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Abstract—Sequence alignment is an important
problem in computational biology and finding the
longest common subsequence (LCS) of multiple bi-
ological sequences is an essential and effective tech-
nique in sequence alignment. A major computational
approach for solving the LCS problem is dynamic pro-
gramming. Several dynamic programming methods
have been proposed to have reduced time and space
complexity. As databases of biological sequences be-
come larger, parallel algorithms become increasingly
important to tackle large size problems. In the mean-
time, general-purpose computing on graphics process-
ing units (GPGPU) has emerged as a promising tech-
nology for cost-effective high performance computing.
In this paper, we develop an efficient parallel algo-
rithm on GPUs for the LCS problem. We propose a
new technique that changes the data dependency in
the score table used by dynamic programming algo-
rithms to enable higher degrees of parallelism. The
algorithm takes advantage of the large number of pro-
cessing units and the unique memory-accessing prop-
erties of GPUs to achieve high performance. The al-
gorithm was implemented on Nvidia 9800GT GPUs
and tested on randomly generated sequences of dif-
ferent lengths. The experiment results show that the
new algorithm is about 6 times faster on GPUs than
on typical CPUs and is 3 times faster than an exist-
ing efficient parallel algorithm, the diagonal parallel
algorithm.

Keywords: Parallel algorithms, GPUs, dynamic pro-

gramming, bioinformatics

1 Introduction

Sequence alignment is a fundamental technique for bi-
ologists to investigate the similarity of different species,
as high sequence similarity often implies molecular struc-
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tural and functional similarity. In computational meth-
ods, biological sequences are represented as strings and
finding the longest common subsequence (LCS) is a
widely used method for sequence alignment. The LCS
problem commonly refers to finding the longest common
subsequence of two strings, whereas for three or more
strings it is called multiple longest common subsequence
problem (MLCS) [1][2][3].

Dynamic programming is a classical approach for solving
LCS problem, in which a score matrix is filled through a
scoring mechanism. The best score is the length of the
LCS and the subsequence can be found by tracing back
the table. Let m and n be the lengths of two strings to
be compared. The time and space complex of dynamic
programming is O(mn). Many algorithms have been pro-
posed to improve the time and space complex. In [4], My-
ers and Miller applied a divide-and-conquer technique [5]
to solve the LCS problem and the space complexity of
their algorithm is O(m + n) while the time complex re-
mains to be O(mn). In [6], Masek and Paterson pre-
sented some new techniques to reduce the time complex
to O(n2/logn).

Parallel algorithms have been developed to reduce execu-
tion time through parallelization in diagonal direction [7]
and bit-parallel algorithms [8][9][10]. Bit-parallel algo-
rithms depends on machine word size and are not good for
general processors. Aluru, Futamura and Mehrotra [15]
proposed a parallel algorithm using prefix computation
for general sequence alignment problem with time com-
plexO(mn/p+τ(m+p) log p+µm log p). Efficient parallel
algorithms based on dominant point approaches has also
been proposed for general MLCS problem [11][12][13][14].
However, these algorithms are usually slow for two-string
LCS problems.

In recent years, graphics processing units (GPUs) have
become a cost-effective means in parallel computing
and have been widely used in bioinformation as hard-
ware accelerators. Some traditional algorithms have
been implemented on GPUs and achieved significant
speedups [16][17].

In this paper, we present an efficient parallel algorithm
on GPUs for the LCS problem. Based on the dynamic
programming algorithm, we change the data dependence
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in the dynamic programming table so that the cells in the
same row or the same column of the dynamic table can be
computed in parallel. The algorithm uses O(max(m,n))
processors and its time complex is O(n). A nice prop-
erty of the algorithm is that each GPU processor has
balanced workload. The algorithm was implemented on
Nvidia graphics cards and achieved a good speedup on
test problems of random sequences.

This paper is organized as follows. In Section 2, classi-
cal dynamic programming algorithm for LCS and some
related works are introduced. In Section 3, we present a
new parallel algorithm on GPUs and performance anal-
ysis. In Section 4, we discuss implementation considera-
tions on NVidia GPU platform CUDA and preliminary
experimental results. Finally, in Section 5, we summary
the paper.

2 Related work

The classical method for the LCS problem is the Smith-
Waterman algorithm which is based on the dynamic pro-
gramming principle. Given two input strings a1a2 . . . an
and b1b2 . . . bm, the algorithm is as follows:

Construct a score matrix S of size (n + 1) ∗ (m + 1), in
which S[i, j] (1 ≤ i ≤ n, 1 ≤ j ≤ m) records the length of
the longest common subsequence for substrings a1a2 . . . ai
and b1b2 . . . bj . Fill the entries by the following recurrence
formula:

S[i, j] =

 0 i or j is 0
S[i− 1, j − 1] + 1 ai = bj
max(S[i− 1, j], S[i, j − 1]) o.w.

(1)

Fig. 1 shows an example of the LCS score table of strings
TGCATA and ATCTGA.

Figure 1: The dynamic programming LCS score table of
strings TGCATA and ATCTGA.

The main operation of the dynamic programming algo-
rithm is filling the score table and its time complex is

O(m ∗ n).

The diagonal parallel algorithm [7] is the best exist-
ing parallelization of dynamic programming for the LCS
problem. It takes advantage of the independence of diag-
onal cells, i.e., the cells on the same diagonal in the score
table doesn’t depend on each other, so that they can be
computed in parallel.

General Purpose computing on Graphics Processing
Units (GPGPU) is a rapidly developing area in high per-
formance computing. Although GPUs were originally
designed for graphics computations, Due to rapid im-
provement of hardware performance and improved pro-
grammability, GPUs are becoming a cost-effective op-
tion for high performance desktop computing. Com-
pared to CPUs, GPUs’ performance increases two and
a half times a year in recent years, much faster than the
Moore’s law for CPUs. A modern GPU usually contains
large numbers of computing units. GPUs are usually
used as a hardware accelerator or a co-processor, and
more and more computational intensive tasks have been
moved from CPUs to GPUs, such as for scientific comput-
ing [18], image processing [19] and bioinformatics [16][17].
Svetlin A. Manavski and Giorgio Valle also implemented
the Smith-Waterman algorithm on the GPU [16]. GPUs
are also appearing in personal computing devices. For
example, the recently announced Apple iPad tablet com-
puter has tightly integrated CPUs and GPUs to achieve
very high performance while consuming very low power.

3 A New Parallel LCS algorithm

In this section, we first introduce some basic concepts of
dynamic programming for LCS. Then we analyze data
dependency in the score matrix constructed by dynamic
programm. We present a new parallel algorithm based
on rearranging the entries in the score matrix for greater
parallelism. We analyze the time complex of the paral-
lel algorithm and compare it with the diagonal parallel
algorithm to show it advantages.

Let A = a1a2 . . . an and B = b1b2 . . . bm be two strings
over a finite alphabet Σ.

Definition 1 C = aj1aj2 . . . ajk is a subsequence of A,
if ∀i, 1 ≤ i ≤ k:

1 ≤ ji ≤ n;

and for all s and t, 1 ≤ s < t ≤ k:

js < jt.

Definition 2 C = aj1aj2 . . . ajk is a common subse-
quence of A and B, if C is a subsequence of A and a
subsequence of B.
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Definition 3 C = aj1aj2 . . . ajk is the longest common
subsequence of A and B, if

1. C is a common subsequence of A and B.

2. There is no common subsequence D, the length of D
is larger than C.

Definition 4 In the dynamic table, if ai = bj, then the
point S[i, j] is a match point.

The LCS problem is to find the longest common subse-
quence C of two sequences A and B.

3.1 Data Dependency Analysis

In the score matrix that dynamic program algorithm con-
structs according to Eq. (1), for all i and j (1 ≤ i ≤ n, 1 ≤
j ≤ m), S[i, j] depends on three entries, S[i − 1, j − 1],
S[i− 1, j], and S[i, j − 1], as shown in Fig. 2. In another
word, S[i, j] depends on the data in the same row and
the same column and thus the same row or same column
data can’t be computed in parallel.

Figure 2: Data dependency in the score table of a dy-
namic programming algorithm for solving LCS problem.

An apparent way to parallelize the dynamic programming
algorithm is to compute the score table in the diagonal di-
rection. Its disadvantage is that the workload of different
processors are different and unbalanced.

In order to compute the same row data or column data
in parallel, the data dependence needs to be changed.

From the data dependence in the score table, the follow-
ing observation can be made.

Observation 1 For all s and t:

If 1 ≤ i ≤ n and 1 ≤ s < t ≤ m, then S[i, s] ≤ S[i, t].

If 1 ≤ j ≤ m and 1 ≤ s < t ≤ n, then S[s, j] ≤ S[t, j].

Based on the observation, we modify Eq. (1) so that the
same row data in the score table can be computed in
parallel. Eq. (1) is divided into three parts:

1. If i = 0 or j = 0, then S[i, j] = 0. The data depen-
dence is not changed.

2. If ai = bj , the S[i, j] = S[i− 1, j − 1] + 1. The data
dependence is not changed.

3. Otherwise, S[i, j] = max(S[i− 1, j], S[i, j − 1]). The
data dependence is to be changed.

For condition (3), S[i, j] can be made independent of the
ith row data as S[i, j−1] can be replaced by the following
recurrence equation:

S[i, j − 1] =


0 if i = 0 or j − 1 = 0
S[i− 1, j − 2] + 1 if ai = bj−1

max(S[i− 1, j − 1], S[i, j − 2])
o.w.

(2)
Again, only in the third condition, S[i, j − 1] depends on
the ith row data. Thus S[i, j−2] can be re-formulated in
a similar way, and so on. This process ends when j−k = 0
at the kth step, or ai = bj−k at the kth step. Assume
that the process stops at the kth step, and the k must be
the minimum number that makes ai = bj−k or j− k = 0.
Then the recurrence equation Eq. (1) can be replaced by
the following recurrence equation:

S[i, j] =


0 if i = 0 or j = 0
S[i− 1, j − 1] + 1 if ai = bj
max(S[i− 1, j], S[i− 1, j − k − 1] + 1)

if ai = bj−k

max(S[i− 1, j], 0) if j − k = 0
(3)

From Eq. (3), we have the following theorem.

Theorem 1 In the score table of dynamic programming,
the ith row data can be calculated just based on the (i −
1)th row data.

Similar to Theorem 1, the same idea also works for
columns if S[i− 1, j] is replaced in Eq. (1). For example,
Fig. 3 shows the result of changing the data dependence
in the third row of the score table for sequences ATTG
and TAGC. The arrows represent data dependency.

From the re-formulation process, it can be shown that
S[i, j−k] is a match point if the process ends at S[i, j−k].
S[i, j− k] is the first match point before S[i, j] in the ith
row. The first character ai in sequence B can be found
through preprocessing. A table P of size l ∗ (m + 1)
is constructed, where l is the size of the finite alphabet
Σ and m is the length of sequence B. Let C[1 . . . l] be
the finite alphabet and P [i, j] represent the maximum
number before j that makes bp[i,j] = C[i]. P [i, j] can be
computed as follows:

P [i, j] =

 0 if j = 0
j − 1 if bj−1 = C[i]
P [i, j − 1] o.w.

(4)
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Figure 3: An example of re-formulated data dependency
in the score table of a dynamic programming algorithm
for solving LCS problem.

As an example, Table 1 shows the table P for sequence
ATTGCCA.

We can re-formulate Eq. (3) by replacing j − k with
P [c, j]:

S[i, j] =


0 if i = 0 or j = 0
S[i− 1, j − 1] + 1 if ai = bj
max(S[i− 1, j], 0) if P [c, j] = 0
max(S[i− 1, j], S[i− 1, P [c, j]− 1] + 1)

o.w.
(5)

where c is the number of character ai in array C.

3.2 A New Technique for Efficient Paral-
lelization

According to Theorem 1, the ith row data can be calcu-
lated by the (i − 1)th row data. The parallel algorithm
calculate the ith row data in parallel as follows:

1. For i = 1 to l par-do
For j = 1 to m

Calculate P [i, j] according to Eq. (4)
End for

End for

2. For i = 1 to n
For j = 1 to m par-do

Calculate S[i,j] according to Eq. (5)
End for

End for

Assuming max(m,n) processors, in step 1, l is the size of
the alphabet and is usually smaller than the length of the
sequences. For example the alphabet size is 4 for genes
and 20 for proteins. Step 1 takes O(m) time and step 2
takes O(n) time. Overall the algorithm’s time complex is
O(max(m,n)).

Existing diagonal parallel algorithms calculate the score
table one diagonal after another. Although the data on
the same diagonal can be computed in parallel, the num-
ber of data points on different diagonals is different, which

goes from 1 to max(m,n). Given max(m,n) processors,
some processors are idle when the number of data point
on a diagonal is less than max(m,n), which leads to re-
duced parallelism.

The calculation of S[i, j] depends on branching condi-
tions, which makes efficient parallelization difficult. We
can re-write Eq. (4) as

P [i, j] =

 0 if j = 0
j if bj−1 = C[i]
P [i, j − 1] o.w.

(6)

And re-write Eq. (5) as

S[i, j] =


0 if i or j = 0
max(S[i− 1, j], 0) if P [c, j] = 0
max(S[i− 1, j], S[i− 1, P [c, j]− 1] + 1)

o.w.
(7)

where c is the number of character ai in array C.

Now the revised algorithm without branching is as fol-
lows:

1. For i = 1 to l par-do
For j = 1 to m

Calculate P [i, j] according to Eq. (6)
End for

end for

2. For i = 1 to n
For j = 1 to m par-do

t = the sign bit of (0− P [c, j]).
s = the sign bit of (0 − (S[i − 1, j] − t ∗ S[i −

1, P [c, j]− 1])).
S[i, j] = S[i− 1, j] + t ∗ (s⊕ 1).

End for
End for

4 Implementation and Experimental Re-
sults

General-purpose computing on GPUs (GPGPU) has
great potentials for high performance computing. Nowa-
days a general GPU usually has a large number of com-
puting units organized as a streaming architecture. In
the GPU, every computing unit contains 8 scalar proces-
sor cores that execute the program concurrently. Due to
GPU’s high performance on scientific computing, NVidia
and AMD have developed their new GPGPU platforms
CUDA and CTM, respectively, in order to make general
purpose GPU programming easier. We used the CUDA
platform in our implementation and experiments.

CUDA uses threads to manage the computing units. The
creation, management, and execution of the threads are
handled by hardware and there is no software overhead
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Table 1: The table P generated by preprocessing according to Eq. (4) for string ATTGCCA.
A T T G C C A

0 1 2 3 4 5 6 7
A 0 0 1 1 1 1 1 1
T 0 0 0 2 3 3 3 3
C 0 0 0 0 0 0 5 6
G 0 0 0 0 0 4 4 4

in managing threads. Threads are organized into block
and blocks are then grouped into grid. CUDA uses SIMT
(Single Instruction, Multiple Threads) technique and ex-
ecutes the same instruction in multiple threads. Every
block uses computing units in turns to hide the delays
of memory-access and synchronization. It is important
to create enough threads to use the GPU resources effi-
ciently. For the LCS problem, since the sequences to be
compared with is usually very long, we change the data
dependence so that every cell in the same row can be com-
puted in parallel. Our parallel algorithm invokes a large
numbers of threads and achieves improved parallelism on
GPUs.
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Figure 4: Performance comparison of our algorithm and
a diagonal parallel algorithm.

In experiments, our parallel algorithm was implemented
on Nvidia 9800GT graphics card running at 1.4 GHz
on Windows. To compare with the execution times on
CPUs and the time of previous parallel algorithm, we
also implemented our algorithm and the diagonal paral-
lel algorithm using OpenMP on a typical PC with Intel
Dual-Core E2140 processor running at 1.6 GHz. We ex-
perimented with random gene sequences (alphabet size
4) of lengths from 5120 to 10240. Experiment results
are shown in Fig. 4. The results show that on GPU our
algorithm is 6 times faster than on CPU. On the same
CPU platform, our algorithm is 3 times faster than the
diagonal parallel algorithm.

5 Summary

In this paper, we present an efficient parallel algorithm
for solving LCS problems on GPUs. By changing the data
dependency in the score table used by dynamic program-
ming, the algorithm enables higher degree of parallelism
and achieves a good speedup on GPUs. The technique of
data dependency re-ordering and re-formulation can be
used in many other dynamic programming algorithms for
their parallel implementation on GPUs.
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[10] Hyyrö, “Bit-parallel LCS-length computation revis-
ited”, In Proc. 15th Australasian Workshop on Com-
binatorial Algorithms AWOCA, NSW, Australasion,
pp. 16-27, 7/04

[11] W. Liu, L. Chen, “A Parallel Algorithm For Solv-
ing LCS Of Multiple Bioseqences”, In: Proceedings
of the Fifth International Conference on Machine
Learning and Cybernetics, Dalian, China, pp. 4316-
4321, 8/06

[12] D. Korkin, Q. Wang, Y. Shang, “An Efficient Par-
allel Algorithm for the Multiple Longest Common
Subsequence (MLCS) Problem”, In: 37th Interna-
tional Conference on Parallel Processing, Portland,
America, pp. 354-363, 9/08

[13] Q. Wang, D. Korkin, Y. Shang, “Efficient Dominant
Point Algorithms for the Multiple Longest Common
Subsequence (MLCS) Problem”, Proceedings of the
Twenty-First International Joint Conference on Ar-
tificial Intelligence, Pasadena, America, pp. 1494-
1499, 7/09

[14] K. Hakata, H. Imai, “Algorithms for the longest
common subsequence problem for multiple strings
based on geometric maxima”, Optimization Methods
and Software, V10, N2, pp. 233-260, 1998

[15] Y. Lin, C. Su, “Faster optimal parallel prefix cir-
cuits: new algorithmic construction”, Journal of
Parallel and Distributed Computing, V65, N12, pp.
1585-1595, 12/05

[16] S.A. Manavski, G. Valle, “CUDA Compatible GPU
Cards as Efficient Hardware Accelerators for Smith-
Waterman Sequence Alignment”, BMC Bioinfor-
matics V9(Suppl 2), S10, 2008

[17] W. Liu, B. Schmidt, G. Voss, “Streaming algorithms
for biological sequence alignment on GPUs”, IEEE
Trans. Parallel and Distributed Systems, V18, N9,
pp. 1270-1281, 9/07

[18] J. Kruger, R. Westermann, “Linear Algebra Oper-
ators for GPU Implementation of Numerical Algo-
rithms”, ACM Trans. Graphics, V22, N3, pp. 908-
916, 7/03

[19] F. Xu, K. Mueller, “Ultra-Fast 3D Filtered Back-
projection on Commodity Graphics Hardware”,
2nd IEEE International Symposium on Biomedical
Imaging: Macro to Nano, Arlington, America, pp.
571-574, 4/04

Proceedings of the World Congress on Engineering 2010 Vol I 
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010




