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Abstract�Using a quaternionic reformulation of the three-
dimensional Electrical Impedance Equation, and a generalization
of the Bers generating sets, as well as the Beltrami equation,
we introduce a new class of exact solutions for the case when
the conductivity is represented by a separable-variables function
depending upon three spacial variables. Finally, we discuss
the possible contribution of these results into the Electrical
Impedance Tomography Theory.

Index Terms�Electrical Impedance Tomography, Pseudoana-
lytic Functions.

I. INTRODUCTION

The Electrical Impedance Tomography problem was posed
by A. Calderon in 1980 [5]. It is basically a boundary value
problem for the equation

grad (� div u) = 0; (1)

where � represents the conductivity function depending upon
three spacial variables, and u is the electric potential. The
goal is to reconstruct � inside a domain surrounded by a
boundary �, when the values of u in the boundary are
given. This problem is specially important for medical image
reconstruction, because it constitutes an auxiliary noninvasive
technique for the diagnosis of several diseases.
Yet, by more than twenty years, the mathematical com-

plexity of (1) restricted the use of the Electrical Impedance
Tomography because the achieved images were de�cient com-
pared to such provided by (for instance) the Positron Emission
Tomography, or the Magnetic Resonance Imaging.
Then, in 2006, through the path of relating (1) with a

Vekua equation [22], K. Astala and L. Päivärinta [2] gave a
positive answer for the two-dimensional Electrical Impedance
Tomography problem. And in 2007, V. Kravchenko and H.
Oviedo [16] obtained what it could be considered the �rst
general solution of (1) in analytic form, employing elements
of the Pseudoanalytic Function Theory [3] for a certain class of
�. Two years latter, adopting new results in Complex Analysis
[13], it was possible to pose the general solution for the two-
dimensional case of (1) in terms of Taylor series in formal
powers, when � is a separable-variables function [20].
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Using a quaternionic generalization of the Bers generating
sets [17], we pose the structure of the general solution for the
three-dimensional Electrical Impedance Equation, and bias a
quaternionic Beltrami equation, we introduce a new class of
exact solutions for (1), when the conductivity � is a separable-
variables function depending upon three spacial variables.
Finally, we discuss the possible contribution of these results

into the �eld of the Electrical Impedance Tomography Theory.

II. ELEMENTS OF QUATERNIONIC ANALYSIS AND
PSEUDOANALYTIC FUNCTION THEORY

The algebra of real quaternions (see e.g. [9],[15]) will be
represented by H(R). The elements belonging to H(R) are
written as q = q0 +

�!q ; where q0 is known as the scalar part
of the quaternion q; and �!q =

P3
k=1 ekqk is the vectorial

part of q. The elements qk; k = 0; 3 are all real-valued
functions, whereas e1; e2 and e3 are the standard quaternionic
units possessing the properties

e1e2e3 = �1;
e21 = e22 = e23 = �1:

The subset of purely vectorial quaternions q = �!q can be
identi�ed with the set of three-dimensional vectors. In other
words, every vector

�!
E = (E1; E2; E3) is associated with

a vectorial quaternion
�!
E = E1e1 + E2e2 + E3e3. The

correspondence is one-to-one.
By virtue of this isomorphism, the multiplication between

two vectorial quaternions �!q and �!p can be represented as
�!q �!p = �h�!q ;�!p i+ [�!q ��!p ] ; (2)

where h�!q ;�!p i denotes the classical Cartesian scalar product,
and [�!q ��!p ] is the vectorial product, written in the quater-
nionic sense (see e.g. [15],[20]). The reader can notice that
in general �!q �!p 6= �!p �!q . Because of this, we will use the
notation

M
�!p �!q = �!q �!p (3)

to indicate the multiplication by the right-hand side of the
quaternion �!q by the quaternion �!p .
In the set of at least once differentiable quaternionic-valued

functions, we can de�ne the Moisil-Theodoresco differential
operator D = e1@1+e2@2+e3@3; where @k = @

@xk
. According

to the classical notations, when applying D to a vectorial
quaternion �!q , we have

D�!q = �div�!q + rot�!q : (4)
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Notice also that any scalar function (let us say �) can be
considered a purely scalar quaternion, and for this case

D� = grad�: (5)

We shall now introduce some concepts of the Pseudoan-
alytic Function Theory. Following [3], let F and G be two
complex-valued functions that satisfy

Im
�
FG

�
> 0; (6)

where F denotes the complex conjugation of F : F = ReF �
i ImF; and i denotes the standard complex unit i2 = �1.
Indeed, (6) is an alternative way for indicating that the
functions F and G are linearly independent, hence they can be
used as a base for representing any complex-valued function.
In other words, every complex function W can be expressed
as

W = �F +  G;

where � and  are real-valued functions. When a pair of
functions (F;G) satis�es the condition (6), it is called a Bers
generating pair.
The idea of representing the set of complex functions by

means of a generating pair (F;G) instead of the traditional
base (1; i) could seem a simple change at the �rst look, but
when we analyze the implications into the Complex Function
Theory, the results are amazing.
This idea was used by Lipman Bers to develop the Pseudo-

analytic Function Theory [3], which in recent years has
become of great importance for the Electrical Impedance
Tomography Theory.
Let us start by introducing the notion of the derivative in the

sense of Bers (or the (F;G)-derivative) of a complex-valued
function W :

@
(F;G)

W = (@z�)F + (@z )G; (7)

where @z = @x � i@y . This derivative will exist if and only if

(@z�)F + (@z )G = 0; (8)

where @z = @x + i@y:
In order to express (7) and (8) in terms of W , let us

introduce the notations

A(F;G) =
F@zG�G@zF
FG� FG

; a(F;G) =
G@zF � F@zG
FG� FG

; (9)

B(F;G) =
F@zG�G@zF
FG� FG

; b(F;G) =
F@zG�G@zF
FG� FG

:

L. Bers called this expressions the characteristic coef�cients
of the generating pair (F;G). Applying these notations, the
equation (7) becomes

@
(F;G)

W = @zW �A(F;G)W �B(F;G)W; (10)

and (8) turns into

@zW � a(F;G)W � b(F;G)W = 0: (11)

The equation (11) has special signi�cance in the Electrical
Impedance Tomography Theory, and it is known as the Vekua
equation, because it was deeply studied by Ilia Vekua when
he developed the Theory of Generalized Analytic Functions

[22], closely related with the Pseudoanalytic Function Theory
of L. Bers, but with a strong orientation to the Operational
Analysis.
Every complex-valued function W that ful�lls the equation

(11) will be called (F;G)-pseudoanalytic.
In this work it will be more convenient to give the further

explanations according to the de�nitions posed by L. Bers.
The following statements were originally presented in [3].
Remark 1: The complex-valued functions that constitute

the generating pair (F;G) are (F;G)-pseudoanalytic, and their
(F;G)-derivatives are @

(F;G)
F = @

(F;G)
G = 0:

De�nition 2: Let (F;G) and (F1; G1) be two generating
pairs, and let their characteristic coef�cients, de�ned in (9),
satisfy the relations

a(F;G) = a(F1;G1) and B(F;G) = �b(F1;G1): (12)

Hence, the pair (F1; G1) will be called the successor pair of
(F;G), as well (F;G) will be named the predecessor pair of
(F1; G1) :
Theorem 3: Suppose the complex-valued function W is

(F;G)-pseudoanalytic, and let (F1; G1) be a successor pair
of (F;G). Then the (F;G)-derivative of W

@
(F;G)

W = @zW �A(F;G)W �B(F;G)W;

will be (F1; G1)-pseudoanalytic. This is

@z
�
@
(F;G)

W
�
� a(F1;G1)

�
@
(F;G)

W
�
� b(F1;G1)

�
@
(F;G)

W
�
= 0

De�nition 4: Let (F;G) be a generating pair. Its adjoint
pair will be denoted by (F �; G�) ; and de�ned by the formulas

F � = � 2F

FG� FG
; G� =

2G

FG� FG
:

L. Bers also posed the (F;G)-integral of a complex-valued
function W : Z z1

z0

W d(F;G)z = (13)

= F (z1)Re

Z z1

z0

G�W dz +G (z1)Re

Z z1

z0

F �W dz:

If W = �F +  G is an (F;G)-pseudoanalytic function,
then Z z

z0

@
(F;G)

W d(F;G)z = (14)

=W (z)� � (z0)F (z)�  (z0)G (z) ;

and since
@
(F;G)

F = @
(F;G)

G = 0;

the integral expression (14) represents the antiderivative in the
sense of Bers of @

(F;G)
W:

Notice that a continuous complex function w is (F;G)-
integrable if and only if

Re

I
G�wdz + iRe

I
F �wdz = 0:

Theorem 5: The derivative in the sense of Bers @
(F;G)

W of
a (F;G)-pseudoanalytic functionW will be (F;G)-integrable.
Theorem 6: Suppose that the generating pair (F;G) is

a predecessor of (F1; G1). A complex-valued function W
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will be (F1; G1)-pseudoanalytic if and only if it is (F;G)-
integrable.
De�nition 7: Let f(Fm; Gm)g ; m = 0;�1;�2;�3; ::: be

a sequence of generating pairs. If every (Fm+1; Gm+1) is
a successor pair of (Fm; Gm) ; we will call f(Fm; Gm)g
a generating sequence. Speci�cally, if the generating pair
(F0; G0) = (F;G) we say that (F;G) is embedded in the
generating sequence f(Fm; Gm)g :
Now, let W be a (F;G)-pseudoanalytic function, and sup-

pose that f(Fm; Gm)g is a generating sequence in which
(F;G) is embedded. Hence we will be able to express the
higher derivatives in the sense of Bers of W as

W [0] =W ; W [m+1] = @
(Fm;Gm)

W [m]; m = 0; 1; 2; 3; :::

De�nition 8: The complex function Z(0)m (a; z0; z) will be
called formal power with center at z0, coef�cient a and
exponent 0: This function will depend upon a complex variable
z; and it will be de�ned as the linear combination of the
elements of the generating pair (Fm; Gm) ; with two real
constant coef�cients � and � such that

�Fm (z0) + �Gm (z0) = a:

The formal powers with exponents n = 1; 2; 3; ::: will be
de�ned according to the recursive formulas

Z(n)m (a; z0; z) = n

Z z

z0

Z
(n�1)
m+1 (a; z0; �) d(Fm;Gm)�;

where the integral operators are integrals in the sense of Bers,
described in (13).
The proofs of the following statements can be found in [3]:
1) Z(n)m (a; z0; z) is an (Fm; Gm)-pseudoanalytic function.
2) If a1 and a2 are real constants, then

Z(n)m (a1 + ia2; z0; z) =

= a1Z
(n)
m (1; z0; z) + a2Z

(n)
m (i; z0; z) :

3) The following relations hold

@(Fm;Gm)Z
(n)
m (a; z0; z) = Z

(n�1)
m+1 (a; z0; z) :

4) And �nally,

Z(n)m (a; z0; z)! a (z � z0)n when z ! z0:

Remark 9: Every complex-valued function W; solution of
(11), can be expanded in Taylor series in formal powers

W =
1X
n=0

Z(n) (an; z0; z) ; (15)

where the absence of the subindex m means that all formal
powers correspond to the same generating pair. In other words,
this Remark explains that the expansion (15) is an analytic
representation of the general solution of (11).
It is also important to mention that the Taylor coef�cients

an are obtained according to the formulas

an =
W [n] (z0)

n!
:

III. NEW SOLUTIONS FOR THE ELECTRICAL IMPEDANCE
EQUATION WHEN � IS A SEPARABLE-VARIABLES FUNCTION

DEPENDING UPON THREE SPACIAL VARIABLES

Following [17], let us consider the following inhomoge-
neous Vekua equation

@z (�F )� a (�F )� b
�
�F
�
= (@z�)F; (16)

where � is a real-valued function, and F is a complex-valued
function. It is possible to check that this equality holds if and
only if F is a particular solution of the homogeneous Vekua
equation

@zF � aF � bF = 0:

In the same way, let us consider now the equality

@z ( G)� a ( G)� b
�
 G
�
= (@z )G; (17)

where  is a real function and G is a complex function such
that, together with F , ful�lls the inequality (6) Im

�
FG

�
> 0.

Again, the relation (17) will be true iff

@zG� aG� bG = 0:

By denoting W = �F +  G; it is evident that the equation

@zW � aW � bW = 0

will be ful�lled if and only if

(@z�)F + (@z )G = 0:

Additional calculations show that the coef�cients a and b are
indeed the characteristic coef�cients de�ned in (9). Hence, this
is an alternative way for introducing the notion of an (F;G)-
pseudoanalytic function W , and according to [17], we can use
the same idea for posing the structure of the general solution
for the three-dimensional quaternionic Electrical Impedance
Equation.
Subsequently, we will use this proposal for obtaining a new

class of solutions for the case when the conductivity � is
a separable-variables function depending upon three spacial
variables.

A. The Quaternionic Electrical Impedance Equation and the
structure of its general solution
Consider the Electrical Impedance Equation (1)

grad (� div u) = 0;

where the conductivity function � has the form

� (x1; x2; x3) = � (x1)� (x2) 
 (x3) ; (18)

and �; �; and 
 are real-valued functions at least once differ-
entiable. Let us introduce the notations (see e.g. [15], [19])

�!E =
p
� gradu; �!� = grad

p
�p

�
; (19)

where the gradient is applied in the sense of (5). The equation
(1) will turn into �

D +M
�!�
��!E = 0; (20)
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where D is the Moisil-Theodoresco differential operator (4)
and M

�!� is the operator of multiplication by the right-hand
side (3). Since � is a separable-variables function, it will be
useful to introduce the auxiliary notations

�!� = �1e1 + �2e2 + �3e3;

where

�1 =
@1
p
�p
�
; �2 =

@2
p
�p
�
; �3 =

@3
p



p


: (21)

Following the idea posed in (16) and (17), let us consider the
equality �

D +M
�!�
��

'
�!E
�
= (D')

�!E ;

where ' is a real-valued function. This equation will be valid
iff
�!E is a particular solution of (20). Hence the next statement

is in order.
Theorem 10: [17] Let

�!E 1;
�!E 2 and

�!E 3 be a set of linearly
independent solutions of (20). Then the quaternionic-valued
function

�!E =
3X

k=1

'k
�!E k

will be the general solution of (20), where the real-valued
functions '1; '2 and '3 are all solutions of the equation

3X
k=1

(D'k)
�!E k = 0: (22)

Indeed, the quaternionic equation (20) can be considered a
generalization of the Vekua equation (see e.g. [15]), as well
as (22) could represent a quaternionic generalization of the
Beltrami equation (a different generalization, developed from
a purely mathematical point of view, was posed by U. Kähler
in [10]).
In order to introduce new solutions for (20) through the

path of solving (22), we will construct a set of three linearly
independent solutions

�!E 1;
�!E 2 and

�!E 3 for (20). Let us assume�!E 1 = E1e1; where E1 is a real-valued function. Substituting
it into (20) we will obtain the differential system

@1E1 + E1�1 = 0; @2E1 � E1�2 = 0; (23)
@3E1 � E1�3 = 0:

It is easy to check that

E1 = A1e
�
R
�1dx1+

R
�2dx2+

R
�3dx3 ;

where A1 is a real constant, conforms a solution of (23).
Applying the same idea, we can verify that

�!E 1 = e1A1e
�
R
�1dx1+

R
�2dx2+

R
�3dx3 ;

�!E 2 = e2A2e
R
�1dx1�

R
�2dx2+

R
�3dx3 ;

�!E 3 = e3A3e
R
�1dx1+

R
�2dx2�

R
�3dx3 ;

constitute a set of linearly independent solutions of (20). Here
A2 and A3 are real constants.
Nonetheless it is not clear how to solve the general case of

(22) in order to obtain the general solution of (20), we can
introduce a wide class of new solutions using the following

method (a similar analysis was posed in [19], for the case
when � depends upon only two spacial variables).
Case 11: Consider in (22) the particular case when '3 = 0:

Thus we have

(D'1)
�!E 1 + (D'2)

�!E 2 = 0:
Expanding this quaternionic equation, we obtain

A1e
�
R
�1dx1+

R
�2dx2+

R
�3dx3@1'1+

+A2e
R
�1dx1�

R
�2dx2+

R
�3dx3@2'2 = 0;

A1e
�
R
�1dx1+

R
�2dx2+

R
�3dx3@2'1�

�A2e
R
�1dx1�

R
�2dx2+

R
�3dx3@1'2 = 0;

@3'1 = @3'2 = 0;

and by introducing the notation

p =
A1
A2

e�2
R
�1dx1+2

R
�2dx2 ;

the system takes the form

@1'1 = �
1

p
@2'2; @2'1 =

1

p
@1'2: (24)

This system of equations is not other than the so-called p-
analytic system [18].
Theorem 12: [13] The real-valued functions '1 and '2 will

be solutions of the system (24) if and only if the function

W = '1p+ i
'2
p

is a solution of the Vekua equation

@�W �
@
�
p

p
W = 0; (25)

where @� = @2 + i@1:

This Vekua equation has precisely the form of the one
studied in the previous work [20], where it was posed the
structure of the general solution for the two-dimensional
Electrical Impedance Equation.
Noticing that p is in fact a separable-variables function, an

explicit generating sequence [13] can be introduced in order to
express the general solution of (25) in terms of Taylor series
in formal powers (see e.g. [13])

W =
1X
n=0

Zn (a; �0; �) ;

where � = x2 + ix1:

But, using a particular property of (25) pointed out in [8],
we are able to obtain an exact solution for (25) that will give
us the possibility of better explaining the contribution of the
Pseudoanalytic Function Theory to the Electrical Impedance
Tomography Theory.
Remark 13: We can use the procedure of the Case 11

considering '1 = 0 in (22), and subsequently '2 = 0: These
cases will provide a wider class of new solutions for (20) and,
in consequence, for (1).
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B. A particular solution for the Vekua equation bias the
stationary Schrödinger equation
A simple calculation will show that

@�p

p
= 2 (��2 + i�1) ;

where �1 and �2 have the form (21). Indeed, we can write

@�p

p
= 2 (��2 + i�1) = �

@� (��)

��
;

where @� = @2 � i@1; and � and � are de�ned in (18). Thus
the equation (25) turns into

@�W +
@� (��)

��
W = 0;

or using the operational notation�
@� +

@� (��)

��
C

�
W = 0; (26)

where C denotes the complex conjugation operator, act-
ing upon a complex-valued function W = W0 + iW1 as
C (W0 + iW1) =W0 � iW1:
A detail that was not mentioned in [20] is that the differen-

tial operator of (26) possesses a very particular property. This
will be pointed out in the following proposition.
Proposition 14: [14] Let the function f0 be a non-

vanishing particular solution of the two-dimensional stationary
Schrödinger equation

�f � vf = 0; (27)

where � = @21 + @22 . Then, its differential operator (�� v)
can be factorized in the following way�

@� +
@�f0
f0

C

��
@� �

@�f0
f0

�
f = 0: (28)

The reader can notice the �rst differential operator of (28)
has the same structure that the corresponding one to (26).
Therefore, it is clear that possessing two particular solutions
of (27), f0 and f , the complex-valued function

W =

�
@� �

@�f0
f0

�
f (29)

will be a solution of

@�W +
@�f0
f0

W = 0: (30)

In order to use this property for solving (26), let us consider
the particular case of (27) when v is a real constant. This
is, the equation (27) becomes the Yukawa equation (see e.g.
[4],[13]).
We can check that one solution for (27) is

f = Kem1x1+m2x2 ; (31)

where K is a real constant and m1;m2 are real numbers such
that m2

1 +m
2
2 = v; and

f0 = en1x1+n2x2 ; (32)

where n1 and n2 are also real numbers ful�lling n21+n22 = v,
is another solution. Substituting (31) and (32) into (29) we
obtain

W = [m2 � im1 � (n2 � in1)]Kem1x1+m2x2 ; (33)

that will be an exact solution of (30), and consequently, of
(25). By identifying f0 in (30) with �� of (26) we have

� = en1x1 and � = en2x2 :

Despite the mathematical simplicity of the functions � and �,
to posses an exact solutionW of the Vekua equation (25), that
is not simply an element of the corresponding generating pair
(F;G), allows us to expand such solution in terms of Taylor
series in formal powers, and in consequence, to analyze the
behavior of the formal powers (this would not be possible if
the exact solution W was simply W = F or W = G, since
the expansion in formal powers requires the nth-derivative in
the sense of Bers of W , but by virtue of Remark 1, the �rst
derivative in the sense of Bers of F and of G is equal to zero:
@
(F;G)

F = @
(F;G)

G = 0).
For achieving the expansion of W in Taylor series we need

�rst an explicit generating sequence. Following [13], it is
possible to verify that the generating pair (F;G) corresponding
to the Vekua equation (25), has the form

F = 2
�

�
= 2en1x1�n2x2 and G = 2i

�

�
= 2ie�n1x1+n2x2 :

Moreover, the generating sequence is composed as follows:

Fm = 2
men1x1�n2x2 and Gm = 2

mie�n1x1+n2x2 ;

when m is an even number, and

Fm = 2
men1x1+n2x2 and Gm = 2

mie�n1x1�n2x2 ;

when m is odd.
It is worth of mention that there are not many works

dedicated to the behavior of formal powers when we take
points far away from their center z0; as well as when different
kinds of closed curves are considered for their evaluation.
In fact, a proper study of the expansion in Taylor series in
formal powers of the solution (33), obtained bias the Yukawa
equation, would reach enough material for an independent
paper.
Still, recent works have shown that the convergence speed of

the Taylor series in formal powers is very good (see e.g. [6]),
compared to other classical methods for expanding functions.
Remark 15: When considering the two-dimensional case of

(20), by virtue of Theorem 10, the procedures exposed in this
work will allow us to obtain the general solution of the two-
dimensional Electrical Impedance Equation (1). This implies
that, for the two-dimensional case, the present work poses an
alternative method to the one exposed in [20].

IV. CONCLUSIONS
The study of the Electrical Impedance Equation (1) is

the base for well understanding the Electrical Impedance
Tomography problem. We shall remark the possible relevance
of these new solutions by mentioning (for instance) that
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many Electrical Impedance Tomography Medical Devices are
strongly connected with Neural Network Modeling (see e.g.
[11],[21],[23] and [24]). Such models require an ef�cient
training phase (see for example [1],[7]) in order to reach
useful approaches of the conductivity function �, using values
of the electric potential u collected from the boundary � of
the domain of interest. But since the inverse problem of (1)
is considered very unstable [12], the techniques based onto
Neural Networks have found several dif�culties for improving
the quality of the reconstructed images.
In this context, the knowledge of a wide class of analytic so-

lutions u for (1) could well become signi�cant. By employing
parametric transformations, we can always obtain an explicit
function uj� describing the values of u near the boundary �
of the domain of interest.
Since for all physical cases the boundary � is a closed curve

or a closed surface, the function uj� could be represented
using quite standard expansions, such as the Fourier series.
Hence, the Neural Network might be trained using only the
most relevant Fourier coef�cients of uj�. We shall notice that,
in this hypothetical case, the Fourier coef�cients would not
belong to a single exact solution u of (1), but to its general
solution in analytic form for the two-dimensional case, or to
a wide class of exact solutions for the three-dimensional case.
Perhaps from this point of view, the Electrical Impedance
Tomography problem could be considered more stable.
The new class of solutions of (20) offers another possi-

bilities. For instance, the opportunity of better understanding
the behavior of the electrical currents inside inhomogeneous
media.
A brief analysis of

�!E in (20), taking into account the
notations (19), will take us precisely to the de�nition of the
electrical current intensity vector �!j :

�!
j =

p
�
�!E = �

�!
E ; (34)

where
�!
E is the electrical vector �eld. The relation (34) is

known as the Differential Ohm's Law, and it describes point by
point the behavior of the electrical currents. This is specially
useful, since it allows us to estimate all sort of physical effects,
such as the electrical power dissipation in some particular
tissues, a critical matter in medical applications.
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