
 

 

 

 

  

 

Abstract— In the first class of CE and SE departments, all of 

the students get a compulsory software language course. This 

paper indicates that using a procedural and inductive approach in 

teaching object oriented languages is far more better than using 

the object-first approach with regard to the experiences gained 

during 5 years of an introductive OOP Java course. Our 

supporting ideas are based on student feedbacks and their 

successes not just during their studentship but also in the 

industry.  

 

 
Index Terms— Computer Science Education, OOP, 

Programming Languages.  

 

INTRODUCTION 

Bahçeşehir University has been teaching programming 

languages in the first year of Computer Engineering, Software 

Engineering, Industrial Engineering, Electrical and 

Electronical Engineering and Mechatronics Engineering. 

Despite the procedural approaches for beginners in the other 

departments, Computer Engineering (CE) and Software 

Engineering (SE) are the ones focusing not just on procedural 

but also on object oriented programming.   

Our CE department teaches this first year course using C++, 

a hybrid language which derives from C, and our SE 

department uses Java.  

Our SE department is a newer department (5 years) in 

comparison to the CE department (12 years), hence the SE 

graduates are newer in the industry, which gives us a chance 

to observe them more objectively. 

During this paper, we will mention the experiences of the 

SE students during / after the school and our supporting points 

by giving examples by their pros and cons. 

 

 
Manuscript received March 3, 2010. 

Ç., Duygu is studying as a master’s degree student in Computer 

Engineering and also working as a teaching assistant in Software 

Engineering, Bahçeşehir University, Besiktas, IST 34353 TURKEY  

(phone: 0090-212-381-0542; fax: 0090-212-381-0550; e-mail: 

duygu.cakir@bahcesehir.edu.tr).  

K., Adem, Assoc. Prof. is the head of the Software Engineering 

Department of Bahçeşehir University, Engineering Department.  

(phone: 0090-212-381-0560; e-mail: akarahoca@bahcesehir.edu.tr). 

K., Selvihan is a lecturer in the Computer Engineering Department at 

Bahçeşehir University.  

(phone: 0090-212-381-0586; e-mail: syavuzer@bahcesehir.edu.tr) 

WHY JAVA? 

As Kölling stated before, “for a first year student, the 

language should support clean, simple and well-defined 

concepts, it should have an easily readable and consistent 

syntax and also the language should have an easy-to-use 

development environment including a debugger so that the 

students can concentrate on learning programming concepts 

rather than the environment itself.” [2, 5] 

Java is an open-source language which enables the user to 

work in any platform (s)he wants. Its platform-free structure 

attracted us for we know that although most of the students 

use Windows platform, some still prefer Unix/Linux OS.  

According to our student surveys, students like Java because 

they can easily implement games for mobile phones and the 

ability to use Java to create web applications (of course not 

during their freshman year, but the dream of implementing 

mobile and web applications attract them).  

Besides these, we face with Java in our every day life. 

Decoders, printers, games, navigation systems, web cams, 

medical devices and parking machines also use Java coding.  

Because Java is a clean, readable, platform-free, 

user-friendly, preferred-in-the-industry, object-oriented 

language, it became on top of our choice list. The reason our 

SE department sticked to it was that the students loved 

working with it, and made no negative criticism even though 

they were taught C++ and C# in their junior and sophomore 

years too and still preferred Java.  

 

COURSE STRUCTURE 

“Introduction to Programming with Java” and “Object 

Oriented Programming with Java” is given to SE freshmen. 

During the fall semester, we give the basics of Java and in the 

spring semester we teach OOP and its applications. We use 

Eclipse IDE (Classic) as the Java editor. [13] 

Each semester, we make 2 midterms, 1 lab exam, 4 in-class 

or take home quizzes and a final exam. 70% attendance for 

theoretical and 80% attendance for lab sessions are required. 

Also, each semester, up to 10 points of bonus is given to 

encourage the students’ efforts.  

The questions of the midterms and the finals come from the 

basics. Generally, in the questions, all the keywords and 

pre-defined functions are given to the student, asking him to 

fill in the functions or blanks according to the problem by 

implementing his/her unique algorithm.  

On the contrary to midterms and the finals, the open-note 

lab exam is a bit harder. The student is asked to implement the 

given program in Eclipse using his/her notes and send the 

An OOP w/ Java Course Using an Inductive 

Approach 

Duygu Çakır
1
, Selvihan N. Kaptan

2
, and Adem Karahoca

3 

 

 

Proceedings of the World Congress on Engineering 2010 Vol I 
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010



 

 

 

source files to the lab TA. Usually the first semester’s lab 

exam is about multidimensional arrays and complex 

algorithms (mostly games), and the second semester’s lab 

exam contains inherited classes and functions about a daily 

life sample to stimulate them think of programming as a daily 

life activity.  

 

A. Fall Semester 

This semester focuses on algorithms, Java basics, how it 

works and how its compiled by the JVM, Eclipse environment 

and so on. The main topics are as follows: 

• Algorithm representations with pseudo-code and flow chart 

• Algorithm representations using control structures, 

repetition 

• Anatomy of a simple Java program, Java byte codes, Java 

compiler and Java virtual machine (JVM), Java syntax. 

• Basic variables, scope, variable assignment and arithmetic 

operators, running a Java program both using Eclipse IDE 

and using the command prompt.  

• Logical operators, decision structures, if/else and 

switch/case blocks 

• While, do/while and for loops 

• String class and manipulation functions 

• Predefined libraries and their functions, function 

definitions and parameters, function prototype 

• Using the Math library and random number generation 

• Creating, accessing and using arrays, basic sorting and 

searching algorithms 

After we make sure the students really get these topics by 

making a review session, we start object orientation by using 

some basic, every day examples such as a Person or a Vehicle 

class at the end of the first semester.  

 

B. Spring Semester 

This semester fully focuses on object orientation topics, 

encapsulation, inheritance, abstract structures and interfaces. 

We first make a review of the first semester by writing 

complex problems for the first 2 weeks and then start OOP.  

• Basics of classes, member variables, class methods, 

constructors 

• Inheritance, polymorphism, class abstraction 

• Exception handling 

• File I/O 

• Java swing components, graphical development 

• Basic data structures, list implementations, dynamic 

allocation 

 As soon as we finish the topics, we make an introduction to 

data structures to help the students understand next year’s 

topics. Then we give a graphical quiz (mostly a program in 

which the student makes a painting using the mouse and the 

keyboard) focusing on the class hierarchy and lists. 

DISADVANTAGES OF JAVA 

When the student starts writing his very first “Hello World”, 

the first thing he sees is this:  

 

The first coding they do is extremely hard to understand for 

a starter using the keywords “public, class, static, void, String, 

String[], System, out, println”... Of all these keywords, the 

student just understands the “Hello World” part and gets a bit 

confused. But as he practices more and more, he, himself, 

understands the need for the class and the main function. Of 

course, Eclipse IDE has a big role in his understanding.  

When it comes to get an input from the user (usually in the 

4th week of fall semester), it gets even more complicated.  

At the beginning, in our first year, we used the 

BufferedReader class to get inputs from the user, but then 

Scanner seemed easier for the students to understand. 

 

Besides it's simplicity, we can use the Scanner class 

everywhere, when getting an input from the user, when 

reading a text file, or when listening to a port for an input 

stream. But, no matter how easier it gets, it's always hard for a 

beginner student to understand all in one.  

Although Java has it's disadvantages like these for a 

beginner, it is far more easier when the program gets more 

complex. After a while, the student gets used to the syntax and 

rules of Java.  
 

COUNTER ATTACKS 

As can be seen above, we used an inductive approach 

starting from the variable declarations to OOP. We believe 

that a healthy combination of theory and practice in balance is 

necessary for a student to pass on to OOP. They need a mature 

 
Figure 2 - Hello World 

Figure 1 - User Input with java.util.Scanner 

Proceedings of the World Congress on Engineering 2010 Vol I 
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010



 

 

 

perspective and algorithmic intelligence before they start 

OOP.  

Many disagreed with this approach before, such as Pedroni, 

Kölling, Rosenberg, Zhu and McLaughlin [11, 3, 4, 5, 12, 7]. 

Their mutual opinion was that OOP is best taught by teaching 

objects from the start, rather than starting with a procedural 

programming approach and adding objects later. Kölling 

stated that “If we want to teach object-orientation, we should 

do it first. The path to object-orientation through a procedural 

programming is unnecessarily complicated.”[4] On the 

contrary, McLaughlin’s statement wasn’t as moderate as 

Kölling’s: “object technology must be taught as a core theme 

in order to provide theoretical underplannings. Failure to do 

so will lead to the worst of all worlds – teaching a procedural 

approach with an OO language.” [7] 

We disagreed with the many…  
 

WHAT WE BELIEVE 

Even though there are many professors disagreeing, some 

of them still support the procedural approach. As a matter of 

fact, Lewis addressed the subject to a whole different topic 

and suggested that object-first methodology is not a good 

pedagogy for teaching object orientation [6].  

We argue that if a student masters on the syntax and 

algorithms first, then (s)he can write more effective and 

optimized software. He should start writing without any 

questions in his head about the language and the syntax. 

That’s why we teach the basics first, before everything gets 

more complicated.  

After the student learns the basics, e.g. variables, loops and 

conditionals, he starts to search for different approaches. He, 

himself, asks us to lower the number of lines in the program 

and not repeat similar lines. After he spontaneously searches 

for a new approach, we start teaching arrays and functions.  

When he sees that the lines can be reduced by getting rid of 

the repetitive ones, he has the need for reducing more and 

more. Our basic example just before starting object oriented 

coding is as follows:  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

As can be seen from the above example, after the student 

sees that there are so many arrays to store 10 people with 6 

properties in the system, he seeks for an easier way to do this 

and requests a hand on making this simpler. Hence, there are 

no questions left in his mind about the need for object 

orientation and everything becomes clear in his head.  

More than 80% of the students in their first year start the 

university as soon as they finish high school. This is a huge 

fact that their mathematical intelligence is stil fresh. If we 

choke them with more rules using the object-first approach 

and make them confront lots of new keywords, the students’ 

interest and appreciation decrease more and more in time. 

Instead of this approach, we try to teach them how to solve 

problems using their fresh mathematical intelligence, and then 

gradually make them memorize more keywords. This way, 

they barely loose their attention and interest on the subject. 

This also helps them think more modularly.  

70% of the freshmen have seen programming before and at 

least 50% have tried writing short programs before they came 

to the university. Therefore most have an idea on what’s going 

on in the course. This is an advantage to progress faster. 

Another reason we believe the inductive procedural 

approach is better than all is that when the student starts with 

an object-first approach, because of the so many rules about 

the syntax, classes, encapsulation, modularity and all, he can 

not concentrate on the indentation, the discipline and the 

naming. Besides teaching him how to program and use his 

intelligence, we should give him the discipline on the 

“unwritten coding rules.” To change one’s habits is hard, 

but to make him gain a new habit is easier. That’s why, we 

choose to start from the beginning.   
 

AFTERWARDS… 

The industry usually complains about the newly graduates 

being so unaware of the rules of coding undisciplined in 

writing a program. Their most common grievance is that what 

they write is un-readable and unable to interfere. The 

inductive procedural approach helps them earn these abilities 

and coding disciplines.  

As Meyer suggests, we, too, believe that if the basis of 

functional and procedural programming is given powerfully 

with lots of practice and time, the students, then, may be able 

to involve in other object oriented languages and pre-written 

programs easier [9]. Again, during their studentship with 

other courses such as Data Structures or Computer Graphics 

and also in the industry, the students cannot succeed quickly if 

their algorithmic bases aren’t well. They can learn any 

language they want, write any program they need. But the 

main problem with them is that they don’t learn how to think 

algorithmic through their studentship if they start with the 

object-first methodology. A procedural-first kid’s vision to 

the problem won’t be the same with an object-first kid’s 

vision. The first will try to find a more optimized, modular 

and quick-working solution whereas the other will just solve 

it, no matter how slow or complicated the code works.  

The most important of all is that our only aim is to raise 

farsighted programmers. Before we teach them how to 

implement a code, we first make them think without choking 

them with extra knowledge. It isn't nice for a programmer to 

correct his mistakes and bugs all the time. Of course he will 

make many, but at least before starting to write, if he thinks a 

bit more, we believe he can eliminate most of the mistakes and 

exceptions, i.e. handle compilation and runtime errors before 

they occur. A inductively-raised student will have the chance 

to think before writing, while the object-first student will not, 

because he is a student trying to memorize things he has never 

seen before. This “think before act” thing is a discipline only 

can be taught when the student is on his early stages of coding.  
 

STUDENT FEEDBACKS AND EVALUATIONS 

During our 5 years of experience, 469 students have taken 

the course (1
st 

and 2
nd 

semesters' average) and only 1 of them 

 
Figure 3 - Before Transmitting to OOP 

 

Proceedings of the World Congress on Engineering 2010 Vol I 
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010



 

 

 

withdrew. Over these 5 years, after every semester the 

university asked the students to fill an evaluation form for 

every course they had taken. Usually, more than 50% of the 

students filled these forms with junk, ignorable data whereas 

the others typed their commands on how they dealed with the 

course, the lecturer and the TA.  

According to these student evaluations, none of them found 

the course content hard to keep up with. They have problems 

getting on with the lecturer or the TAs, they have complaints 

about the number of quizzes but none of them has a negative 

opinion about the course structure. As we mentioned before, 

most of them had developed programs on their own. What 

they say is that our system made it easy for them to improve 

their coding skills.  

After talking to 10 of our best coders, they all agree that the 

structure of the course is better like this and that they wouldn't 

have followed the lesson if it was given with an object-first 

approach. Besides following our notes and labs, they used 

books (especially Deitel’s) [14] and searched for online 

content. Almost everything they found was written in an 

object-first manner. According to what they experienced, it 

was hard for a beginner or an intermediate programmer to 

learn OOP before they get the basics.  
 

CONCLUSION 

We teach the students to always spend more time in project 

planning in our Software Project Management courses. An 

object-first approach doesn't let the student to plan how to 

write a better program, it just teaches how to write one, no 

matter how. (S)he spends time in learning the syntax rather 

than thinking on the problem and preparing a more optimized 

solution.  

On the other hand, an inductive procedural approach to 

OOP helps them memorize the syntax and language rules 

gradually and spend more time on algorithms. As Lewis 

suggested, their pedagogy doesn't let them learn everything at 

once. What we aim is to make use of their mathematical 

intelligence before they choke up with the rules by repeating 

the syntax and solving more complicated problems. There is a 

saying that a tree only bends when it's still sappy. They gain 

discipline by progressing slowly to OOP when they are still in 

their learning phase, which helps them hold on to their jobs 

after they graduate. Looking at the results, every semester 

more than 85% students in 5 years' average being successful is 

enough as a proof to inductive, procedural approach's 

accomplishment. 

 

REFERENCES 

[1]  Franca, P. B., Software Engineering Education The 

Shift to Object Oriented Programming, IEEE 

[2] Goldwasser, M. H., Letcher, D., Teaching an 

Object-Oriented CS1 – With Python, ITiCSE ’08 

[3]  Kölling, M., Koch, B., Rosenberg, J., Requirements 

for a First Year Object-Oriented Teaching Language, 

SIGCSE ’95 

[4]  Kölling, M., The Problem of Teaching 

Object-Oriented Programming, Part 1: Languages, 

Journal of Object-Oriented Programming, 11(8): 

8-15 

[5]  Kölling, M., Rosenberg, J., Guidelines for Teaching 

Object Orientation with Java, ITiCSE ’01 

[6]  Lewis, J., Myths About Object-Orientation and its 

Pedagogy, SIGCSE ’00 

 

[7]  McLaughlin, P., Oh by the way Java is Object 

Oriented, Monitor 8, Proceedings of the 1st ‘Java in 

the Computing Curriculum’ Conference 

[8]  McKim, Jr. J. C., Ellis, H. J. C., Using a Multiple 

Term Project to Teach Object Oriented Programming 

and Design, CSEET ’04 

[9]  Meyer, B., Towards an Object Oriented Curriculum, 

Prentice Hall 

[10]  Northrop, L. M., Finding an Educational Perspective 

for Object-Oriented Development, OOPSLA ‘92 

[11]  Pedroni, M., Meyer, B., The Inverted Curriculum in 

Practice, SIGCSE ’06 

[12]  Zhu, H., Zhou, M, Methodology First and Language 

Second: A Way to Teach Object-Oriented 

Programming, OOPSLA ’03  

[13]  eclipse.org, Eclipse Classic 3.5.2 

[14]  Java – How to Program, 6th ed., Deitel 

 
 

Proceedings of the World Congress on Engineering 2010 Vol I 
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

http://www.eclipse.org/

	INTRODUCTION
	WHY JAVA?
	Course Structure
	A. Fall Semester
	B. Spring Semester

	Disadvantages of Java
	Counter attacks
	What We Believe
	Afterwards…
	Student feedbacks and evaluatıons
	Conclusion
	REFERENCES



