
 
 

 

 
Abstract— Network security is a complicated subject, 

historically only tackled by well-trained and experienced 
experts. However, as more and more people become ``wired'', 
an increasing number of people need to understand the basics of 
security in a networked world. This document was written with 
the basic computer user and information systems manager in 
mind, explaining the concepts needed to read through the hype 
in the marketplace and understand risks and how to deal with 
them. Some history of networking is included, as well as an 
introduction to TCP/IP and internetworking. We go on to 
consider risk management, network threats, firewalls, and 
more special-purpose secure networking devices. This is not 
intended to be a ``frequently asked questions'' reference, nor is 
it a ``hands-on'' document describing how to accomplish 
specific functionality. It is hoped that the reader will have a 
wider perspective on security in general, and better understand 
how to reduce and manage risk personally, at home, and in the 
workplace. 
 

I. INTRODUCTION 

A basic understanding of computer networks is requisite in 
order to understand the principles of network security. In this 
section, we'll cover some of the foundations of computer 
networking, then move on to an overview of some popular 
networks.Following that, we'll take a more in-depth look at 
TCP/IP, the network protocol suite that is used to run the 
Internet and many intranets. Once we've covered this, we'll 
go back and discuss some of the threats that managers and 
administrators of computer networks need to confront, and 
then some tools that can be used to reduce the exposure to the 
risks of network computing.  

A. What is a Network?  

A ``network'' has been defined as ``any set of interlinking 
lines resembling a net, a network of roads |an interconnected 
system, a network of alliances.'' This definition suits our 
purpose well: a computer network is simply a system of 
interconnected computers. How they're connected is 
irrelevant, and as we'll soon see, there are a number of ways 
to do this 
 
  B.   Cryptography 

Cryptography (or cryptology; derived from Greek κρύπτω 
krýpto "hidden" and the verb γράφω gráfo "to write" or 
λέγειν legein "to speak")[1] is the practice and study of hiding 
information. In modern times, cryptography is considered a 
branch of both mathematics and computer science, and is 
affiliated closely with information theory, computer security, 
and engineering.  
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Cryptography is used in applications present in 
technologically advanced societies; examples include the 
security of ATM cards, computer passwords, and electronic 
commerce, which all depend on cryptography.  

C. Cryptography RSA  

In cryptography, RSA is an algorithm for public-key 
cryptography. It was the first algorithm known to be suitable 
for signing as well as encryption, and one of the first great 
advances in public key cryptography. RSA is widely used in 
electronic commerce protocols, and is believed to be secure 
given sufficiently long keys and the use of up-to-date 
implementations. 

II. HISTORY OF NETWORK 

The algorithm was publicly described in 1977 by Ron 
Rivest, Adi Shamir, and Leonard Adleman at MIT; the letters 
RSA are the initials of their surnames, listed in the same 
order as on the paper. Clifford Cocks, a British 
mathematician working for the UK intelligence agency 
GCHQ, described an equivalent system in an internal 
document in 1973, but given the relatively expensive 
computers needed to implement it at the time, it was mostly 
considered a curiosity and, as far as is publicly known, was 
never deployed. His discovery, however, was not revealed 
until 1997 due to its top-secret classification, and Rivest, 
Shamir, and Adleman devised RSA independently of Cocks' 
work. MIT was granted US patent 4405829 for a 
"Cryptographic communications system and method" that 
used the algorithm in 1983. The patent expired on 21 
September 2000. Since a paper describing the algorithm had 
been published in August 1977,[1] prior to the December 
1977 filing date of the patent application, regulations in much 
of the rest of the world precluded patents elsewhere and only 
the US patent was granted. Had Cocks' work been publicly 
known, a patent in the US might not have been possible 
either. 

A. Operation 

RSA involves a public key and a private key. The public 
key can be known to everyone and is used for encrypting 
messages. Messages encrypted with the public key can only 
be decrypted using the private key. The keys for the RSA 
algorithm are generated the following way: 

1. Choose two distinct large random prime numbers p 
and q  

2. Compute  
o is used as the modulus for both the public 

and private keys  
3. Compute the totient.  
4. Choose an integer e such that , and e and share no 

factors other than 1 (i.e. e and are coprime)  
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o e is released as the public key exponent  
5. Compute d to satisfy the congruence relation ; i.e. 

for some integer k.  
o d is kept as the private key exponent  

 

 
Notes on the above steps: 
 
Step 1: Numbers can be probabilistically tested for primality.  
Step 3: changed in PKCS#1 v2.0 to, where LCM is the least 
common multiple, instead of.  
Step 4: A popular choice for the public exponents is = 216 + 1 
= 65537. Some applications choose smaller values such as = 
3, 5, 17 or 257 instead. This is done to make encryption and 
signature verification faster on small devices like smart cards 
but small public exponents can lead to greater security 
risks.[2]  
Steps 4 and 5 can be performed with the extended Euclidean 
algorithm; see modular arithmetic.  

The public key consists of the modulus and the public (or 
encryption) exponent. The private key consists of the 
modulus and the private (or decryption) exponent which 
must be kept secret. For efficiency a different form of the 
private key can be stored:  

o and : the primes from the key generation,  
o and ,  
o .  

All parts of the private key must be kept secret in this form. 
and are sensitive since they are the factors of, and allow 
computation of given . If and are not stored in this form of the 
private key then they are securely deleted along with other 
intermediate values from key generation. Although this form 
allows faster decryption and signing by using the Chinese 
Remainder Theorem, it is considerably less secure since it 
enables side channel attacks. This is a particular problem if 
implemented on smart cards, which benefit most from the 
improved efficiency. (Start with y = xemodn and let the card 
decrypt that. So it computes yd(mod p) or yd(mod q) whose 
results give some value z. Now, induce an error in one of the 
computations. Then gcd (z − x, n) will reveal p or q.).  

III. MESSAGES 

A. Encryption 

Alice transmits her public key to Bob and keeps the private 
key secret. Bob then wishes to send message M to Alice. He 
first turns M into a number < by using an agreed-upon 
reversible protocol known as a padding scheme. He then 
computes the ciphertext corresponding to: This can be done 
quickly using the method of exponentiation by squaring. Bob 
then transmits to Alice. 

B. Decryption 

Alice can recover from by using her private key exponent 
by the following computation: Given, she can recover the 
original message M. The above decryption procedure works 
because first Now, and hence and which can also be written 
as and for proper values of and. If is not a multiple of then 
and are coprime because is prime; so by Fermat's little 

theorem and therefore, using the first expression for, If 
instead is a multiple of , then Using the second expression for 
, we similarly conclude that Since and are distinct prime 
numbers, they are relatively prime to each other, so the fact 
that both primes divide med − m implies their product divides 
med − m, which means Thus, A worked example. Here is an 
example of RSA encryption and decryption. The parameters 
used here are artificially small, but one can also use OpenSSL 
to generate and examine a real keypair. 

1. Choose two prime numbers  
p = 61 and q = 53  

2. Compute  
n = 61 * 53 = 3233  

3. Compute the totient  
4. Choose e > 1 coprime to 3120  

e = 17  
5. Compute such that e.g., by computing the modular 

multiplicative inverse of e modulo :  
d = 2753  
17 * 2753 = 46801 = 1 + 15 * 3120.  
 

The public key is (n = 3233, e = 17). For a padded 
message the encryption function is: The private key is (n = 
3233, d = 2753).The decryption function is:  
For example, to encrypt m = 123, we calculate, To decrypt c = 
855, we calculate. Both of these calculations can be 
computed efficiently using the square-and-multiply 
algorithm for modular exponentiation. 

C. Padding Schemes 

When used in practice, RSA is generally combined with 
some padding scheme. The goal of the padding scheme is to 
prevent a number of attacks that potentially work against 
RSA without padding: When encrypting with low encryption 
exponents (e.g., e = 3) and small values of the m, (i.e. m<n1/e) 
the result of me is strictly less than the modulus n. In this case, 
ciphertexts can be easily decrypted by taking the eth root of 
the ciphertext over the integers.  

If the same clear text message is sent to e or more 
recipients in an encrypted way, and the receiver's shares the 
same exponent e, but different p, q, and n, then it is easy to 
decrypt the original clear text message via the Chinese 
remainder theorem. Johan Håstad noticed that this attack is 
possible even if the cleartexts are not equal, but the attacker 
knows a linear relation between them [3]. This attack was later 
improved by Don Coppersmith [4].  

Because RSA encryption is a deterministic encryption 
algorithm – i.e., has no random component – an attacker can 
successfully launch a chosen plaintext attack against the 
cryptosystem, by encrypting likely plaintexts under the 
public key and test if they are equal to the ciphertext. A 
cryptosystem is called semantically secure if an attacker 
cannot distinguish two encryptions from each other even if 
the attacker knows (or has chosen) the corresponding 
plaintexts. As described above, RSA without padding is not 
semantically secure.RSA has the property that the product of 
two ciphertexts is equal to the encryption of the product of 
the respective plaintexts. That is Because of this 
multiplicative property a chosen-ciphertext attack is possible. 
E.g. an attacker, who wants to know the decryption of a 
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ciphertext c=me mod n may ask the holder of the secret key to 
decrypt an unsuspicious-looking ciphertext c' = cremod n for 
some value r chosen by the attacker. Because of the 
multiplicative property c' is the encryption of mrmod n. 
Hence, if the attacker is successful with the attack, he will 
learn mrmod n from which he can derive the message m by 
multiplying mr with the modular inverse of r modulo n.  

To avoid these problems, practical RSA implementations 
typically embed some form of structured, randomized 
padding into the value m before encrypting it. This padding 
ensures that m does not fall into the range of insecure 
plaintexts, and that a given message, once padded, will 
encrypt to one of a large number of different possible 
ciphertexts. 

Standards such as PKCS#1 have been carefully designed 
to securely pad messages prior to RSA encryption. Because 
these schemes pad the plaintext m with some number of 
additional bits, the size of the un-padded message M must be 
somewhat smaller. RSA padding schemes must be carefully 
designed so as to prevent sophisticated attacks which may be 
facilitated by a predictable message structure. Early versions 
of the PKCS#1 standard (up to version 1.5) used a 
construction that turned RSA into a semantically secure 
encryption scheme. This version was later found vulnerable 
to a practical adaptive chosen ciphertext attack. Later 
versions of the standard include Optimal Asymmetric 
Encryption Padding (OAEP), which prevents these attacks. 
The PKCS#1 standard also incorporates processing schemes 
designed to provide additional security for RSA signatures, 
e.g., the Probabilistic Signature Scheme for RSA 
(RSA-PSS). 

D. Signing Messages 

Suppose Alice uses Bob's public key to send him an 
encrypted message. In the message, she can claim to be Alice 
but Bob has no way of verifying that the message was 
actually from Alice since anyone can use Bob's public key to 
send him encrypted messages. So, in order to verify the origin 
of a message, RSA can also be used to sign a message. 
Suppose Alice wishes to send a signed message to Bob. She 
can use her own private key to do so. She produces a hash 
value of the message, raises it to the power of d mod n (as she 
does when decrypting a message), and attaches it as a 
"signature" to the message. When Bob receives the signed 
message, he uses the same hash algorithm in conjunction 
with Alice's public key. He raises the signature to the power 
of e mod n (as he does when encrypting a message), and 
compares the resulting hash value with the message's actual 
hash value. If the two agree, he knows that the author of the 
message was in possession of Alice's secret key, and that the 
message has not been tampered with since. Note that secure 
padding schemes such as RSA-PSS are as essential for the 
security of message signing as they are for message 
encryption and that the same key should never be used for 
both encryption and signing purposes. 

E. Security 

The security of the RSA cryptosystem is based on two 
mathematical problems: the problem of factoring large 
numbers and the RSA problem. Full decryption of an RSA 

ciphertext is thought to be infeasible on the assumption that 
both of these problems are hard, i.e., no efficient algorithm 
exists for solving them. Providing security against partial 
decryption may require the addition of a secure scheme. The 
RSA problem is defined as the task of taking eth roots 
modulo a composite n: recovering a value m such that c=me 
mod n, where (n, e) is an RSA public key and c is an RSA 
ciphertext. Currently the most promising approach to solving 
the RSA problem is to factor the modulus n. With the ability 
to recover prime factors, an attacker can compute the secret 
exponent d from a public key (n, e), then decrypt c using the 
standard procedure. To accomplish this, an attacker factors n 
into p and q, and computes (p-1) (q-1) which allows the 
determination of d from e. No polynomial-time method for 
factoring large integers on a classical computer has yet been 
found, but it has not been proven that none exists. See integer 
factorization for a discussion of this problem. 

As of 2005, the largest number factored by a 
general-purpose factoring algorithm was 663 bits long (see 
RSA-200), using a state-of-the-art distributed 
implementation. RSA keys are typically 1024–2048 bits 
long. Some experts believe that 1024-bit keys may become 
breakable in the near term (though this is disputed); few see 
any way that 4096-bit keys could be broken in the 
foreseeable future. Therefore, it is generally presumed that 
RSA is secure if n is sufficiently large. If n is 256 bits or 
shorter, it can be factored in a few hours on a personal 
computer, using software already freely available. Keys of 
512 bits (or less) have been shown to be practically breakable 
in 1999 when RSA-155 was factored by using several 
hundred computers.  

A theoretical hardware device named TWIRL and 
described by Shamir and Tromer in 2003 called into question 
the security of 1024 bit keys. It is currently recommended 
that n be at least 2048 bits long. In 1994, Peter Shor published 
Shor's algorithm, showing that a quantum computer could in 
principle perform the factorization in polynomial time. 
However, quantum computation is still in the early stages of 
development and may never prove to be practical. 

IV. PRACTICAL CONSIDERATIONS 

A. Key Generation 

Finding the large primes p and q is usually done by testing 
random numbers of the right size with probabilistic primality 
tests which quickly eliminate virtually all non-primes. p and 
q should not be 'too close', lest the Fermat factorization for n 
be successful, if p-q, for instance is less than 2n1/4 (which for 
even small 1024-bit values of n is 3x1077) solving for p and q 
is trivial. Furthermore, if either p-1 or q-1 has only small 
prime factors, n can be factored quickly by Pollard's p − 1 
algorithm, and these values of p or q should therefore be 
discarded as well. It is important that the secret key d be large 
enough. Michael J. Wiener showed[5] that if p is between q 
and 2q (which is quite typical) and d < n1/4/3, then d can be 
computed efficiently from n and e. There is no known attack 
against small public exponents such as e=3, provided that 
proper padding is used. However, when no padding is used or 
when the padding is improperly implemented then small 
public exponents have a greater risk of leading to an attack, 
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such as for example the unpadded plaintext vulnerability 
listed above. 65537 is a commonly used value for e. This 
value can be regarded as a compromise between avoiding 
potential small exponent attacks and still allowing efficient 
encryptions (or signature verification). The NIST Special 
Publication on Computer Security (SP 800-78 Rev 1 of 
August 2007) does not allow public exponents e smaller than 
65537, but does not state a reason for this restriction. 

B. Speed 

RSA is much slower than DES and other symmetric 
cryptosystems. In practice, Bob typically encrypts a secret 
message with a symmetric algorithm, encrypts the 
(comparatively short) symmetric key with RSA, and 
transmits both the RSA-encrypted symmetric key and the 
symmetrically-encrypted message to Alice. This procedure 
raises additional security issues. For instance, it is of utmost 
importance to use a strong random number generator for the 
symmetric key, because otherwise Eve (an eavesdropper 
wanting to see what was sent) could bypass RSA by guessing 
the symmetric key. 

C. Key Distribution 

As with all ciphers, how RSA public keys are distributed is 
important to security. Key distribution must be secured 
against a man-in-the-middle attack. Suppose Eve has some 
way to give Bob arbitrary keys and make him believe they 
belong to Alice. Suppose further that Eve can intercept 
transmissions between Alice and Bob.  

Eve sends Bob her own public key, which Bob believes to 
be Alice's. Eve can then intercept any ciphertext sent by Bob, 
decrypt it with her own secret key, keep a copy of the 
message, encrypt the message with Alice's public key, and 
send the new ciphertext to Alice. In principle, neither Alice 
nor Bob would be able to detect Eve's presence. Defenses 
against such attacks are often based on digital certificates or 
other components of a public key infrastructure. 

D. Timing Attacks  

Kocher described a new attack on RSA in 1995: if the 
attacker Eve knows Alice's hardware in sufficient detail and 
is able to measure the decryption times for several known 
ciphertexts, she can deduce the decryption key d quickly. 
This attack can also be applied against the RSA signature 
scheme. In 2003, Boneh and Brumley demonstrated a more 
practical attack capable of recovering RSA factorizations 
over a network connection (e.g., from a Secure Socket Layer 
(SSL)-enabled webserver). This attack takes advantage of 
information leaked by the Chinese remainder theorem 
optimization used by many RSA implementations. One way 
to thwart these attacks is to ensure that the decryption 
operation takes a constant amount of time for every 
ciphertext.  

However, this approach can significantly reduce 
performance. Instead, most RSA implementations use an 
alternate technique known as cryptographic blinding. RSA 
blinding makes use of the multiplicative property of RSA. 
Instead of computing cd mod n, Alice first chooses a secret 
random value r and computes (rec) d mod n. The result of this 

computation is r m mod n and so the effect of r can be 
removed by multiplying by its inverse. A new value of r is 
chosen for each ciphertext. With blinding applied, the 
decryption time is no longer correlated to the value of the 
input ciphertext and so the timing attack fails. 

E. Adaptive chosen ciphertext attacks 

In 1998, Daniel Bleichenbacher described the first 
practical adaptive chosen ciphertext attack, against 
RSA-encrypted messages using the PKCS #1 v1 padding 
scheme (a padding scheme randomizes and adds structure to 
an RSA-encrypted message, so it is possible to determine 
whether a decrypted message is valid.) Due to flaws with the 
PKCS #1 scheme, Bleichenbacher was able to mount a 
practical attack against RSA implementations of the Secure 
Socket Layer protocol, and to recover session keys. As a 
result of this work, cryptographers now recommend the use 
of provably secure padding schemes such as Optimal 
Asymmetric Encryption Padding, and RSA Laboratories has 
released new versions of PKCS #1 that are not vulnerable to 
these attacks. 

F.  Branch Prediction analysis attacks 

Branch prediction analysis is also called BPA. Many 
processors use a branch predictor to determine whether a 
conditional branch in the instruction flow of a program is 
likely to be taken or not. Usually these processors also 
implement simultaneous multithreading (SMT). Branch 
prediction analysis attacks use a spy process to discover 
(statistically) the private key when processed with these 
processors.  

Simple Branch Prediction Analysis (SBPA) claims to 
improve BPA in a non-statistical way. In their paper, "On the 
Power of Simple Branch Prediction Analysis", the authors of 
SBPA (Onur Aciicmez and Cetin Kaya Koc) claim to have 
discovered 508 out of 512 bits of an RSA key in 10 iterations. 

G. RSA as an Internet meme 

This section needs additional citations for verification. 
Please help improve this article by adding reliable references. 
Unsourced material may be challenged and removed. During 
the mid-1990s, the RSA algorithm, specifically a highly 
condensed implementation in Perl[6], became the subject of a 
widespread protest of United States encryption regulations, 
which at the time treated encryption algorithm as weapons 
and prohibited the export of strong encryption software such 
as RSA, and in particular the actions of the government 
against Phil Zimmerman, the creator of Privacy, Which had 
leaked out over the Internet in violation of the laws at the 
time.  

The canonical implementation was designed to fit in a 
signature file used by a Usenet newsreader or email client, 
and was dependent on a Unix environment, particularly the 
dc calculator program, for its mathematical operations; 
however, portable pure Perl implementations also exist.  

Protest websites allowed users within the US to trivially 
violate the export regulations by emailing copies of the perl 
script to servers outside the United States, while net 
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personality and online activist Joel Furr, among others, 
marketed t-shirts containing the offending code, and 
protesters continued to find ever more esoteric ways to flout 
the rules, including but not limited to tattoos and mailing 
labels. The regulations were later relaxed. 

V. CONCLUSION 

Even large traditional companies such as Dow Chemical, 
Boeing, AlliedSignal, and General Electric are installing 
sophisticated e-business systems. It is unlikely that jumbo 
jets or railroad engines will be purchased on the Internet in 
the same way that consumer items are purchased with a 
single mouse click, but the Internet can be used to make 
available product information and facilitate data transfer. 
Analysts expect more than 30 percent of all 
business-to-business commerce to take place on the Internet 
before 2005 (Bourge, 1999, p. 2). General Electric already 
uses e-commerce to buy commodity items and is saving an 
estimated 10 percent to 15 percent when compared with 
non-Internet purchasing. Because business supply chains are 
Some common words found in the essay are: 
Infrastructure PKI, Dow Chemical, Long-term Internet, 
Internet Trade, Internet Analysts, Companies Verisign, SET 
SET, AlliedSignal Electric, Sales Internet, Americans 
Internet, public key, pc week, public key certificates, digital 
certificates, security solutions, souccar 1999, private key, 
integrity non-repudiation, quantum cryptography, key 
certificates, certificates digital, public key infrastructure, 
secure sockets layer, souccar 1999 1, authentication integrity 
non-repudiation. 
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