

Abstract— Network security is a complicated subject,

historically only tackled by well-trained and experienced
experts. However, as more and more people become ``wired'',
an increasing number of people need to understand the basics of
security in a networked world. This document was written with
the basic computer user and information systems manager in
mind, explaining the concepts needed to read through the hype
in the marketplace and understand risks and how to deal with
them. Some history of networking is included, as well as an
introduction to TCP/IP and internetworking. We go on to
consider risk management, network threats, firewalls, and
more special-purpose secure networking devices. This is not
intended to be a ``frequently asked questions'' reference, nor is
it a ``hands-on'' document describing how to accomplish
specific functionality. It is hoped that the reader will have a
wider perspective on security in general, and better understand
how to reduce and manage risk personally, at home, and in the
workplace.

I. INTRODUCTION

A basic understanding of computer networks is requisite in
order to understand the principles of network security. In this
section, we'll cover some of the foundations of computer
networking, then move on to an overview of some popular
networks.Following that, we'll take a more in-depth look at
TCP/IP, the network protocol suite that is used to run the
Internet and many intranets. Once we've covered this, we'll
go back and discuss some of the threats that managers and
administrators of computer networks need to confront, and
then some tools that can be used to reduce the exposure to the
risks of network computing.

A. What is a Network?

A ``network'' has been defined as ``any set of interlinking
lines resembling a net, a network of roads |an interconnected
system, a network of alliances.'' This definition suits our
purpose well: a computer network is simply a system of
interconnected computers. How they're connected is
irrelevant, and as we'll soon see, there are a number of ways
to do this

 B. Cryptography

Cryptography (or cryptology; derived from Greek κρύπτω
krýpto "hidden" and the verb γράφω gráfo "to write" or
λέγειν legein "to speak")[1] is the practice and study of hiding
information. In modern times, cryptography is considered a
branch of both mathematics and computer science, and is
affiliated closely with information theory, computer security,
and engineering.

Sasikumar Gurumurthy is with the VIT University, Vellore, Tamil Nadu,

India. He is now with the School of computing science and Engineering
(corresponding author to provide phone: 0416-2202016; fax: 0416-2243092;
e-mail: g.sasikumar@vit.ac.in).

Cryptography is used in applications present in
technologically advanced societies; examples include the
security of ATM cards, computer passwords, and electronic
commerce, which all depend on cryptography.

C. Cryptography RSA

In cryptography, RSA is an algorithm for public-key
cryptography. It was the first algorithm known to be suitable
for signing as well as encryption, and one of the first great
advances in public key cryptography. RSA is widely used in
electronic commerce protocols, and is believed to be secure
given sufficiently long keys and the use of up-to-date
implementations.

II. HISTORY OF NETWORK

The algorithm was publicly described in 1977 by Ron
Rivest, Adi Shamir, and Leonard Adleman at MIT; the letters
RSA are the initials of their surnames, listed in the same
order as on the paper. Clifford Cocks, a British
mathematician working for the UK intelligence agency
GCHQ, described an equivalent system in an internal
document in 1973, but given the relatively expensive
computers needed to implement it at the time, it was mostly
considered a curiosity and, as far as is publicly known, was
never deployed. His discovery, however, was not revealed
until 1997 due to its top-secret classification, and Rivest,
Shamir, and Adleman devised RSA independently of Cocks'
work. MIT was granted US patent 4405829 for a
"Cryptographic communications system and method" that
used the algorithm in 1983. The patent expired on 21
September 2000. Since a paper describing the algorithm had
been published in August 1977,[1] prior to the December
1977 filing date of the patent application, regulations in much
of the rest of the world precluded patents elsewhere and only
the US patent was granted. Had Cocks' work been publicly
known, a patent in the US might not have been possible
either.

A. Operation

RSA involves a public key and a private key. The public
key can be known to everyone and is used for encrypting
messages. Messages encrypted with the public key can only
be decrypted using the private key. The keys for the RSA
algorithm are generated the following way:

1. Choose two distinct large random prime numbers p
and q

2. Compute
o is used as the modulus for both the public

and private keys
3. Compute the totient.
4. Choose an integer e such that , and e and share no

factors other than 1 (i.e. e and are coprime)

Network Security

Sasikumar Gurumurthy, Member, IAENG

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

o e is released as the public key exponent
5. Compute d to satisfy the congruence relation ; i.e.

for some integer k.
o d is kept as the private key exponent

Notes on the above steps:

Step 1: Numbers can be probabilistically tested for primality.
Step 3: changed in PKCS#1 v2.0 to, where LCM is the least
common multiple, instead of.
Step 4: A popular choice for the public exponents is = 216 + 1
= 65537. Some applications choose smaller values such as =
3, 5, 17 or 257 instead. This is done to make encryption and
signature verification faster on small devices like smart cards
but small public exponents can lead to greater security
risks.[2]
Steps 4 and 5 can be performed with the extended Euclidean
algorithm; see modular arithmetic.

The public key consists of the modulus and the public (or
encryption) exponent. The private key consists of the
modulus and the private (or decryption) exponent which
must be kept secret. For efficiency a different form of the
private key can be stored:

o and : the primes from the key generation,
o and ,
o .

All parts of the private key must be kept secret in this form.
and are sensitive since they are the factors of, and allow
computation of given . If and are not stored in this form of the
private key then they are securely deleted along with other
intermediate values from key generation. Although this form
allows faster decryption and signing by using the Chinese
Remainder Theorem, it is considerably less secure since it
enables side channel attacks. This is a particular problem if
implemented on smart cards, which benefit most from the
improved efficiency. (Start with y = xemodn and let the card
decrypt that. So it computes yd(mod p) or yd(mod q) whose
results give some value z. Now, induce an error in one of the
computations. Then gcd (z − x, n) will reveal p or q.).

III. MESSAGES

A. Encryption

Alice transmits her public key to Bob and keeps the private
key secret. Bob then wishes to send message M to Alice. He
first turns M into a number < by using an agreed-upon
reversible protocol known as a padding scheme. He then
computes the ciphertext corresponding to: This can be done
quickly using the method of exponentiation by squaring. Bob
then transmits to Alice.

B. Decryption

Alice can recover from by using her private key exponent
by the following computation: Given, she can recover the
original message M. The above decryption procedure works
because first Now, and hence and which can also be written
as and for proper values of and. If is not a multiple of then
and are coprime because is prime; so by Fermat's little

theorem and therefore, using the first expression for, If
instead is a multiple of , then Using the second expression for
, we similarly conclude that Since and are distinct prime
numbers, they are relatively prime to each other, so the fact
that both primes divide med − m implies their product divides
med − m, which means Thus, A worked example. Here is an
example of RSA encryption and decryption. The parameters
used here are artificially small, but one can also use OpenSSL
to generate and examine a real keypair.

1. Choose two prime numbers
p = 61 and q = 53

2. Compute
n = 61 * 53 = 3233

3. Compute the totient
4. Choose e > 1 coprime to 3120

e = 17
5. Compute such that e.g., by computing the modular

multiplicative inverse of e modulo :
d = 2753
17 * 2753 = 46801 = 1 + 15 * 3120.

The public key is (n = 3233, e = 17). For a padded
message the encryption function is: The private key is (n =
3233, d = 2753).The decryption function is:
For example, to encrypt m = 123, we calculate, To decrypt c =
855, we calculate. Both of these calculations can be
computed efficiently using the square-and-multiply
algorithm for modular exponentiation.

C. Padding Schemes

When used in practice, RSA is generally combined with
some padding scheme. The goal of the padding scheme is to
prevent a number of attacks that potentially work against
RSA without padding: When encrypting with low encryption
exponents (e.g., e = 3) and small values of the m, (i.e. m<n1/e)
the result of me is strictly less than the modulus n. In this case,
ciphertexts can be easily decrypted by taking the eth root of
the ciphertext over the integers.

If the same clear text message is sent to e or more
recipients in an encrypted way, and the receiver's shares the
same exponent e, but different p, q, and n, then it is easy to
decrypt the original clear text message via the Chinese
remainder theorem. Johan Håstad noticed that this attack is
possible even if the cleartexts are not equal, but the attacker
knows a linear relation between them [3]. This attack was later
improved by Don Coppersmith [4].

Because RSA encryption is a deterministic encryption
algorithm – i.e., has no random component – an attacker can
successfully launch a chosen plaintext attack against the
cryptosystem, by encrypting likely plaintexts under the
public key and test if they are equal to the ciphertext. A
cryptosystem is called semantically secure if an attacker
cannot distinguish two encryptions from each other even if
the attacker knows (or has chosen) the corresponding
plaintexts. As described above, RSA without padding is not
semantically secure.RSA has the property that the product of
two ciphertexts is equal to the encryption of the product of
the respective plaintexts. That is Because of this
multiplicative property a chosen-ciphertext attack is possible.
E.g. an attacker, who wants to know the decryption of a

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

ciphertext c=me mod n may ask the holder of the secret key to
decrypt an unsuspicious-looking ciphertext c' = cremod n for
some value r chosen by the attacker. Because of the
multiplicative property c' is the encryption of mrmod n.
Hence, if the attacker is successful with the attack, he will
learn mrmod n from which he can derive the message m by
multiplying mr with the modular inverse of r modulo n.

To avoid these problems, practical RSA implementations
typically embed some form of structured, randomized
padding into the value m before encrypting it. This padding
ensures that m does not fall into the range of insecure
plaintexts, and that a given message, once padded, will
encrypt to one of a large number of different possible
ciphertexts.

Standards such as PKCS#1 have been carefully designed
to securely pad messages prior to RSA encryption. Because
these schemes pad the plaintext m with some number of
additional bits, the size of the un-padded message M must be
somewhat smaller. RSA padding schemes must be carefully
designed so as to prevent sophisticated attacks which may be
facilitated by a predictable message structure. Early versions
of the PKCS#1 standard (up to version 1.5) used a
construction that turned RSA into a semantically secure
encryption scheme. This version was later found vulnerable
to a practical adaptive chosen ciphertext attack. Later
versions of the standard include Optimal Asymmetric
Encryption Padding (OAEP), which prevents these attacks.
The PKCS#1 standard also incorporates processing schemes
designed to provide additional security for RSA signatures,
e.g., the Probabilistic Signature Scheme for RSA
(RSA-PSS).

D. Signing Messages

Suppose Alice uses Bob's public key to send him an
encrypted message. In the message, she can claim to be Alice
but Bob has no way of verifying that the message was
actually from Alice since anyone can use Bob's public key to
send him encrypted messages. So, in order to verify the origin
of a message, RSA can also be used to sign a message.
Suppose Alice wishes to send a signed message to Bob. She
can use her own private key to do so. She produces a hash
value of the message, raises it to the power of d mod n (as she
does when decrypting a message), and attaches it as a
"signature" to the message. When Bob receives the signed
message, he uses the same hash algorithm in conjunction
with Alice's public key. He raises the signature to the power
of e mod n (as he does when encrypting a message), and
compares the resulting hash value with the message's actual
hash value. If the two agree, he knows that the author of the
message was in possession of Alice's secret key, and that the
message has not been tampered with since. Note that secure
padding schemes such as RSA-PSS are as essential for the
security of message signing as they are for message
encryption and that the same key should never be used for
both encryption and signing purposes.

E. Security

The security of the RSA cryptosystem is based on two
mathematical problems: the problem of factoring large
numbers and the RSA problem. Full decryption of an RSA

ciphertext is thought to be infeasible on the assumption that
both of these problems are hard, i.e., no efficient algorithm
exists for solving them. Providing security against partial
decryption may require the addition of a secure scheme. The
RSA problem is defined as the task of taking eth roots
modulo a composite n: recovering a value m such that c=me
mod n, where (n, e) is an RSA public key and c is an RSA
ciphertext. Currently the most promising approach to solving
the RSA problem is to factor the modulus n. With the ability
to recover prime factors, an attacker can compute the secret
exponent d from a public key (n, e), then decrypt c using the
standard procedure. To accomplish this, an attacker factors n
into p and q, and computes (p-1) (q-1) which allows the
determination of d from e. No polynomial-time method for
factoring large integers on a classical computer has yet been
found, but it has not been proven that none exists. See integer
factorization for a discussion of this problem.

As of 2005, the largest number factored by a
general-purpose factoring algorithm was 663 bits long (see
RSA-200), using a state-of-the-art distributed
implementation. RSA keys are typically 1024–2048 bits
long. Some experts believe that 1024-bit keys may become
breakable in the near term (though this is disputed); few see
any way that 4096-bit keys could be broken in the
foreseeable future. Therefore, it is generally presumed that
RSA is secure if n is sufficiently large. If n is 256 bits or
shorter, it can be factored in a few hours on a personal
computer, using software already freely available. Keys of
512 bits (or less) have been shown to be practically breakable
in 1999 when RSA-155 was factored by using several
hundred computers.

A theoretical hardware device named TWIRL and
described by Shamir and Tromer in 2003 called into question
the security of 1024 bit keys. It is currently recommended
that n be at least 2048 bits long. In 1994, Peter Shor published
Shor's algorithm, showing that a quantum computer could in
principle perform the factorization in polynomial time.
However, quantum computation is still in the early stages of
development and may never prove to be practical.

IV. PRACTICAL CONSIDERATIONS

A. Key Generation

Finding the large primes p and q is usually done by testing
random numbers of the right size with probabilistic primality
tests which quickly eliminate virtually all non-primes. p and
q should not be 'too close', lest the Fermat factorization for n
be successful, if p-q, for instance is less than 2n1/4 (which for
even small 1024-bit values of n is 3x1077) solving for p and q
is trivial. Furthermore, if either p-1 or q-1 has only small
prime factors, n can be factored quickly by Pollard's p − 1
algorithm, and these values of p or q should therefore be
discarded as well. It is important that the secret key d be large
enough. Michael J. Wiener showed[5] that if p is between q
and 2q (which is quite typical) and d < n1/4/3, then d can be
computed efficiently from n and e. There is no known attack
against small public exponents such as e=3, provided that
proper padding is used. However, when no padding is used or
when the padding is improperly implemented then small
public exponents have a greater risk of leading to an attack,

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

such as for example the unpadded plaintext vulnerability
listed above. 65537 is a commonly used value for e. This
value can be regarded as a compromise between avoiding
potential small exponent attacks and still allowing efficient
encryptions (or signature verification). The NIST Special
Publication on Computer Security (SP 800-78 Rev 1 of
August 2007) does not allow public exponents e smaller than
65537, but does not state a reason for this restriction.

B. Speed

RSA is much slower than DES and other symmetric
cryptosystems. In practice, Bob typically encrypts a secret
message with a symmetric algorithm, encrypts the
(comparatively short) symmetric key with RSA, and
transmits both the RSA-encrypted symmetric key and the
symmetrically-encrypted message to Alice. This procedure
raises additional security issues. For instance, it is of utmost
importance to use a strong random number generator for the
symmetric key, because otherwise Eve (an eavesdropper
wanting to see what was sent) could bypass RSA by guessing
the symmetric key.

C. Key Distribution

As with all ciphers, how RSA public keys are distributed is
important to security. Key distribution must be secured
against a man-in-the-middle attack. Suppose Eve has some
way to give Bob arbitrary keys and make him believe they
belong to Alice. Suppose further that Eve can intercept
transmissions between Alice and Bob.

Eve sends Bob her own public key, which Bob believes to
be Alice's. Eve can then intercept any ciphertext sent by Bob,
decrypt it with her own secret key, keep a copy of the
message, encrypt the message with Alice's public key, and
send the new ciphertext to Alice. In principle, neither Alice
nor Bob would be able to detect Eve's presence. Defenses
against such attacks are often based on digital certificates or
other components of a public key infrastructure.

D. Timing Attacks

Kocher described a new attack on RSA in 1995: if the
attacker Eve knows Alice's hardware in sufficient detail and
is able to measure the decryption times for several known
ciphertexts, she can deduce the decryption key d quickly.
This attack can also be applied against the RSA signature
scheme. In 2003, Boneh and Brumley demonstrated a more
practical attack capable of recovering RSA factorizations
over a network connection (e.g., from a Secure Socket Layer
(SSL)-enabled webserver). This attack takes advantage of
information leaked by the Chinese remainder theorem
optimization used by many RSA implementations. One way
to thwart these attacks is to ensure that the decryption
operation takes a constant amount of time for every
ciphertext.

However, this approach can significantly reduce
performance. Instead, most RSA implementations use an
alternate technique known as cryptographic blinding. RSA
blinding makes use of the multiplicative property of RSA.
Instead of computing cd mod n, Alice first chooses a secret
random value r and computes (rec) d mod n. The result of this

computation is r m mod n and so the effect of r can be
removed by multiplying by its inverse. A new value of r is
chosen for each ciphertext. With blinding applied, the
decryption time is no longer correlated to the value of the
input ciphertext and so the timing attack fails.

E. Adaptive chosen ciphertext attacks

In 1998, Daniel Bleichenbacher described the first
practical adaptive chosen ciphertext attack, against
RSA-encrypted messages using the PKCS #1 v1 padding
scheme (a padding scheme randomizes and adds structure to
an RSA-encrypted message, so it is possible to determine
whether a decrypted message is valid.) Due to flaws with the
PKCS #1 scheme, Bleichenbacher was able to mount a
practical attack against RSA implementations of the Secure
Socket Layer protocol, and to recover session keys. As a
result of this work, cryptographers now recommend the use
of provably secure padding schemes such as Optimal
Asymmetric Encryption Padding, and RSA Laboratories has
released new versions of PKCS #1 that are not vulnerable to
these attacks.

F. Branch Prediction analysis attacks

Branch prediction analysis is also called BPA. Many
processors use a branch predictor to determine whether a
conditional branch in the instruction flow of a program is
likely to be taken or not. Usually these processors also
implement simultaneous multithreading (SMT). Branch
prediction analysis attacks use a spy process to discover
(statistically) the private key when processed with these
processors.

Simple Branch Prediction Analysis (SBPA) claims to
improve BPA in a non-statistical way. In their paper, "On the
Power of Simple Branch Prediction Analysis", the authors of
SBPA (Onur Aciicmez and Cetin Kaya Koc) claim to have
discovered 508 out of 512 bits of an RSA key in 10 iterations.

G. RSA as an Internet meme

This section needs additional citations for verification.
Please help improve this article by adding reliable references.
Unsourced material may be challenged and removed. During
the mid-1990s, the RSA algorithm, specifically a highly
condensed implementation in Perl[6], became the subject of a
widespread protest of United States encryption regulations,
which at the time treated encryption algorithm as weapons
and prohibited the export of strong encryption software such
as RSA, and in particular the actions of the government
against Phil Zimmerman, the creator of Privacy, Which had
leaked out over the Internet in violation of the laws at the
time.

The canonical implementation was designed to fit in a
signature file used by a Usenet newsreader or email client,
and was dependent on a Unix environment, particularly the
dc calculator program, for its mathematical operations;
however, portable pure Perl implementations also exist.

Protest websites allowed users within the US to trivially
violate the export regulations by emailing copies of the perl
script to servers outside the United States, while net

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

personality and online activist Joel Furr, among others,
marketed t-shirts containing the offending code, and
protesters continued to find ever more esoteric ways to flout
the rules, including but not limited to tattoos and mailing
labels. The regulations were later relaxed.

V. CONCLUSION

Even large traditional companies such as Dow Chemical,
Boeing, AlliedSignal, and General Electric are installing
sophisticated e-business systems. It is unlikely that jumbo
jets or railroad engines will be purchased on the Internet in
the same way that consumer items are purchased with a
single mouse click, but the Internet can be used to make
available product information and facilitate data transfer.
Analysts expect more than 30 percent of all
business-to-business commerce to take place on the Internet
before 2005 (Bourge, 1999, p. 2). General Electric already
uses e-commerce to buy commodity items and is saving an
estimated 10 percent to 15 percent when compared with
non-Internet purchasing. Because business supply chains are
Some common words found in the essay are:
Infrastructure PKI, Dow Chemical, Long-term Internet,
Internet Trade, Internet Analysts, Companies Verisign, SET
SET, AlliedSignal Electric, Sales Internet, Americans
Internet, public key, pc week, public key certificates, digital
certificates, security solutions, souccar 1999, private key,
integrity non-repudiation, quantum cryptography, key
certificates, certificates digital, public key infrastructure,
secure sockets layer, souccar 1999 1, authentication integrity
non-repudiation.

ACKNOWLEDGMENT

The author thanks to the Department of computer science,
VIT University and Special thanks to Dr.M.Khalid, Director,
SCSE, for his kind financial support. This work has been
(Partially) supported by the research program in SCSE, VIT
University, India.

REFERENCES
[1] William stallings, cryptography and network security: principles and

practice, third edition, upper saddle river, NJ: prentice hall, 1999.
[2] Scheneier.B. applied cryptography, Newyork: wiley, 1996.
[3] Johann van der Merwe, Dawouda.Dawoud, Stephen

McDonald,(April2007)’A Fully Distributed Proactively Secure
Threshold-Multisignature cheme’,IEEE Transactions on parallel and
Distributed systems,vol18,no.4.

[4] L.Harn and Y. Xu, (1994) ‘Design of Generalized Elgamal Type
Digital Signature Schemes Based on Discrete
Logartihms’ElectronicsLetters,Vol.30,no. 24,pp-2025-2026.

[5] T. M. Wong, C. Wang, and J.M.Wing, (Dec 2002) ‘Verifiable Secret
Redistribution for Archive System’, Proc. First Int’l IEEE Security in
storage Workshop.

[6] L. Zhou and Z.J. Haas, (1999)‘Securing Ad Hoc Networks’,
IEEENetwork, special issue on network Security, vol. 13, no. 6, pp.
24-30.

[7] William Stallings, ‘Cryptography and network security-principles and
Practices’ Prentice Hall of India, 3 rd Edition.

Proceedings of the World Congress on Engineering 2010 Vol I
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010

