such it should be considered as a viable

choice for use in resource-constrained real-time and

embedded systems. However, such systems have

traditionally been implemented using static, table-driven

approaches such as the ‘cyclic executive’ and its variants

(see, for example, [4][9][10][11]). This is perhaps due to

several popular misconceptions
1
with respect to the basic

operation, implementation complexity, optimality and

robustness of the npEDF algorithm, leading to a general lack

of coverage in the wider academic (especially engineering)

community.

This paper will attempt to redress this balance by arguing

the case for npEDF, and showing that the supposed

‘problems’ commonly attributed to it either simply do not

hold, or can easily be overcome by adopting an appropriate

implementation and by applying simple off-line analysis

techniques. The paper is organized as follows. Section II

considers exactly why npEDF seems to be ‘missing’ from

most major texts on real-time systems. Section III presents

the assumed task model, gives a basic description of npEDF

and identifies a list of its common criticisms. Section IV then

addresses each of these criticisms in turn, and establishes

whether or not the claims actually hold; it is shown that in

each case, the claims are baseless. Section V concludes the

paper, with the observation that npEDF should be considered

as the algorithm of choice for scheduling resource

constrained real-time embedded systems.

II. NPEDF: A MISSING ALGORITHM

In most of the major texts in the field of real-time

systems, npEDF does not get more than a passing mention.

For example, analysis of non-preemptive scheduling is

typically restricted to the use of ‘cyclic executives’ or

‘timeline schedulers’. In almost all cases, after problems have

been identified with such scheduling models, attention is then

focused directly on Priority-Driven Preemptive (PDP)

approaches as a ‘cure for all ills’. For example, Buttazzo [5]

discusses timeline scheduling in C4 of his (generally)

well-respected book on hard real-time computing systems,

concluding with a list of problems associated with this type of

scheduling. On p78 - immediately before moving onto

descriptions of PDP algorithms – it is stated that:

“The problems outlined above of timeline scheduling can

be solved by using priority-based [preemptive] algorithms.”

Liu takes a similar approach in what is perhaps the most

widely-acclaimed book in this area (Real-Time Systems)

[12]. Cyclic scheduling is discussed in C5 of her book,

ending with a list of associated problems on p122. In each

case, it is stated that a PDP system can overcome the

problem. This type of argument is by no means limited to

reference texts. Burns et al. [9] describe (in-depth) some

techniques that can be used for generating feasible cyclic or

timeline schedules, followed by a discussion of the problems

1The key results for npEDF - and their implications - are comparatively more
difficult to interpret that for other types of scheduling; for example, many

previous works assume the reader possesses an in-depth understanding of

formal topics in computer science, such as computational complexity.

associated with this type of scheduling, directly followed by a

final section (p160) discussing:

“Priority [-based preemptive] scheduling as an

alternative to cyclic scheduling”

Whilst it is clearly untrue to say these statements are false,

as stated above PDP scheduling is not without its own

problems; the next Section will examine the basics of npEDF,

and examine why it seems to have been overlooked.

III. TASK MODEL AND NPEDF PRELIMINARIES

A. Recurring Task Model

This paper is concerned with the implementation of

recurring / repeated computations on a single processor, such

as those that may be required in signal processing and control

applications. Such a system may be represented by a set τ of n

tasks, where each task ti ∈ τ is represented by a tuple:

()iiii dcpt ,,=

(1)

In which pi is the task period (minimum inter-arrival

time), ci is the (worst-case) computation requirement of the

task and di is the task (relative) deadline. A similar model was

introduced in this context by Liu & Layland [1] and has since

been widely adopted – see, for example, [2-7]. Note that it

can be assumed w.l.o.g. that time is discrete, and all task

parameters can be assumed to be integer [13]. Attention is

primarily restricted in this paper to implicit deadline tasks,

i.e. those in which di = pi; such tasks are the most widely

discussed in the literature (and employed in practice). Such a

task will simply be described by two parameters pi and ci.

Note that a periodic task may additionally be described by an

addition parameter, its initial release time (or relative

phasing) ri.

B. npEDF Basic Operation

The npEDF algorithm may be described, in simple terms,

as follows:

1. When selecting a task for execution, the task with the

earliest deadline is selected first (and then run to

completion).

2. Ties between tasks with identical deadlines are broken by

selecting the task with the lowest index.

3. Unless the processor is idle, scheduling decisions are only

made at task boundaries.

4. When the scheduler is idle, the first task to be invoked is

immediately executed (if multiple tasks are

simultaneously invoked, the task with the earliest

deadline is selected).

This simple (but deceptively effective) algorithm may be

implemented using only a single hardware timer. Ideally this

timer will be free-running, with a single interrupt-on-match

register if the system is required to enter idle or power-down

mode when no further tasks are pending. Clearly the

algorithm differs from the static table-driven approaches in

that the schedule is effectively produced on-line, and there is

therefore no concept of a fixed time ‘frame’ or ‘tick’; an

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

example (feasible) schedule for the set of synchronous tasks τ

= [(4,1),(6,2),(12,3)] is shown in Fig. 2 below.

Fig. 2: npEDF schedule.

C. npEDF Common Criticisms

As mentioned in the introduction, generally due to

misconceptions (or misinterpretations) of its operation and

use, npEDF is generally seen to be too problematic for use in

real systems. The main criticisms that can be found in the

literature are listed below:

1. npEDF is not an optimal non-preemptive scheduling

algorithm. Optimal in this sense refers to its ability to

build a valid (feasible) schedule, if such a schedule exists;

2. npEDF is difficult to analyze, and no efficient feasibility

test exists;

3. npEDF is not ‘robust’ to changes in the task set

parameters; in particular, reductions in the run-time

execution requirement of one (or more) tasks can lead to

deadline misses in an otherwise feasible task set;

4. Timer rollover can lead to anomalies and deadline misses

in an otherwise feasible task set;

5. The use of npEDF leads to increased overheads (and

power consumption) compared to other non-preemptive

scheduling techniques.

Please note that this list of criticisms is specific to npEDF,

and therefore does not include the so-called ‘long-task’

problem which is endemic to all non-preemptive schedulers.

This specific problem arises when one or more tasks have a

deadline that is less than the execution time of another task.

In this situation, effective solutions are known to include

code-refactoring at the task level, employing state-machines,

or alternately adopting the use of hybrid designs [4][8][14].

Such solution techniques easily generalize to npEDF, and are

not discussed in any further depth in this paper.

IV. NPEDF CRITICISMS: ARE THEY JUSTIFIED?

If all of the criticisms given in the previous Section are

based in fact, then npEDF does not seem a wise choice for

system implementation; in fact the contrary would be true.

This Section will examine each point in greater detail, to

investigate if, in fact, each specific claim actually holds.

A. npEDF is not Optimal.

As mentioned, optimal in this sense refers to the ability of a

scheduling algorithm to build a valid (feasible) schedule for

an arbitrary set of tasks, if such a feasible schedule exists.

Each (and every) proof that npEDF is sub-optimal relies on a

counter-example of the form shown in Fig. 3 (taken from Liu

[12] – a similar example appears in Buttazzo [5]). It can be

seen that despite the existence of a feasible schedule,

obtained via the use of a scheduler which inserts idle-time

between t = 3 and t = 4 (indicated by the question marks in the

figure), the schedule produced by npEDF misses a deadline at

t = 12.

Fig. 3: npEDF misses a deadline, yet a feasible schedule exists.

Now, since the use of inserted idle-time can clearly have a

beneficial effect with respect to meeting deadlines, this

clearly begs the question – how complex is a scheduler that

uses inserted idle time – will such a scheduler be of practical

use for a real system? The answer, unfortunately, is a

resounding no - the following two results were formally

shown by Howell & Venkatro [15]:

• There cannot be an optimal on-line scheduling algorithm

using inserted idle-time for sporadic tasks; only

non-idling scheduling strategies can be optimal;

• An on-line scheduling strategy that makes use of inserted

idle-time to schedule periodic tasks cannot be efficiently

implemented unless P = NP.

It can thus be seen that inserted idle-time is not beneficial

when scheduling sporadic tasks, and if efficiency is taken

into account, then attention must be restricted to non-idling

strategies when scheduling periodic tasks. Efficiency in this

sense refers to the amount of time taken by the scheduler to

make scheduling decisions; only schedulers that take time

proportional to some polynomial in the task set parameters

can be considered efficient (a scheduler which takes 50 years

to decide the optimal strategy for the next 10 ms is not much

practical use). What is known about the non-idling

scheduling strategies? These include, for example, npEDF,

TTC scheduling [4][14] and non-preemptive Rate Monotonic

(npRM) scheduling [16]. npEDF is known to be optimal

among this class of algorithms for scheduling recurring tasks;

results in this area were known as early as 1955 [17]. The

proof was demonstrated in the real-time context by Jeffay et

al. [6] for the implicit deadline case, and extended by George

et al. [18] to the constrained deadline case. Thus, the overall

claim status: npEDF is sub-optimal for periodic tasks if and

only if P = NP, and is optimal for sporadic tasks regardless

of the equivalence (or otherwise) of these complexity classes.

B. No Efficient Feasibility Test Exists for npEDF.

Consider again the example shown in Fig. 3, in which the

npEDF algorithm misses a deadline. Why is the deadline

missed? At t = 3, only J2 is active and, since the scheduler is

non-idling, it immediately begins execution of this task.

Subsequently at t = 4, J3 is released and has an earlier

deadline – but it is blocked (due to non-preemption) until J2

has run to completion at t = 9. This is known as a ‘priority

inversion’ as the scheduler cannot change its mind, once

committed. This is highlighted further in Fig. 4 below.

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

Fig. 4: npEDF priority inversion.

How complex is it to analyze the schedule that will be

produced by npEDF for a given (arbitrary) set of tasks, to

predict the effect of such priority inversions? This turns out to

be not as hard as it may first appear - for the implicit dead

case, the following result was formally shown by Jeffay et al.

[6]: A periodic (sporadic) set of n tasks, indexed in order of

increasing period, is feasible (for any set of release times

under npEDF if and only if the following conditions are true:

∑
∈

≤
τi i

i

p

c
0.1

tc
p

t
c

ptptnii

j

ij j

i ≤⋅

 −
+

<<∀≤<∀

∑
<

1

,;1, 1

Informally, the condition of Equation (2) states that the

processor should not be overloaded, and conditi

expresses the worst-case penalty for non-preemption under

npEDF, which is illustrated in Fig. 5. That is, each task (apart

from the task with the smallest period) is assumed to lead a

worst-case priority inversion, and each deadline lying in the

interval (p1, pi) is checked. If these deadlines are met under

these worst-case priority inversions, the task set is feasible.

Fig. 5: npEDF critical instants: worst case blocking induced by task

It should be noted that the time complexity of

algorithm to decide (2) and (3) is pseudo-polynomial and

hence highly efficient, taking time proportional to

of tasks multiplied by the largest period or

non-preemptive scheduling problem, in this formulation,

turns out to be only weakly coNP-Complete. In the case when

one or more task has a constrained deadline, George et al.

developed similar feasibility conditions, with the same

complexity [18]. When compared to feasibility tests for other

non-preemptive scheduling disciplines, this is significantly

How complex is it to analyze the schedule that will be

produced by npEDF for a given (arbitrary) set of tasks, to

? This turns out to

for the implicit deadline

rmally shown by Jeffay et al.

, indexed in order of

for any set of release times)

under npEDF if and only if the following conditions are true:

(2)

pi ;

(3)

(2) states that the

and condition (3)

preemption under

That is, each task (apart

from the task with the smallest period) is assumed to lead a

case priority inversion, and each deadline lying in the

) is checked. If these deadlines are met under

ask set is feasible.

Fig. 5: npEDF critical instants: worst case blocking induced by task i.

It should be noted that the time complexity of an

polynomial and

hence highly efficient, taking time proportional to the number

of tasks multiplied by the largest period or O(npmax) – the

preemptive scheduling problem, in this formulation,

In the case when

one or more task has a constrained deadline, George et al.

similar feasibility conditions, with the same

hen compared to feasibility tests for other

preemptive scheduling disciplines, this is significantly

better. For example, it is known that deciding if a set of

periodic process can be scheduled by a cyclic executive or

timeline scheduler is strongly NP-Hard

known that deciding if a set of periodic process can be

scheduled by a TTC scheduler is strongly

Note that strong and weak complexity results have a precise

technical meaning; specifically, amongst other things the

former rules out the prospect of a pseudo

algorithm unless P = NP, whereas the latter does not.

Thus, although a very efficient algorithm may be

formulated to exactly test for Equations (2) and (3), it is

thought that no exact algorithm can ever be designed to

efficiently test feasibility for these alternate scheduling

policies. Please note that for ‘liquid’ task sets

execution times significantly shorter than their periods

known that the ‘penalty for non-preemption’

(3) - evaporates, and we are simply left the same feasibil

test as the preemptive case, i.e. condition (2).

status: npEDF admits an efficient feasibility test for periodic

(sporadic) tasks that ensures even worst

inversions do not lead to deadline misses

C. npEDF is not Robust under reduced system load.

With respect to this complaint, Jane Liu presents some

convincing evidence on p.73 of her book

[12], and cites the seminal paper by Graham [20

investigating timing anomalies. There are two

problems here. The paper by Graham deals only with

multiprocessor case; specifically, it investigates the effects of

reduced (aperiodic) task execution times on the makespan

produced by the LPT heuristic scheduling technique. As do

the examples on p.73 of Liu’s book, although it

explicitly clear. This paper is

single-processor scheduling, and these

not apply. The only single processor timing anomaly referred

to in the Liu text is shown in Fig. 6; at first glance, it seem

that a run-time reduction in the execution

C1 does lead to a deadline miss of J3:

Fig. 6: A Run-time reduction in task execution times leading to deadline

misses: a valid example?

However upon closer inspection, this example can be

seen to be almost identical to the example

with the execution of J1 between t = 3and

serving the same purpose as the inserted idle

In order for this example to hold up, it must logically follow

that the schedule must be provably feasibl

2In fact, this situation is known to considerably worse than this. The problem

is actually known to be NPNP-Complete [19]. Under the assumption that

NP, this means that the feasibility test requires an exponential

calls to a decision procedure which is itself strongly

For example, it is known that deciding if a set of

periodic process can be scheduled by a cyclic executive or

Hard [8][9]; it is also

known that deciding if a set of periodic process can be

strongly coNP-Hard
2
 [19].

complexity results have a precise

technical meaning; specifically, amongst other things the

former rules out the prospect of a pseudo-polynomial time

algorithm unless P = NP, whereas the latter does not.

Thus, although a very efficient algorithm may be

formulated to exactly test for Equations (2) and (3), it is

thought that no exact algorithm can ever be designed to

test feasibility for these alternate scheduling

r ‘liquid’ task sets - i.e. those with

execution times significantly shorter than their periods – it is

preemption’ – i.e. condition

evaporates, and we are simply left the same feasibility

i.e. condition (2). Overall claim

npEDF admits an efficient feasibility test for periodic

(sporadic) tasks that ensures even worst-case priority

inversions do not lead to deadline misses.

under reduced system load.

to this complaint, Jane Liu presents some

er book Real-Time Systems

seminal paper by Graham [20]

There are two principal

The paper by Graham deals only with the

; specifically, it investigates the effects of

reduced (aperiodic) task execution times on the makespan

tic scheduling technique. As do

, although it is not made

. This paper is concerned with

se examples simply do

The only single processor timing anomaly referred

shown in Fig. 6; at first glance, it seems

cution requirement of job

time reduction in task execution times leading to deadline

misses: a valid example?

However upon closer inspection, this example can be

the example given in Fig. 3,

= 3and t = 4 effectively

serving the same purpose as the inserted idle-time in Fig. 3.

In order for this example to hold up, it must logically follow

the schedule must be provably feasible when the tasks

In fact, this situation is known to considerably worse than this. The problem

. Under the assumption that P ≠

feasibility test requires an exponential number of

strongly coNP-Complete.

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

have nominal parameters given by A); applying Equations

(2) and (3) to these tasks, it can be quickly determined that

the task set is not deemed to be feasible, since the formulation

of Jeffay’s feasibility test takes worst-case priority inversion

into account. This example is misleading w.r.t. npEDF –

since the task set simply fails the basic feasibility test, Liu’s

argument of ‘an otherwise feasible task set’ becomes a

non-starter. This again highlights the fact that

misconceptions regarding robustness and priority inversions

have principally arisen from one simple fact; as shown in the

previous Section, the worst case behavior of a task set – its

critical instants - under non-preemptive scheduling is not the

same as under preemptive scheduling. Overall claim status: If

appropriate (off-line) analysis is performed to confirm the

feasibility of a task set, this task set will remain feasible under

npEDF even under conditions of reduced system load.

D. Timer Rollover can Lead to Timing Anomalies.

With respect to this complaint, this can in fact be shown to

hold, but is easily solved. The assumption that time is

represented as integer – and in embedded systems, normally

with a fixed number of bits (e.g. 16) – eventually leads to

timer rollover problems; deadlines will naturally ‘wrap

around’ due to the modular representation of time. Since the

normal laws of arithmetic no longer hold, it cannot be

guaranteed that di mod(2b) < dj mod(2b) when di < dj and time

is represented by b-bit unsigned integers. There are several

efficient techniques that may be used to overcome this

problem, perhaps the most efficient is as follows. Assuming

that the inequality pm < 2
b
 / 2 holds over a given task set, i.e.

the maximum period is less than half the linear life time of the

underlying timer, then the rollover problem may be

efficiently overcome by using Carlini & Buttazzo’s Implicit

Circular Timer Overflow Handler (ICTOH) algorithm [21].

The algorithm has a very simple code implementation, and is

show as C code in Fig. 7.

The algorithm’s operation exploits the fact that the

modular distance between any two events (e.g. deadlines or

activation times) x and y, encoded by b-bit unsigned integers,

may be determined by performing a subtraction modulo 2
b

between x and y, with the result interpreted as a signed

integer. Overall claim status: rollover is easily handled by

employing algorithms such as ICTOH.

E. Use of npEDF Leads to Increased Overheads.

In order to shed more light on this issue, let us consider the

required number of ‘scheduling events’ over the hyperperiod3

of a given periodic task set, and also the complexity – the

required CPU iterations, as a function of the task parameters

– of each such event. Specifically, let us consider these

scheduling events as required for task sets under both npEDF

and TTC scheduling. TTC scheduling is considered as the

baseline case in this respect, as it has previously been argued

that a TTC scheduler provides a software architecture with

minimal overheads and resource requirements [4][7][14].

Given the definition of npEDF, one scheduling event is

required for every task execution. The scheduler enters idle

mode when all pending tasks are executed; it is woken by an

3The hyperperiod of a task set is the duration of time taken for the schedule to
repeat. For synchronous tasks, this corresponds to the least common multiple

of the task periods [1]; for asynchronous tasks the duration is related to the

lcm but is somewhat longer, see [13] for further details.

interrupt set to match the earliest time at which a new task

will be invoked. The TTC algorithm is designed to perform a

scheduling event at regular intervals, in response to periodic

timer interrupts; the period of these interrupts is normally set

to be the greatest common divisor of the task periods [4][14].

Fig. 7: Testing the temporal ordering of events, assuming an absolute (top)

versus a modular (bottom) representation of time.

Assuming a given set of tasks are synchronous with

periods expressed in a minimal form, let h = lcm(p1, p2, ... pn).

The number of scheduling events over h for the TTC

scheduler – SETTC - is then directly equal to h. The number of

scheduling events for the npEDF scheduler over h – SEEDF -

is given by:

∑
∈

=
τi i

EDF
p

h
SE

(4)

Clearly, SEEDF ≤ SETTC, and in most cases the former will

be significantly smaller. By way of example, the number of

scheduling events required for both scheduling disciplines is

shown (over the initial portion of the schedule) for the task set

τ = [(90,5),(100,5)] in Fig. 8 (scheduling events are indicated

by the presence of up-arrows on the timeline).

Fig. 8: Density of scheduling events in both TTC and npEDF scheduling.

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

As mentioned, also of interest are the time complexities of

each scheduling event; this will now be considered, and

expressed as a function of the number of tasks, n. Given the

design of the TTC scheduler, it is clear to observe from its

basic design and implementation (see, for example, [4][14])

that its complexity is fixed to be linear in the number of tasks,

in other words O(n). However, task management in the

npEDF scheduler significantly improves upon this situation;

it is known that the algorithm can be implemented with

complexity O(log n) by employing a data structure known as

a heap-of-heaps [22]. Additionally, recent work by the

current author has also shown that this can be improved

further still; by employing simple data structures known as

timing and deadline wheels, npEDF can be implemented with

small constant overhead, i.e. independent of the number of

tasks and with complexity O(1) [23].

To further illustrate this final point, Fig. 9 shows a

comparison of the overheads incurred per scheduling event as

the number of tasks was increased on a 72-Mhz

ARM7-TDMI microcontroller. Overheads execution times

were extracted using the technique described in [23]; please

note that the horizontal scale is logarithmic. This graph

clearly shows the advantages of the npEDF technique, when

n > 8, the TTC overheads are significantly greater the than

npEDF; when n > 32, they become an order of magnitude

larger. Overall claim status: With an appropriate

implementation, the density of npEDF scheduling events is no

worse that (and in most cases significantly better) than

competing methods; the CPU overheads incurred at each

such event are also significantly lower.

Fig. 9: CPU overheads vs. number of tasks n.

V. CONCLUSION

This paper has considered the non-preemptive version of

the Earliest Deadline First algorithm. Specifically, it has first

considered - and subsequently refuted - many of the supposed

‘problems’ that have been attributed to this type of

scheduling technique. Where appropriate, examples and

analysis have been given to highlight that not only are many

of these claims simply baseless, in fact npEDF outperforms

other non-preemptive software architectures – oftentimes

significantly so - when scheduling periodic and sporadic

tasks. On the merits of these arguments, it the conclusion of

the current author that npEDF should actually be considered

as the de-facto algorithm of choice for implementing

resource-constrained real-time embedded systems.

REFERENCES

[1] J. Liu and J. Layland, “Scheduling algorithms for multiprogramming
in a hard real-time environment,” Journal of the ACM, Vol. 20, No. 1,
pp. 46-61, 1973.

[2] E. Coffman, Jnr, “Introduction to Deterministic Scheduling Theory”,
in Computer and Job-Shop Scheduling Theory, Wiley, New York,
1976.

[3] M.L. Dertouzos, “Control robotics: the procedural control of physical
processes”, Information Processing, Vol. 74, 1974.

[4] M. Pont, Patterns for time-triggered embedded systems, ACM Press /
Addison-Wesley Education, 2001.

[5] G.C. Buttazzo, Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications”, Spinger-Verlag, New York,
2005.

[6] K. Jeffay, D. Stanat and C. Martel, “On Non-Preemptive Scheduling of
Periodic and Sporadic Tasks”, Proc. of the IEEE Real-Time Systems
Symposium, 1991.

[7] Short, M., Pont, M.J. and Fang, J, “Exploring the impact of
pre-emption on dependability in time-triggered embedded systems: A
pilot study”, In: Proceedings of the 20th Euromicro conference on
real-time systems (ECRTS 2008), Prague, Czech Republic, pp. 83-91,
2008.

[8] M.R. Garey and D.S. Johnson, Computers and Intractability: A guide
to the Theory of NP-Completeness, W.H. Freeman & Co Ltd, April
1979.

[9] Burns, A., Hayes, N. and Richardson. M, “Generating feasible cyclic
schedules”, Control Engineering Practice, Vol. 3, No. 2, pp. 151-162,
1994.

[10] Baker, T. P. and Shaw, A. The cyclic executive model and Ada.
Real-Time Systems, Vol. 1, No. 1, pp. 7-25, 1989.

[11] Locke, C. D. Software architecture for hard real-time applications:
Cyclic executives vs. fixed priority executives. Real-Time Systems,
4(1): 37-52, 1992.

[12] Liu, J.W.S, “Real-Time Systems”, Prentice-Hall, New Jersey, 2000.

[13] S. Baruah, L. Rosier and R. Howell, “Algorithms and Complexity
Concerning the Preemptive Scheduling of Periodic, Real-Time Tasks
on One Processor”, Real-Time Systems, Vol. 2, No. 4, pp. 301-324,
1991.

[14] Gendy, A.K. and Pont, M.J., “Automatically configuring
time-triggered schedulers for use with resource-constrained,
single-processor embedded systems”, IEEE Transactions on Industrial
Informatics, Vol. 4, No. 1, pp. 37-45, 2008.

[15] Howell, R. and Venkatro, M, “On Non-Preemptive Scheduling of
Recurring Tasks Using Inserted Idle Times”, Information and
Computation, Vol. 117, 1995.

[16] Park, M, “Non-preemptive Fixed Priority Scheduling of Hard
Real-Time Periodic Tasks”, Lecture Notes in Computer Science, Vol.
4990, pp. 881-888, 2007.

[17] J.R. Jackson, “Scheduling a Production Line to Minimize Maximum
Tardiness”, Research Report 43, Management Science Research
Project, University of California, Los Angeles, USA, 1955.

[18] L. George, N. Rivierre and M. Supri, “Preemptive and Non-Preemptive
Real-Time Uni-Processor Scheduling”, Research Report RR-2966,
INRIA, Le Chesnay Cedex, France, 1996.

[19] Short, M, “Some complexity results concerning the non-preemptive
‘thrift’ cyclic scheduler”. Proceedings of the 6th International
Conference on Informatics in Control, Robotics and Automation
(ICINCO 2009), Milan, Italy, pp. 347-350, July 2009.

[20] Graham, R.L, “Bounds on multiprocessing timing anomalies”, SIAM
J. Appl. Math., Vol. 17, pp. 416-429, 1969.

[21] A. Carlini and G.C. Buttazzo, “An Efficient Time Representation for
Real-Time embedded Systems,” in Proc. Of the ACM Symp. On
Applied Computing (SAC 2003), Florida, USA, pp. 705-712, March
2003.

[22] A. Mok, “Task Management Techniques for Enforcing ED Scheduling
on a Periodic Task Set”, Proceedings of the Fifth IEEE Workshop on
Real-Time Software and Operating Systems, pp. 42-46, Washington,
D.C., May 12-13, 1988.

[23] Short, M. “Improved task management techniques for enforcing EDF
scheduling on recurring task sets”, In: Proc. of the 16th IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS
2010), Stockholm, Sweden, pp. 56-65, April 2010.

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

