

Flexible Searching for Graph Aggregation
Hierarchy

Pichayotai Mahatthanapiwat

Abstract— Signature technique for multi-key indexing is
proposed for flexible searching in the area of database. In this
paper, the signature technique called the Join Signature file is
presented to cover graph aggregation hierarchy. The structure of
Join Signature is flexible enough so that the predicate can occur at
any classes in the hierarchy and the target can be anywhere in the
graph aggregation hierarchy. The retrieval performance when
compared with the forward and reverse traversal technique is
discussed and the cost models in terms of the storage cost and the
retrieval cost are then formulated using the structure explained in
the research.

Index Terms—Join Signature File, Graph Aggregation

Hierarchy, Retrieval and Searching, Object-Oriented
Database.

I. INTRODUCTION

Object-oriented databases provide data modeling
mechanisms to support applications such as Computer Aided
Design (CAD), Computer Aided Manufacturing (CAM) and
Geographical Information Systems (GIS). The characteristics
of object-oriented databases and their data model are different
from those of relational databases. From the principle of the
object model, a class is a template to create objects.
Furthermore, a class allows its attribute to have complex data
while the attribute of the relational model is limited to
primitive data.

An object consists of its state and behavior. State of the
object is its attribute value that can be primitive or complex.
The complex attribute stores unique object identifier (OID) of
other object. Behavior is a method or predefined procedure that
operate on the state of the object.

Due to object model, the complex attribute A of class C can
contain OID of object in domain class C’ so aggregation
relationship can be established between C and C’.

name

own

engine
id

name
location

Person

Car

Company

String

String

String

String

manufacture

number
type

Body

String

String

String
color
body

number
type

Engine

String

String

Fig. 1. Aggregation Hierarchy

Fig. 1 is an example of graph aggregation hierarchy, which

consists of five classes. Company is an ancestor class and has

Pichayotai.Mahatthanapiwat is with School of Computer Engineering,
Suranaree University of Technology, Nakhonratchasima Thailand 30000
(e:mail: pmh@sut.ac.th)

two simple attributes; name, location and one complex
attribute; manufacture. The domain class of attribute
manufacture is Car, so OID of object in the class Car is stored
in the manufacture attribute. The Car class has two parent
classes, Company and Person. It can also refer to the Engine
class and the Body class. Therefore, the Car class is an
intermediate class. The Engine class does not refer to any
classes, so it is the final class in the aggregation hierarchy.

Forward traversal is use to access objects by traversing from
an ancestor class to the nested classes by using the pointer,
which is the OID of its child class. Therefore, an object of the
Company class can refer to its nested attribute number of the
Engine class by traversing from the corresponding objects of
the Company class, the Car class and the Engine class
respectively. Conversely, traversing from a child class to its
parent class is called reverse traversal. When there is a query,
the class that the predicate is involved is called the predicate
class and the class of the target objects is called the target class.
 So far, many indexing techniques have been proposed
getting rid of cost of traversal. Most of them dealt with
indexing on nested attribute. [1] proposed nested index linking
an object from the final class to objects in the ancestor class
along the path. Path index [1] used the similar technique and
stored additional OIDs of objects on the path. Indexing
techniques used in both aggregation hierarchy and inheritance
hierarchy are proposed in [2][3][4].

Queries that have predicate on the final class can get benefit
from indexing techniques. However, queries with predicate on
the ancestor class can hardly get the benefit. [5] proposed the
technique of direct link of a path between object in the ancestor
class and object in the final class.

If all classes have equal opportunity to be the predicate class,
the techniques mentioned above are inapplicable in this
situation. [7][8] proposed the technique called Join Signature to
cope with this problem. Join Signature for tree aggregation
hierarchy is presented in [9]. It is absolutely that indexing
techniques require high storage and maintenance cost and may
constrain the indices for multiple attributes. Signature
technique will be the alternative approach for searching the
target objects for classes in the graph aggregation hierarchy.
Signature technique will be more flexible because we cannot
always predict which key attribute will be used to access the
database.

The organization of this paper is as follows. The brief of the
signature file technique will be described in section 2. Section
3 describes joining of classes in the graph aggregation
hierarchy. Structure and retrieval operation of the Join
Signature File for graph aggregation hierarchy is then
presented in section 4 and 5 respectively. Section 6 proposes
storage overhead and the retrieval cost. Finally, section 7
summarizes the paper.

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

II. SIGNATURE FILE TECHNIQUE

Let us review the concepts of the signature file technique
used for object-oriented databases. A signature is an
abstraction of the information stored in the attributes of an
object [6]. Signature is created by superimposing bit string
generated from the attribute values of the object being
represented as shown in table 1.

Table I. Object Signature Generation

Value Hashing result
Honda Auto 0101 0001 0010 0001
Bangkok 1010 0100 0001 1000
Object Signature 1111 0101 0011 1001

Table 1 shows the signature generation of an object in the

Company class having two simple attributes, name and
location. Signatures of simple attributes are obtained by
hashing their attribute values into a bit string. An object
signature is formed by superimposing or ORing all these
hashing results. Object signatures are stored sequentially in the
signature file. Using the signature, we can check if the given
value is in a signature. A query specifying certain values to be
searched for is transformed into a query signature by using the
same hashing function as we used in generating bit string for
attribute value. Then, we compare query signature with each
object signature in the signature file. Object signature is
qualified if and only if, for all bit-1 positions in the query
signature, the corresponding bit position of object signature are
also set to 1 (SQ SO = SQ), where SQ = query signature, SO =
object signature. However, after signature matching, we still
have to examine the object in order to eliminate the false drop;
signature matching but the object does not match the search
criteria

III. JOINING OF CLASSES IN GRAPH AGGREGATION

HIERARCHY
The graph aggregation hierarchy is shown in Fig. 2.

C1

C5

C2 C7

C4

C6

C3

Fig. 2. Graph Aggregation Hierarchy

From the Fig. 2 above, C1 and C2 are ancestor classes
whereas C6 and C7 are final classes. C3, C4 and C5 are linked
and link to other classes so they are intermediate classes. Any
objects in C1 can link directly and indirectly to the remaining
classes in the graph aggregation hierarchy. Restructure of
joining of classes in graph aggregation hierarchy is presented
in Fig. 3.

C 1

C 5

C 2

C 7

C 4

C 6

C 3

Fig. 3. Joining of Classes

There are 2 groups of joining between classes in Fig. 3 as
follows

1. The joining of ancestor classes and the final classes
(AF group).

2. The joining of intermediate classes (I group).
 Then the AF group and I group are joined together.

IV. STRUCTURE OF JOIN SIGNATURE FILE
Given the graph aggregation hierarchy of classes, We can

get joining of classes and object relationship. The information
of joining objects for joining classes will be described as
follows.

For a graph aggregation hierarchy if O1 is an object in class
C1 and O1 links to O2, O3, O4, O5, O6 and O7 of class C2 to
class C7 whether it links directly or indirectly. The information
of O1 to O7 will be kept together as OID relationship. The

structure of OID relationship is shown in Fig. 4.

OID of O1 OID of O2 OID of O6 OID of O7 OID of O3 OID of O4 OID of O5

AF Group I Group

Fig. 4. The Structure of OID Relationship

The Join Signature for each joining group is calculated as
follows

1. The Join Signature is obtained by superimposing the
object signatures for objects relationship in the group.

2. The signature of an object is generated by
superimposing the signatures of all of its simple
attributes.

3. The signature of a simple attribute is obtained by
hashing on the attribute value.

The structure of Join Signature for I group is shown in

Fig. 5.

I Join SignatureI Join Signature OID of O3OID of O4 OID of O5OID of O3OID of O4 OID of O5

Fig. 5. The Structure of an Entry of I Join Signature

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

The AF Join Signature will be obtained using the same
method as of I Join Signature except using objects signatures of
the AF group.

The Join Signature is generated by superimposing the object
signatures of objects in the relationship for each group. It is
generated as shown in Fig. 6. Entries of Join Signature will be
stored in the file called the Join Signature file.

Fig. 6. The Join Signature

V. RETRIEVAL OPERATION

An example of an entry in the Join Signature file will be
given to describe the retrieval operation for the Join Signature.
Fig. 7 shows an example of objects in an aggregation
hierarchy.

Wichai

Car[2]

Engine[3]
MHR12C

Honda Auto
Bangkok

Person[1]

Car[2]

Company[2]

String

String
Strin
g

String

Car[2]

B17005
sedan

Body[5]

String
String

String
red
Body[5]

E2GHP
DHC

Engine[3]

String
String

Fig. 7. An Example of Objects in Graph Aggregation
Hierarchy

From Fig. 7, Company[2] represents OID of 2nd of object in

the Company class. Object Company[2] and object Person[1]
reference object Car[2] directly but they reference object
Engine[3] and Body[5] indirectly. The information of an entry
in the format of <sig(relationship objects in AF group), OIDs
of classes in AF group, sig(relationship objects in I group),
OIDs of objects in I group> will be stored in the Join Signature
file as follows.

<sig(rel objs in AF group), Company[2], Person[1], Engine[3], Body[5],
Sig(rel objs in I group), Car[2]>

The information of an associated entry in the Join Signature
file is shown in Fig. 8.

11010110 Company[2] Person[1] Engine[3] Body[5] 10001001 Car[2]11010110 Company[2] Person[1] Engine[3] Body[5] 10001001 Car[2]

Fig. 8. An Example of an Entry in the Join Signature File

Usually, a query will be analyzed where the predicate
occurs and where the target class is. The class of which the
predicate occurs will be called the predicate class. Therefore,
the corresponding signature will be used in according to the
predicate class. If the predicate occurs for classes in AF group,
the signature of relationship objects in AF group will be used,
otherwise the signature of relationship objects in I group will
be used instead.

An attribute’s value of the predicate class in the query is
transformed into a query signature SQ. The query signature SQ
will be compared with every signature stored in entries of the
corresponding signature group in the Join Signature file.
Whenever the signature of object relationship matches with the
query signature, it will be verified if that entry of the Join
Signature file is not false drop by retrieve the information in
OODB using OID of the predicate class stored in the entry. If it
is a qualified object, get the OID of the target class to retrieve
information from the database.

From the characteristic of the Join Signature file, it is very
convenient to locate the matching objects in the predicate class.
When the predicate class and the target class are specified, the
associated signature group in the Join Signature file will be
used for that query. Therefore, this access method is
appropriate for any locations for the predicate class and target
classes. Furthermore we can obtain any target objects from the
remaining classes in the hierarchy that relate to the predicate
object.

When compared with the forward traversal technique, all
entries of the Join Signature file will be scanned and only
predicate objects of the matching signature will be accessed to
verify that they are not false drop. On the contrary, the forward
traversal technique explores every object in the predicate class
to find the predicate objects and use them to access the
descendant objects. It is noticeable that the size of a Join
Signature file is much less than the size of all objects in the
predicate class. Furthermore, the signature can be used to filter
the objects in the predicate class. Therefore, the cost of
retrieval cost of the Join Signature is much less than that of the
forward traversal technique.

If the reverse pointer is not applicable, the reverse traversal
will have very high retrieval cost. In the reverse traversal
technique, all objects in the predicate class will be accessed to
locate the objects that have attribute’s value in the predicate.
The qualified objects are then stored in set S. Later the parent
class of the predicate class is then accessed to find if there are
objects that point to the objects in set S. The traversal to the
ancestor class uses the similar approach. Therefore, all class
between the predicate class and the target class will be
accessed making high retrieval cost.

The structure of the Join Signature supports predicate on any
classes in the graph aggregation hierarchy. The corresponding
signature of AF group or I group will be used according to the
predicate class. After getting the predicate object, the target
objects from the target classes will be accessed easily.
Therefore, the retrieval cost of the Join Signature is much less
than that of the reverse traversal technique.

VI. COST MODEL

Cost Model consists of storage and retrieval cost. The
parameters listed below will be used in the analysis

 object signature superimpose object signature

 Sig(attribute1)

V Sig(attribute2)

V …….

 Sig(attribute1)

V Sig(attribute2)

V …….

Join Signature

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

A. The Parameters of Cost Model

Given the graph aggregation hierarchy of classes, the
parameters of the cost model for implementation are listed
below.

NA: the number of ancestor classes.
NF: the number of final classes.
NI: the number of intermediate classes.
Q: the average number of objects in each class.
S: the size of a signature.
I: the size of an OID.
P: the average size of an object.
E: the average size of an entry in the signature file.
K: the average size of the signature file.
R: the average matching rate of a query signature.
G: Page size.

Page will be used to estimate the storage cost and the
retrieval cost because it is a basic unit to access data in the
secondary storage. All lengths and sizes used above are in
bytes.

The following are assumptions used in the analysis.
1. All simple attributes are single-valued.
2. All complex attributes are single-valued.
The child object is always referenced by its parent object.

B. Storage Cost

The size of a signature entry E is

 E = 2 * S + (NA + NF + NI) * I. (1)

Thus, the size of a Join Signature file is

K = Q * (2 * S + (NA + NF + NI) * I). (2)

The storage cost (SC) for the signature file is

SC = K / G. (3)

C. Retrieval Cost

For a given query, the number of page access for the signature
file is as follow.

If the predicate class is on the class of the AF group

 RCAF = (K / G) +

 (RAF* Q * P / G) . (4)

If the predicate class is on the class of I group

 RCI = (K / G) +

 (RI* Q * P / G) . (5)

 where
 RCAF is the retrieval cost for the predicate class on AF
group.

 RCI is the retrieval cost for the predicate class on I group.

 (K / G) are the number of pages required for scanning all
entries in the signature file.

 (RAF * Q *P / G) are the number of pages required to
access the matching objects in the predicate class of AF group.

 (RI * Q *P / G) are the number of pages required to access
the matching objects in the predicate class of I group

Analysis

The important terms of the retrieval cost of the Join
Signature file are the size of OID, the size of the signature, the
number of classes in the hierarchy and the number of objects in
each class. It is noticeable that the matching rate RAF and RI
will filter the number of objects retrieved from the predicate
class according to the predicate class on AF group and I group
respectively. For the forward traversal technique, all objects of
the predicate class must be retrieved to find the qualified
objects and then follow the links to the target objects in the
target class. Therefore, the retrieval cost of the Join Signature
file is lower because of the smaller size of the signature and
OID. Moreover, the mechanism of filter from the signature will
access only the matching objects in the predicate class.

The retrieval cost of the reverse traversal is very high if there
is no the reverse pointer from the predicate class to the target
class. Therefore, all objects of all classes from the target class
to the predicate class must be accessed.

It is not easy to use the forward traversal technique if the
predicate class is the descendant class and the target class is the
ancestor class. All object of the parent class of the predicate
class must be accessed to examine if their nested attributes are
qualified. Likewise, reverse traversal technique takes time if
the predicate class is the ancestor class. However, the Join
Signature can be used whether the location of the predicate
class is any classes.

From the structure of the Join Signature file, all objects of
classes in graph aggregation hierarchy that share the same
predicate object are stored together. Therefore, it is convenient
to access the associated target objects for the predicate object.

VII. CONCLUSION AND PERSPECTIVE

In this paper, joining of classes is classified into two groups,
i.e. group of classes from ancestor class and final class (AF
group) and group of classes from intermediate class (I
group).The structure of corresponding joining objects and their
signature are described. The Signature is created for object
relationship to store abstract information of the joining objects.

This research emphasizes that the aggregation relationship of
classes is formed as a graph. The retrieval of the Join Signature
is discussed and compared with that of the forward traversal
and reverse traversal technique. The formulation of cost model
has constraints that all attributes have single value.
Additionally, all child objects are always referenced. Finally,
the storage overhead and the retrieval cost are formulated.

By using the signature technique, the filter mechanism will
discard unnecessary objects so that only the possible objects
will be accessed making lower retrieval cost.

The constraints given in this research should be resolved in
the next research. The multi value attributes and reference

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

sharing for graph aggregation hierarchy should be considered
to cope with complex access method.

REFERENCES

[1] E. Bertino and W. Kim, "Indexing Technique for Queries on Nested

Objects." IEEE Trans. on Knowledge and Data Eng., vol.1, pp.196-214,
1989.

[2] E. Bertino and P. Foscoli, "Index Organization for Object-Oriented
Database System," IEEE Trans. on Knowledge and Data Eng.,
volume(7), pp.193-209, 1995.

[3] F. Fotouhi, T. G. Lee and W. I. Grosky," The Generalized Index Model
for Object-Oriented Database Systems," Proc.10th Phoenix Conf. on
Computer and Communication, pp.302-308, 1991.

[4] S. Choenni, E. Bertino, H. M. Blahken and T. Chang, ” On the Selection
of Optimal Index Configuration in OO Databases," Proc. 10th Int’l Conf.
on Data Eng., pp.526-537, 1994.

[5] W. C. Lee and D. L. Lee, " Short Cuts for Traversals in Object-Oriented
Database Systems," Proc. Int’l Computer Symposium, pp. 1172-1177,
1994.

[6] W. C. Lee and D. L. Lee "Signature File Methods for Indexing Object-
Oriented Database Systems," Proc. Int'l Computer Science Conference,
pp. 616-622,1992.

[7] P. Mahatthanapiwat. " Join Signature," Proc. The 7th National Computer
Science and Engineering Conference, pp. 169-173, 2003.

[8] P. Mahatthanapiwat "Join Signature with Reference Sharing", Proc. Int’l
Multiconference of Engineers and Computer Scientists, pp. 619-623,
2007.

[9] P. Mahatthanapiwat “ Join Signature for Tree Aggregation Hierarchy”,
Proc. Int’l conference on Software, Knowledge, Information Management
and Application, pp. 120-124, 2008.

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

