
 

 

 

  

Abstract—Non-preemptive schedulers remain a very popular 

choice for practitioners of resource constrained real-time 

embedded systems. This paper is concerned with the 

non-preemptive version of the Earliest Deadline First algorithm 

(npEDF). Although several key results indicate that npEDF 

should be considered a viable choice for use in 

resource-constrained real-time systems, these systems have 

traditionally been implemented using static, table-driven 

approaches such as the ‘cyclic executive’. This is perhaps due to 

several popular misconceptions regarding the basic operation, 

optimality and robustness of the npEDF algorithm, leading to a 

general lack of coverage in the wider academic community. This 

paper will attempt to redress this balance by showing that the 

supposed ‘problems’ attributed to npEDF either simply do not 

hold, or can be easily overcome by adopting an appropriate 

implementation. Examples are given to highlight the fact that 

npEDF generally outperforms other non-preemptive software 

architectures when scheduling periodic and sporadic tasks. The 

paper concludes with the observation that npEDF should in fact 

be considered as the algorithm of choice for such systems. 

 
Index Terms— Deadline Scheduling, Embedded Systems, 

Non-Preemptive Scheduling, Real-Time Systems.  

I. INTRODUCTION 

This paper is concerned with the non-preemptive 

scheduling of recurring (periodic / sporadic) task models, 

with applications to resource-constrained, single-processor 

real-time and embedded systems. In particular, the paper is 

concerned with scheduler architectures for use with such 

systems, consisting of a small amount of hardware (typically 

a timer / interrupt controller) and software. In this context, the 

two main aspects (requirements) of a scheduler can be stated 

as follows: 

 

Task activation: this is the process of deciding at which 

points in time a task becomes ready for execution (is 

activated). Periodic tasks are normally activated via a timer; 

event driven (sporadic) tasks can be either directly activated 

by interrupts or by polling an interrupt status flag. 

 

Task dispatching: Real-time systems are required to 

perform specific processing in a timely fashion; when 

multiple tasks are simultaneously active, then some form of 

scheduling algorithm is normally required to process the 

events in an appropriate order. 

 

These two main aspects of scheduling are illustrated in 

Fig. 1. The performance of scheduling algorithms and 

techniques is an area worthy of study; the seminal paper of 
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Liu & Layland [1], published in 1973, spawned a multitude 

of research and a significant body of results can now be found 

in the literature. Liu & Layland were the first to discuss 

deadline-driven scheduling techniques. 

 

 
Fig. 1: Aspects of real-time embedded scheduling. 

 

It is known that when task preemption is allowed, this 

technique – also known as Earliest Deadline First (EDF) - 

allows the full utilization of the CPU, and is optimal on a 

single processor under a wide variety of different operating 

constraints ([1][2][3]). However, for developers of systems 

with severe resource constraints, preemptive scheduling 

techniques may not be viable; the study of non-preemptive 

alternatives is justified for the following (non-exhaustive) list 

of reasons [4][5][6][7]: 

 

• Non-preemptive scheduling algorithms are easier to 

implement than their preemptive counterparts, and can 

exhibit dramatically lower runtime overheads; 

• Non-preemptive scheduling naturally guarantees 

exclusive access to resources, eliminating the need for 

complex resource access protocols; 

• Preemptive systems require individual task stacks 

whereas non-preemptive tasks can share a common stack, 

leading to vastly reduced memory requirements; 

• Exploratory studies seem to indicate that preemptive 

systems are more susceptible to transient errors such as 

electromagnetic disturbances than their non-preemptive 

counterparts. 

 

Despite these advantages, non-preemptive scheduling is 

also known to have several associated problems; task 

response times will be (in general) longer, event-driven 

(sporadic) task executions are not as well supported (if at all), 

and when preemption is not allowed, in general scheduling 

problems become NP-Complete or NP-Hard [8]. This paper 

is concerned with systems implementing the non-preemptive 

version of EDF (npEDF). The main motivating factors for the 

current work are as follows. Although the treatment of 

npEDF has been (comparatively) small in the literature, 
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several key results exist that indicate npEDF can overcome 

most (perhaps not all) of the problems associated with 

non-preemption; as such it should be considered as a viable 

choice for use in resource-constrained real-time and 

embedded systems. However, such systems have 

traditionally been implemented using static, table-driven 

approaches such as the ‘cyclic executive’ and its variants 

(see, for example, [4][9][10][11]). This is perhaps due to 

several popular misconceptions
1
with respect to the basic 

operation, implementation complexity, optimality and 

robustness of the npEDF algorithm, leading to a general lack 

of coverage in the wider academic (especially engineering) 

community.  

This paper will attempt to redress this balance by arguing 

the case for npEDF, and showing that the supposed 

‘problems’ commonly attributed to it either simply do not 

hold, or can easily be overcome by adopting an appropriate 

implementation and by applying simple off-line analysis 

techniques. The paper is organized as follows. Section II 

considers exactly why npEDF seems to be ‘missing’ from 

most major texts on real-time systems. Section III presents 

the assumed task model, gives a basic description of npEDF 

and identifies a list of its common criticisms. Section IV then 

addresses each of these criticisms in turn, and establishes 

whether or not the claims actually hold; it is shown that in 

each case, the claims are baseless. Section V concludes the 

paper, with the observation that npEDF should be considered 

as the algorithm of choice for scheduling resource 

constrained real-time embedded systems. 

II. NPEDF: A MISSING ALGORITHM 

In most of the major texts in the field of real-time 

systems, npEDF does not get more than a passing mention. 

For example, analysis of non-preemptive scheduling is 

typically restricted to the use of ‘cyclic executives’ or 

‘timeline schedulers’. In almost all cases, after problems have 

been identified with such scheduling models, attention is then 

focused directly on Priority-Driven Preemptive (PDP) 

approaches as a ‘cure for all ills’. For example, Buttazzo [5] 

discusses timeline scheduling in C4 of his (generally) 

well-respected book on hard real-time computing systems, 

concluding with a list of problems associated with this type of 

scheduling. On p78 - immediately before moving onto 

descriptions of PDP algorithms – it is stated that: 

 

“The problems outlined above of timeline scheduling can 

be solved by using priority-based [preemptive] algorithms.” 

 

Liu takes a similar approach in what is perhaps the most 

widely-acclaimed book in this area (Real-Time Systems) 

[12]. Cyclic scheduling is discussed in C5 of her book, 

ending with a list of associated problems on p122. In each 

case, it is stated that a PDP system can overcome the 

problem. This type of argument is by no means limited to 

reference texts. Burns et al. [9] describe (in-depth) some 

techniques that can be used for generating feasible cyclic or 

timeline schedules, followed by a discussion of the problems 

 
1The key results for npEDF - and their implications - are comparatively more 
difficult to interpret that for other types of scheduling; for example, many 

previous works assume the reader possesses an in-depth understanding of 

formal topics in computer science, such as computational complexity. 

associated with this type of scheduling, directly followed by a 

final section (p160) discussing: 

 

“Priority [-based preemptive] scheduling as an 

alternative to cyclic scheduling” 

 

Whilst it is clearly untrue to say these statements are false, 

as stated above PDP scheduling is not without its own 

problems; the next Section will examine the basics of npEDF, 

and examine why it seems to have been overlooked. 

III. TASK MODEL AND NPEDF PRELIMINARIES 

A. Recurring Task Model 

This paper is concerned with the implementation of 

recurring / repeated computations on a single processor, such 

as those that may be required in signal processing and control 

applications. Such a system may be represented by a set τ of n 

tasks, where each task ti ∈ τ is represented by a tuple: 

 

( )iiii dcpt ,,=  

(1) 

 

In which pi is the task period (minimum inter-arrival 

time), ci is the (worst-case) computation requirement of the 

task and di is the task (relative) deadline. A similar model was 

introduced in this context by Liu & Layland [1] and has since 

been widely adopted – see, for example, [2-7]. Note that it 

can be assumed w.l.o.g. that time is discrete, and all task 

parameters can be assumed to be integer [13]. Attention is 

primarily restricted in this paper to implicit deadline tasks, 

i.e. those in which di = pi; such tasks are the most widely 

discussed in the literature (and employed in practice). Such a 

task will simply be described by two parameters pi and ci. 

Note that a periodic task may additionally be described by an 

addition parameter, its initial release time (or relative 

phasing) ri. 

B. npEDF Basic Operation 

The npEDF algorithm may be described, in simple terms, 

as follows: 

 

1. When selecting a task for execution, the task with the 

earliest deadline is selected first (and then run to 

completion). 

2. Ties between tasks with identical deadlines are broken by 

selecting the task with the lowest index. 

3. Unless the processor is idle, scheduling decisions are only 

made at task boundaries. 

4. When the scheduler is idle, the first task to be invoked is 

immediately executed (if multiple tasks are 

simultaneously invoked, the task with the earliest 

deadline is selected). 

 

This simple (but deceptively effective) algorithm may be 

implemented using only a single hardware timer. Ideally this 

timer will be free-running, with a single interrupt-on-match 

register if the system is required to enter idle or power-down 

mode when no further tasks are pending. Clearly the 

algorithm differs from the static table-driven approaches in 

that the schedule is effectively produced on-line, and there is 

therefore no concept of a fixed time ‘frame’ or ‘tick’; an 
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example (feasible) schedule for the set of synchronous tasks τ 

= [(4,1),(6,2),(12,3)] is shown in Fig. 2 below. 

 
Fig. 2: npEDF schedule. 

C. npEDF Common Criticisms 

As mentioned in the introduction, generally due to 

misconceptions (or misinterpretations) of its operation and 

use, npEDF is generally seen to be too problematic for use in 

real systems. The main criticisms that can be found in the 

literature are listed below: 

 

1. npEDF is not an optimal non-preemptive scheduling 

algorithm. Optimal in this sense refers to its ability to 

build a valid (feasible) schedule, if such a schedule exists; 

2. npEDF is difficult to analyze, and no efficient feasibility 

test exists; 

3. npEDF is not ‘robust’ to changes in the task set 

parameters; in particular, reductions in the run-time 

execution requirement of one (or more) tasks can lead to 

deadline misses in an otherwise feasible task set; 

4. Timer rollover can lead to anomalies and deadline misses 

in an otherwise feasible task set; 

5. The use of npEDF leads to increased overheads (and 

power consumption) compared to other non-preemptive 

scheduling techniques. 

 

Please note that this list of criticisms is specific to npEDF, 

and therefore does not include the so-called ‘long-task’ 

problem which is endemic to all non-preemptive schedulers. 

This specific problem arises when one or more tasks have a 

deadline that is less than the execution time of another task. 

In this situation, effective solutions are known to include 

code-refactoring at the task level, employing state-machines, 

or alternately adopting the use of hybrid designs [4][8][14]. 

Such solution techniques easily generalize to npEDF, and are 

not discussed in any further depth in this paper. 

IV. NPEDF CRITICISMS: ARE THEY JUSTIFIED? 

If all of the criticisms given in the previous Section are 

based in fact, then npEDF does not seem a wise choice for 

system implementation; in fact the contrary would be true. 

This Section will examine each point in greater detail, to 

investigate if, in fact, each specific claim actually holds. 

A. npEDF is not Optimal. 

As mentioned, optimal in this sense refers to the ability of a 

scheduling algorithm to build a valid (feasible) schedule for 

an arbitrary set of tasks, if such a feasible schedule exists. 

Each (and every) proof that npEDF is sub-optimal relies on a 

counter-example of the form shown in Fig. 3 (taken from Liu 

[12] – a similar example appears in Buttazzo [5]). It can be 

seen that despite the existence of a feasible schedule, 

obtained via the use of a scheduler which inserts idle-time 

between t = 3 and t = 4 (indicated by the question marks in the 

figure), the schedule produced by npEDF misses a deadline at 

t = 12. 

 
 

Fig. 3: npEDF misses a deadline, yet a feasible schedule exists. 

 

Now, since the use of inserted idle-time can clearly have a 

beneficial effect with respect to meeting deadlines, this 

clearly begs the question – how complex is a scheduler that 

uses inserted idle time – will such a scheduler be of practical 

use for a real system? The answer, unfortunately, is a 

resounding no - the following two results were formally 

shown by Howell & Venkatro [15]: 

 

• There cannot be an optimal on-line scheduling algorithm 

using inserted idle-time for sporadic tasks; only 

non-idling scheduling strategies can be optimal; 

• An on-line scheduling strategy that makes use of inserted 

idle-time to schedule periodic tasks cannot be efficiently 

implemented unless P = NP. 

 

It can thus be seen that inserted idle-time is not beneficial 

when scheduling sporadic tasks, and if efficiency is taken 

into account, then attention must be restricted to non-idling 

strategies when scheduling periodic tasks. Efficiency in this 

sense refers to the amount of time taken by the scheduler to 

make scheduling decisions; only schedulers that take time 

proportional to some polynomial in the task set parameters 

can be considered efficient (a scheduler which takes 50 years 

to decide the optimal strategy for the next 10 ms is not much 

practical use). What is known about the non-idling 

scheduling strategies? These include, for example, npEDF, 

TTC scheduling [4][14] and non-preemptive Rate Monotonic 

(npRM) scheduling [16]. npEDF is known to be optimal 

among this class of algorithms for scheduling recurring tasks; 

results in this area were known as early as 1955 [17]. The 

proof was demonstrated in the real-time context by Jeffay et 

al. [6] for the implicit deadline case, and extended by George 

et al. [18] to the constrained deadline case. Thus, the overall 

claim status: npEDF is sub-optimal for periodic tasks if and 

only if P = NP, and is optimal for sporadic tasks regardless 

of the equivalence (or otherwise) of these complexity classes. 

B. No Efficient Feasibility Test Exists for npEDF. 

Consider again the example shown in Fig. 3, in which the 

npEDF algorithm misses a deadline. Why is the deadline 

missed? At t = 3, only J2 is active and, since the scheduler is 

non-idling, it immediately begins execution of this task. 

Subsequently at t = 4, J3 is released and has an earlier 

deadline – but it is blocked (due to non-preemption) until J2 

has run to completion at t = 9. This is known as a ‘priority 

inversion’ as the scheduler cannot change its mind, once 

committed. This is highlighted further in Fig. 4 below. 
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Fig. 4: npEDF priority inversion. 

 

How complex is it to analyze the schedule that will be 

produced by npEDF for a given (arbitrary) set of tasks, to 

predict the effect of such priority inversions? This turns out to 

be not as hard as it may first appear - for the implicit dead

case, the following result was formally shown by Jeffay et al. 

[6]: A periodic (sporadic) set of n tasks, indexed in order of 

increasing period, is feasible (for any set of release times

under npEDF if and only if the following conditions are true:
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Informally, the condition of Equation (2) states that the 

processor should not be overloaded, and conditi

expresses the worst-case penalty for non-preemption under 

npEDF, which is illustrated in Fig. 5. That is, each task (apart 

from the task with the smallest period) is assumed to lead a 

worst-case priority inversion, and each deadline lying in the 

interval (p1, pi) is checked. If these deadlines are met under 

these worst-case priority inversions, the task set is feasible. 

Fig. 5: npEDF critical instants: worst case blocking induced by task 

 

It should be noted that the time complexity of 

algorithm to decide (2) and (3) is pseudo-polynomial and 

hence highly efficient, taking time proportional to 

of tasks multiplied by the largest period or 

non-preemptive scheduling problem, in this formulation, 

turns out to be only weakly coNP-Complete. In the case when 

one or more task has a constrained deadline, George et al. 

developed similar feasibility conditions, with the same 

complexity [18]. When compared to feasibility tests for other 

non-preemptive scheduling disciplines, this is significantly 

 

How complex is it to analyze the schedule that will be 

produced by npEDF for a given (arbitrary) set of tasks, to 

? This turns out to 

for the implicit deadline 

rmally shown by Jeffay et al. 

, indexed in order of 

for any set of release times) 

under npEDF if and only if the following conditions are true: 

(2) 

pi ;

 

(3)
 

(2) states that the 

and condition (3) 

preemption under 

That is, each task (apart 

from the task with the smallest period) is assumed to lead a 

case priority inversion, and each deadline lying in the 

) is checked. If these deadlines are met under 

ask set is feasible.  

 
Fig. 5: npEDF critical instants: worst case blocking induced by task i. 

It should be noted that the time complexity of an 

polynomial and 

hence highly efficient, taking time proportional to the number 

of tasks multiplied by the largest period or O(npmax) – the 

preemptive scheduling problem, in this formulation, 

In the case when 

one or more task has a constrained deadline, George et al. 

similar feasibility conditions, with the same 

hen compared to feasibility tests for other 

preemptive scheduling disciplines, this is significantly 

better. For example, it is known that deciding if a set of 

periodic process can be scheduled by a cyclic executive or 

timeline scheduler is strongly NP-Hard 

known that deciding if a set of periodic process can be 

scheduled by a TTC scheduler is strongly 

Note that strong and weak complexity results have a precise 

technical meaning; specifically, amongst other things the 

former rules out the prospect of a pseudo

algorithm unless P = NP, whereas the latter does not.

Thus, although a very efficient algorithm may be 

formulated to exactly test for Equations (2) and (3), it is 

thought that no exact algorithm can ever be designed to 

efficiently test feasibility for these alternate scheduling 

policies. Please note that for ‘liquid’ task sets 

execution times significantly shorter than their periods 

known that the ‘penalty for non-preemption’ 

(3) - evaporates, and we are simply left the same feasibil

test as the preemptive case, i.e. condition (2).

status: npEDF admits an efficient feasibility test for periodic 

(sporadic) tasks that ensures even worst

inversions do not lead to deadline misses

C. npEDF is not Robust under reduced system load.

With respect to this complaint, Jane Liu presents some 

convincing evidence on p.73 of her book 

[12], and cites the seminal paper by Graham [20

investigating timing anomalies. There are two 

problems here. The paper by Graham deals only with 

multiprocessor case; specifically, it investigates the effects of 

reduced (aperiodic) task execution times on the makespan 

produced by the LPT heuristic scheduling technique. As do

the examples on p.73 of Liu’s book, although it

explicitly clear. This paper is 

single-processor scheduling, and these

not apply. The only single processor timing anomaly referred 

to in the Liu text is shown in Fig. 6; at first glance, it seem

that a run-time reduction in the execution 

C1 does lead to a deadline miss of J3: 

Fig. 6: A Run-time reduction in task execution times leading to deadline 

misses: a valid example?

 

However upon closer inspection, this example can be 

seen to be almost identical to the example 

with the execution of J1 between t = 3and

serving the same purpose as the inserted idle

In order for this example to hold up, it must logically follow 

that the schedule must be provably feasibl

 
2In fact, this situation is known to considerably worse than this. The problem 

is actually known to be NPNP-Complete [19]. Under the assumption that

NP, this means that the feasibility test requires an exponential 

calls to a decision procedure which is itself strongly 

 

For example, it is known that deciding if a set of 

periodic process can be scheduled by a cyclic executive or 

Hard [8][9]; it is also 

known that deciding if a set of periodic process can be 

strongly coNP-Hard
2
 [19]. 

complexity results have a precise 

technical meaning; specifically, amongst other things the 

former rules out the prospect of a pseudo-polynomial time 

algorithm unless P = NP, whereas the latter does not.  

Thus, although a very efficient algorithm may be 

formulated to exactly test for Equations (2) and (3), it is 

thought that no exact algorithm can ever be designed to 

test feasibility for these alternate scheduling 

r ‘liquid’ task sets - i.e. those with 

execution times significantly shorter than their periods – it is 

preemption’ – i.e. condition 

evaporates, and we are simply left the same feasibility 

i.e. condition (2). Overall claim 

npEDF admits an efficient feasibility test for periodic 

(sporadic) tasks that ensures even worst-case priority 

inversions do not lead to deadline misses. 

under reduced system load. 

to this complaint, Jane Liu presents some 

er book Real-Time Systems 

seminal paper by Graham [20] 

There are two principal 

The paper by Graham deals only with the 

; specifically, it investigates the effects of 

reduced (aperiodic) task execution times on the makespan 

tic scheduling technique. As do 

, although it is not made 

. This paper is concerned with 

se examples simply do 

The only single processor timing anomaly referred 

shown in Fig. 6; at first glance, it seems 

cution requirement of job 

 

 
time reduction in task execution times leading to deadline 

misses: a valid example? 

However upon closer inspection, this example can be 

the example given in Fig. 3, 

= 3and t = 4 effectively 

serving the same purpose as the inserted idle-time in Fig. 3. 

In order for this example to hold up, it must logically follow 

the schedule must be provably feasible when the tasks 

In fact, this situation is known to considerably worse than this. The problem 

. Under the assumption that P ≠ 

feasibility test requires an exponential number of 

strongly coNP-Complete. 
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have nominal parameters given by A); applying Equations 

(2) and (3) to these tasks, it can be quickly determined that 

the task set is not deemed to be feasible, since the formulation 

of Jeffay’s feasibility test takes worst-case priority inversion 

into account. This example is misleading w.r.t. npEDF – 

since the task set simply fails the basic feasibility test, Liu’s 

argument of ‘an otherwise feasible task set’ becomes a 

non-starter. This again highlights the fact that 

misconceptions regarding robustness and priority inversions 

have principally arisen from one simple fact; as shown in the 

previous Section, the worst case behavior of a task set – its 

critical instants - under non-preemptive scheduling is not the 

same as under preemptive scheduling. Overall claim status: If 

appropriate (off-line) analysis is performed to confirm the 

feasibility of a task set, this task set will remain feasible under 

npEDF even under conditions of reduced system load. 

D. Timer Rollover can Lead to Timing Anomalies. 

With respect to this complaint, this can in fact be shown to 

hold, but is easily solved. The assumption that time is 

represented as integer – and in embedded systems, normally 

with a fixed number of bits (e.g. 16) – eventually leads to 

timer rollover problems; deadlines will naturally ‘wrap 

around’ due to the modular representation of time. Since the 

normal laws of arithmetic no longer hold, it cannot be 

guaranteed that di mod(2b) < dj mod(2b) when di < dj and time 

is represented by b-bit unsigned integers. There are several 

efficient techniques that may be used to overcome this 

problem, perhaps the most efficient is as follows. Assuming 

that the inequality pm < 2
b
 / 2 holds over a given task set,  i.e. 

the maximum period is less than half the linear life time of the 

underlying timer, then the rollover problem may be 

efficiently overcome by using Carlini & Buttazzo’s Implicit 

Circular Timer Overflow Handler (ICTOH) algorithm [21]. 

The algorithm has a very simple code implementation, and is 

show as C code in Fig. 7. 

The algorithm’s operation exploits the fact that the 

modular distance between any two events (e.g. deadlines or 

activation times) x and y, encoded by b-bit unsigned integers, 

may be determined by performing a subtraction modulo 2
b
 

between x and y, with the result interpreted as a signed 

integer. Overall claim status:  rollover is easily handled by 

employing algorithms such as ICTOH. 

E. Use of npEDF Leads to Increased Overheads. 

In order to shed more light on this issue, let us consider the 

required number of ‘scheduling events’ over the hyperperiod3 

of a given periodic task set, and also the complexity – the 

required CPU iterations, as a function of the task parameters 

– of each such event. Specifically, let us consider these 

scheduling events as required for task sets under both npEDF 

and TTC scheduling. TTC scheduling is considered as the 

baseline case in this respect, as it has previously been argued 

that a TTC scheduler provides a software architecture with 

minimal overheads and resource requirements [4][7][14]. 

Given the definition of npEDF, one scheduling event is 

required for every task execution. The scheduler enters idle 

mode when all pending tasks are executed; it is woken by an 

 
3The hyperperiod of a task set is the duration of time taken for the schedule to 
repeat. For synchronous tasks, this corresponds to the least common multiple 

of the task periods [1]; for asynchronous tasks the duration is related to the 

lcm but is somewhat longer, see [13] for further details. 

interrupt set to match the earliest time at which a new task 

will be invoked. The TTC algorithm is designed to perform a 

scheduling event at regular intervals, in response to periodic 

timer interrupts; the period of these interrupts is normally set 

to be the greatest common divisor of the task periods [4][14]. 

 

 
Fig. 7: Testing the temporal ordering of events, assuming an absolute (top) 

versus a modular (bottom) representation of time. 

 

Assuming a given set of tasks are synchronous with 

periods expressed in a minimal form, let h = lcm(p1, p2, ... pn). 

The number of scheduling events over h for the TTC 

scheduler – SETTC - is then directly equal to h. The number of 

scheduling events for the npEDF scheduler over h – SEEDF - 

is given by: 

∑
∈

=
τi i

EDF
p

h
SE  

(4) 

 

Clearly, SEEDF  ≤ SETTC, and in most cases the former will 

be significantly smaller. By way of example, the number of 

scheduling events required for both scheduling disciplines is 

shown (over the initial portion of the schedule) for the task set 

τ = [(90,5),(100,5)] in Fig. 8 (scheduling events are indicated 

by the presence of up-arrows on the timeline).  

 

 
 

Fig. 8: Density of scheduling events in both TTC and npEDF scheduling. 
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As mentioned, also of interest are the time complexities of 

each scheduling event; this will now be considered, and 

expressed as a function of the number of tasks, n. Given the 

design of the TTC scheduler, it is clear to observe from its 

basic design and implementation (see, for example, [4][14]) 

that its complexity is fixed to be linear in the number of tasks, 

in other words O(n). However, task management in the 

npEDF scheduler significantly improves upon this situation; 

it is known that the algorithm can be implemented with 

complexity O(log n) by employing a data structure known as 

a heap-of-heaps [22]. Additionally, recent work by the 

current author has also shown that this can be improved 

further still; by employing simple data structures known as 

timing and deadline wheels, npEDF can be implemented with 

small constant overhead, i.e. independent of the number of 

tasks and with complexity O(1) [23].  

To further illustrate this final point, Fig. 9 shows a 

comparison of the overheads incurred per scheduling event as 

the number of tasks was increased on a 72-Mhz 

ARM7-TDMI microcontroller. Overheads execution times 

were extracted using the technique described in [23]; please 

note that the horizontal scale is logarithmic. This graph 

clearly shows the advantages of the npEDF technique, when 

n > 8, the TTC overheads are significantly greater the than 

npEDF; when n > 32, they become an order of magnitude 

larger. Overall claim status: With an appropriate 

implementation, the density of npEDF scheduling events is no 

worse that (and in most cases significantly better) than 

competing methods; the CPU overheads incurred at each 

such event are also significantly lower. 

 

 
Fig. 9: CPU overheads vs. number of tasks n. 

V. CONCLUSION 

This paper has considered the non-preemptive version of 

the Earliest Deadline First algorithm. Specifically, it has first 

considered - and subsequently refuted - many of the supposed 

‘problems’ that have been attributed to this type of 

scheduling technique. Where appropriate, examples and 

analysis have been given to highlight that not only are many 

of these claims simply baseless, in fact npEDF outperforms 

other non-preemptive software architectures – oftentimes 

significantly so - when scheduling periodic and sporadic 

tasks. On the merits of these arguments, it the conclusion of 

the current author that npEDF should actually be considered 

as the de-facto algorithm of choice for implementing 

resource-constrained real-time embedded systems. 
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