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Abstract—Research in the infection and recovery,
based on mathematical understanding is aimed at de-
veloping how the immune system protects against in-
fectious diseases, with a major focus on host-pathogen
interactions. In this research article we have consid-
ered a mathematical model which represents the in-
terplay of hosts and pathogen as in biology and man-
ifests the time rate of change of these species. A re-
covery rate of the infected host to that of susceptible
host is incorporated. The model is analyzed theoret-
ically for conditions of stable solutions. Numerical
solutions of the model are in conformity with those
obtained theoretically. An effort is made to relate the
model to prototype biological systems by exploring a
probable disease free parametric region. Our anal-
ysis shows that the removal of infected host popula-
tion is caused by the biological and physical realizable
threshold of recovery rate.

Keywords —Asymptotic Stability, Host Pathogen, Nu-
merical Solutions, Time Series Solutions.

1 Introduction

The idea, that differential equations could be used potentially
to understand epidemiological systems in order to contain
the outbreak of epidemiological diseases, was considered by
Ronald Ross way back in 1911 [1]. Sir Ross used differential
equations to understand certain thresholds relating malarial
outbreak within the species Homo Sapiens and this helped him
immensely towards discovering malarial-vaccine. Application
of mathematical concepts and techniques, to analyze epidemi-
ological or such classes of biological systems, has been started
from the time before Sir Ross when Hammer(1906) formulated
and analyzed a discrete time model to understand the recur-
rence of measles epidemics. Even before, Daniel Bernoulli
(1970) started the pioneering venture of applying mathemat-
ical concepts in case of epidemics like small pox. The fact,
that mathematics can be used to enrich understanding of bi-
ological systems, is well established by now and thus the field
of mathematical-Biology emerged.
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Host-Pathogen models are mathematical prototypes pertain-
ing to epidemiology and these are of immense importance in
view of the emergence and re-emergence of epidemiological
diseases in the present day global scenario. In this type of
model the host population is divided into two classes, suscep-
tible (S) i.e., healthy organisms and infected individuals (I).
Pathogens (V ) cause infection to host transforming S to I.
The model actually describes the time rate of change of S,
I, and V including various realistic model parameters arising
out of influence from environment, immunization, inter-class
contact etc. These class of models are important in their
own rights and are also relevant for predator-prey or host-
parasite type of models. In the predator-prey models, the
effect of pathogenic diseases on the model dynamics and its
constituents, is an important area from mathematical as well
as ecological point of view. Researchers are paying increased
attention to interlink these areas of research into a more gen-
eral one [2]-[9].

To have an idea about the scope of research in the host-
pathogen (or eco-epidemiological) model systems, we look into
the sequence of historical events relating mathematical re-
search in the area for last few years. Beltrami and Carroll
[3] as well as Venturino [8] worked on the role of viral dis-
ease in recurrent phytoplankton considering a three species
model of susceptible and infected phytoplankton as well as
their predator. Chattopadhyay, Mukhopadhyay and Roy [10]
took a generalized Gause model of prey-predator character in-
cluding viral infection and studied the stability of the different
populations. Mukherjee [11] considered a prey-predator type
model with disease in the prey populations and studied the
persistence of the stable solutions. Later, Chattopadhyay and
Pal [12], on a modified Beltrami and Carroll model, viewed
that the role of viral infection in the plankton population is
entirely model dependent and hard to predict. They further
emphasized the crucial role played by the virus population
on the dynamics of a three species eco-epidemiological model
in the marine ecosystem. With the growing research in the
prey-predator and other prototypical systems, it became ap-
parent that, the viral growth through replication influences
the model dynamics. Bairagi, Roy and Chattopadhyay em-
phasized the same in a subsequent communication [13]. It is
to be noted that Beretta and Kuang considered viral replica-
tion, but in a different context. In a recent communication,
Bairagi, Roy and Chattopadhyay [14] carried a comparative
study of a prey-predator model with several response func-
tions.

In this paper we consider a conventional host-pathogen model
including a recovery of the infected individuals to the healthy
organisms termed as susceptible. The essential features of a
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conventional host pathogen system such as, logistic growth
of susceptible, pathogen replication, lysis death of infected
individuals and mortality of pathogens, are all incorporated
in the model. We would predominantly explore the bearing
of host recovery on the stability of the system and related
characteristics.

The model is analyzed in two different avenues, analytical and
numerical. Coupled differential equations depicting the model
system are made dimensionless and the linearized fixed point
solutions of these equations are obtained. Existence, unique-
ness and boundedness of the non trivial fixed point solutions
are checked. Stability of the system is analyzed and condi-
tions are obtained. Model equations are solved numerically
to check threshold values of different model parameters and
the concurrence of these solutions with those obtained analyt-
ically are checked. Numerical findings are in agreement with
the theoretical results.

2 The Basic Assumptions and the Math-
ematical Model

We consider a host pathogen model consisting of a host pop-
ulation, whose concentration is denoted by N ([N ] = number
of host per designated area) and a pathogen population in-
flicting infection in the host population whose concentration
is denoted by V ([V ] = number of pathogens per designated
area). In the presence of pathogenic infection, the host pop-
ulation is divided into two disjoint classes, susceptible S, and
infected I.

The following assumptions are made to formulate the basic
model equations.

(A1): In the ideal case of no pathogen the growth of suscepti-
ble host population follows the logistic law [15] implying that
this growth is entirely controlled by an intrinsic birth rate
constant r(∈ R+) with a carrying capacity k(∈ R+). The
mathematical form of such logistic growth is

dN
dt

= rN(1− N
k

). (2.1)

(A2): Introduction of pathogen in the system splits the host
population into two disjoint classes, namely susceptible host
S and infected host I, such that at any time t the total host
population remains as

N(t) = S(t) + I(t). (2.2)

(A3): S increases its population by reproduction as per logis-
tic law (2.1), but I are incapable of any reproduction [15].

(A4): At any instant of time, all susceptible host popula-
tion (S) are equally susceptible and all infected population
are equally infectious.

(A5): It is assumed that the spread of disease takes place in
two avenues namely, by pathogens as well as by contact of a
susceptible host with a infected host following the law of mass
action.

It should be noted here that some researchers argued in fa-
vor of proportional mixing rate of contact between S and I
rather than a simple law of mass action. But Greenwood ex-
periment [16] on prototype systems showed that quantitative

results remain the same in either cases of the mentioned con-
tact processes.

Following assumptions (A3), (A4) and (A5), equation (2.1)
can be written as

dS
dt

= rS(1− S+I
K

)− λSI − γSV (2.3)

where λ(∈ R+) is the intensity of infection by infected host
and and γ(∈ R+) is the force of infection through contact with
pathogens. The equation depicting the dynamics of pathogen
population thus becomes

dV
dt

= −γSV + ηdII − µV (2.4)

Where dI(∈ R+) is the death rate constant of I. Note that
we consider the mortality of I to be completely due to lysis
and there exists no separate base line mortality of it. Here
η(∈ R+) is the rate of cell lysis (replication of pathogens) and
the natural death rate of pathogens is denoted as µ(∈ R+).

Based on the string of arguments the time rate of change of I
can be written as

dI
dt

= λSI + γSV − dII (2.5)

(A6): We assume that the infected hosts do not grow or re-
produce but they can recover from pathogenic infection and
move to add to the susceptible host population. Such recov-
ery would stem out from immunization or vaccination. We
consider a recovery rate of I to be denoted by δ(∈ R+).

Following the above assumption (A1 − A6), the final set of
equations depicting the dynamics of susceptible host, infected
host and pathogens can be written as

dS
dt

= rS(1− S+I
K

)− λSI − γSV + δI
dI
dt

= λSI + γSV − dII − δI
dV
dt

= −γSV + ηdII − µV
(2.6)

S(0) > 0, I(0) > 0, V (0) > 0.

The set of equations (2.6) constitute a generalized mathemat-
ical model for host-pathogen. A schematic diagram showing
the flow of different constituent masses of host and pathogens
conforming to the mathematical equations (2.6) is given in
Figure 1. The variables of model equations (2.6) are to be
made dimensionless for the sake of simplicity. Here we rescale
all the variables in terms of carrying capacity K. Thus we ap-
ply the transformation, s = S

K
, i = I

K
, v = V

K
, τ = rt and get

the following dimensionless form of the model equation (2.6).
For notational convenience we will replace τ by t henceforth.
The rescaled equations are

ds
dt

= s(1− (s + i))− asi− bsv + ci
di
dt

= asi + bsv − di− ci
dv
dt

= −bsv + ei− fv
(2.7)

where,

a = λK
r

, b = γK
r

, c = δ
r
, d = dI

r
, e = ηdI

r
, and f = µ

r
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Figure 1: Schematic diagram of the model system equa-
tions(2.6) depicting the inter flow of constituent popula-
tions.

3 Existence, Uniqueness and Bounded-
ness

We observe that right hand side of equation (2.7) are smooth
functions of the variables s, i, v and parameters, as long
as these quantities are non-negative, so local existence and
uniqueness properties hold in the positive octant for some time
interval (0, tf ). In the next theorem we show that the linear
combination of susceptible host, infected host and pathogens
is less than a finite quantity or in other words, the solution of
the system (2.7) is bounded.

Theorem 3.1 All the solution y(t) of (2.7), where y =
(s, i, v), is uniformly bounded for y0 ∈ R3

0,+. Proof: We
define a function W (t) : R0,+ → R0,+ by

W (t) = s + i + v (3.1)

Observe that W is well defined and differentiable on some
maximal interval (0, tf )

The time derivative of (3.1) along the solutions of (2.7) is

dW (t)
dt

= s(1− s− i)− di− bsv + ei− fv,

i.e., dW (t)
dt

≤ (s− 1)2 − s− (d− e)i− fv + 1

If we assume that, 0 < ρ < min.(1, d− e, f) then we get
dW (t)

dt
+ ρ ≤ 1 for each t ∈ (0, tf ).

Applying the theory of differential inequality [17] we obtain,
0 < W (s, i, v) < 1

ρ
(1− e−ρt) + W (s(0), i(0), v(0))e−ρt, and

for t →∞, we have

0 < W <
1

ρ
. (3.2)

Hence all the solutions of y(t) that initiate in R3
+ are confined

in the region B = {(s, i, v) ∈ R3
+ : W = 1

ρ
+ ξ, for any ξ >

0}. Hence the proof.

4 Equilibria Conditions

System (2.7) possesses the following equilibria: E0(0, 0, 0),

E1(1, 0, 0), and E∗(s∗, i∗, v∗). Where i∗ = s∗(1−s∗)
s∗+d

, and v∗ =
es∗(1−s∗)

(s∗+d)(bs∗+f)
and s∗ is the positive root of

χ1(s
∗)2 − χ2s

∗ − χ3 = 0 (4.1)

where χ1 = ab, χ2 = bd + bc − af − be and χ3 = (d + c)f .
Note that equation (4.1) has a unique positive root, given by

s∗ =
χ2 +

√
χ2
2+4χ1 χ3

2χ1
if χ1 > 0, χ2 > 0 and χ3 > 0 for which b(d+c) > af+be.

It is to be noted that

s∗ + i∗ ≤ 1 (4.2)

This condition is due to the fact that s(t) + i(t) ≤ 1, ∀ t > 0.

5 Stability Analysis

Constructing the variational matrix about any arbitrary equi-
librium E(s, i, v), we state and prove the following theorems

Theorem 5.1 The system (2.7) is unstable around E0 for
all parametric values. (The proof is obvious).

Theorem 5.2 The system (2.7) is asymptotically stable
around E1 if a + be

b+f
< c + d.

Proof: The variational matrix corresponding to E1 is

( −1 −1− a + c − b
0 a− d− c − b
0 e −(b + f)

)
(5.2.1)

Proof: The eigenvalue of the variational matrix corresponding
to equilibrium E1 is

ζ = −1 and ζ2 − ν1ζ − ν2 = 0 (5.2.2)

where,

ν1 = a− d− c− b− f and ν2 = (a− d− c)(b + f) + be

The last equation of (5.2.2) containing two eigenvalues

implies that it has two roots and it is obvious that the system

(2.7) is asymptotically stable around E1 if a+ be
b+f

< c+d .

Theorem 5.3 The system (2.7) is always sta-
ble around E∗ for all parametric values if
(i) max.(ae, be, bf

b−a ) < c < min.(as∗, (a+1)bes∗

a(bs∗+f) , (a+1)f
b )

(ii) a < b < a + 1
(iii) f > max.(be, b2v∗)
(iv) i∗ > e

a(a+1)

Proof: Observe that from first two equations of the sys-
tem (2.7), we always have

d(s+i)
dt = s(1− (s + i))− 2bsv − di < (s + i)(1− (s + i))

Hence [18] we have limt→∞ {s(t) + i(t)} < 1. Thus we
have s∗ + i∗ < 1 and the last condition (4.2) is always
satisfied.

The characteristic equation of the linearized system of
(2.7), corresponding to E∗, is given by

ζ3 + α2ζ
2 + α1ζ + α0 = 0 (5.3.1)
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where,

α2 = ci∗
s∗ + s∗ + bs∗v∗

i∗ + bs∗ + f

α1 = cbv∗ + cbi∗ + cfi∗

s∗ + b(s∗)2v∗

i∗ + b(s∗)2 + fs∗

+ b2(s∗)2v∗

i∗ + bfs∗v∗

i∗ − ebs∗ − aci∗ − bcv∗

+ a(a + 1)i∗s∗ + b(a + 1)v∗s∗ − b2v∗s∗

α0 = cb2v∗s∗ − cebi∗ + b2v∗(s∗)3
i∗ + bfv∗(s∗)2

i∗ − eb(s∗)2

− abci∗s∗ − acfi∗ + a(a + 1)bi∗(s∗)2 + a(a + 1)fi∗s∗

+ a(a + 1)bfv∗s∗ + abei∗s∗ + b2ev∗s∗ − b3(v∗)2(s∗)2

i∗

(5.3.2)
From Routh-Hurwitz criterion, E∗ is locally asymptoti-
cally stable if and only if α2 > 0, α0 > 0 and α2α1−α0 >
0.

From the signs of those defined in (5.3.2), it is clear that
α2 > 0. It is easy to verify that α0 > 0 for all parametric
values, provided

(i) c < min.(as∗, (a+1)bes∗

a(bs∗+f) , (a+1)f
b ), (ii) f > b2v∗,

(iii) i∗ > e
a(a+1) ,

(5.3.3)

It is also easy to verify that, α2α1 − α0 > 0 for all
parametric values provided,

(i)′ c > max.(ae, be, bf
b−a ), (ii)′ f > be,

iii)′ a < b < a + 1,
(5.3.4)

From (5.3.3) and (5.3.4) it is obvious that system (2.7) is
always for all parametric values and hence completes the
theorem.

6 Numerical solutions of the model
Equations

Theoretical analysis of the model is done to explore sta-
bility, equilibria and uniqueness of the solutions and their
boundedness. But, for physical realization of the time
evolution of different host and pathogen populations with
varying model parameters, we consider numerical solu-
tions of the set of equations (2.6). This enables us to vi-
sualize the dynamical behaviors of variables S, I, and V .
Values of different constant model parameters, as given
in Table.1, were chosen from the amassed literature in
the field. Note that we want to emphasize the role of the
recovery rate within the model.

Table.1. Values of parameters used for models dynamics
calculations.

Figure 2: Population densities of Susceptible host (S), In-
fected host (I) and Pathogen (V) are plotted as a function
of time for the Recovery rate δ = 0.2. Other parameters
are as in Table.1.

Para- Definition Default
meter Value

(day −1)

r Maximal growth rate 11
of susceptible host

K Carrying capacity 35 unit designated area
λ Force of infection 0.2 unit designated area

through contact with
infected host

γ Force of infection 0.03 unit designated area
through contact
with pathogens

dI Lysis death rate 2.5 liter
of infected host

η Pathogens 115
replication factor

µ Mortality rate 2.2
of pathogen

With the positive octant restriction on S, I, V at t = 0
(i.e., S > 0, I > 0, V > 0) we have chosen S(0) = 20,
I(0) = 10, V (0) = 10. We have considered variation
in the recovery rate (δ) in a wide range from δ = 0 to
about δ = 110. It is to be mentioned here that δ is taken
in arbitrary units. To begin with, we check the time
evolution of S, I, and V with increasing δ.

In Figure 2 we have shown these hosts and pathogen pop-
ulations as a function of time for δ = 0.2. Note that, we
have gone upto a time t = 70 days. This is because, a
thorough check on the system reveals stabilization of all
these populations well before t = 70 and within this the
characteristic features of the system are manifested. In
Figure 2 we find oscillatory solutions for all three pop-
ulations bounded by stable upper and lower limits. As
we increase δ, the upper and lower limits of solutions
come closer (see Figure3). Beyond some δ the two limits
of solutions merge into one and thereafter, unique stable
solutions for all three populations exist (see Figure4).
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Figure 3: Populations S, I and V are plotted as a func-
tion of time for δ = 0.4.

In Figure 5(a) we have plotted stable solutions for S and
I populations for small values of δ and the same for V
is in Figure 5(b). Here we find that with δ ≤ 0.6 stable
solutions are oscillatory for all three populations where
bifurcating line towards lower δ denote the stable upper
and lower boundary of such oscillatory solutions.

Figures 6(a) & 6(b) contains stable and unique solutions
for different populations for larger (δ ≥ 0.6). We find
that stable (solution) value of susceptible host increases
monotonically, but the same for infected host rises faster
in Figure 6(a) and similar rise in pathogen stable solu-
tion is the steepest. But beyond certain δ, rise in I and
V stable values are arrested and they turn downwards.
Stable value of V turns downward at a δ ∼ 31 which is
smaller than that for stable I turnaround at δ ∼ 35.5.
At a very large δ ∼ 100 extinction of I as well as V
take place. The I stable value goes to Zero at δ = 99
which is slightly lower than that for stable V . At δ ≥ 99,
where extinction of I takes place, stable solution S be-
comes completely flat and attains the numerical value of
the carrying capacity K = 35. This is characteristic of
the model equations (2.6). Here, extinction of I and V
means I = V = 0 and single valued stable solutions im-
plies dS

dt = dI
dt = dV

dt = 0. Thus, from equations (2.6), we
get 1− S

K = 0 i.e., S = K

7 Discussion and Conclusions

We have considered a mathematical model of a host-
pathogen system including a recovery of the infected host
to the susceptible. The set of differential equations of
the model are solved both analytically and numerically.
Here, we put emphasis on the recovery of the infected
host to their healthy class. We have analyzed the model
in-depth, particularly to see the effects of host recovery
on the model dynamics and its solutions.

Our theoretical analysis of the existence, uniqueness and
boundedness of the asymptotic solutions show that peri-
metrically conditioned solutions for the model equations

Figure 4: Densities of S, I and V populations are plotted
as a function time for δ = 0.6

Figure 5: Equilibrium solutions of S, I and V are plotted
as a function of recovery rate δ ≤ 1.0

do exist and they are unique and bounded in well de-
fined regions of the parameter space. The analysis fur-
ther show that the system possesses several equilibria,
some of which are denoted by Eo(0, 0, 0), E1(1, 0, 0), and
E∗(s∗, i∗, v∗). However, by stability analysis of equilib-
ria, we find that the system is unstable around E0 for all
parametric values and E1 is locally asymptotically stable.
Also the system is locally asymptotically stable around
E∗. In fact E∗ is globally asymptotically stable.

Complete numerical solutions of the model equations for
the parameters as in (Table.1), yield results which are
consistent with the parametric conditions obtained an-
alytically. In this case too we put emphasis on how
the model dynamics evolve with the recovery rate (δ).
We find that, for very small to moderate values of δ
(≤ 0.6), stable solutions for all three populations are
oscillatory. But, for δ > 0.6, the solutions are single
valued and stable. When recovery rate attains a thresh-
old δ ∼ 100 (in units of per designated area), only the
susceptible host population (S) survives asymptotically
while infected host (I) and pathogen (V ) populations are
pushed to extinction. This feature of recovery and sus-
tenance of the host population subsiding any pathogenic
attack, in biological terms, means that the system en-
ters a disease-free zone. Our numerical calculations show
that the removal of infected host population, coupled
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Figure 6: Equilibrium solutions for S, I and V are plotted
as a function of δ ≥ 1.0 to emphasize the unique solu-
tions and associated characteristics of different variables
for higher δ

with a finite rate of death of pathogen, actually forces
the pathogen population towards extinction path. Notice
that the threshold value of the recovery rate in the present
case is higher than its biologically realizable value. This
threshold δ can be scaled down to sensible limits pro-
vided we can set the death rate of infected host (dI) to a
value higher than that considered here, and also the rate
of contacts (λ & γ) of S with I and V respectively to
their further lower values. Actually, in a biological pro-
totype of host-pathogen model, numerical values of the
parameters dI , λ, γ are externally controllable. Hence
the prediction that, a disease free situation for the host
population can be effected at biologically and physically
realizable threshold of recovery rate, only setting the ex-
ternally controllable parameters to their respective suit-
able values.
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