
 

 

 

 

Abstract— Neural responses are the fundamental expressions 

of any neural activity. Information carried by a neural response 

is determined by the nature of a neural activity. In majority of 

cases the underlying stimulus that triggers it remains largely 

unknown. Previous studies to reconstruct the stimulus from a 

neural response show that the high non-linearity of neural 

dynamics renders inversion of a neuron a challenging task. This 

paper presents a numerical solution rather than an analytical 

one to reconstruct stimuli from Hodgkin-Huxley neural 

responses. The stimulus is reconstructed by first retrieving the 

maximal conductances of the ionic channels and then solving 

the Hodgkin-Huxley equations for the stimulus. The results 

show that the reconstructed stimulus matches the original 

stimulus to a high degree of accuracy. In addition, this 

reconstruction approach also retrieves the neural dynamics for 

which an analytical solution does not currently exist. 

Constant-current and periodic stimuli are shown to be 

accurately reconstructed using this approach. 

 
Index Terms—stimulus reconstruction, Hodgkin-Huxley 

neuron, neural response inverse, neural dynamics retrieval.  

 

I. INTRODUCTION 

The relationship between a neural response and its 

stimulus has been studied over the recent years to understand 

the encoding and decoding mechanisms adopted by neurons. 

Not much is known about how neurons specifically encode 

and decode information. It is thought that either the firing 

time or the rate of fire of a neuron carries specific neural 

response information [1-3]. A parallel line of research exists 

which aims to reconstruct the stimulus from a neural 

response. A stimulus represents a trigger for a neural activity 

which underlines any neural response. The ability to 

reconstruct a stimulus hence offers to retrieve stimulus 

parameters that can help extend our understanding of 

neuronal encoding /decoding.  

Previous work on input reconstruction has been carried out 

across many fields like digital filters, neural networks, 

algorithms and complexity, and digital signal processing 

[4-13]. Similar approach can be considered for stimulus 

reconstruction however, due to the high non-linearity of 
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neural dynamics, it is very difficult to obtain an analytic 

solution. Periodic signals, unlike aperiodic signals, can be 

recovered using conventional filters [4]. Artificial neural 

networks are used to treat the Hodgkin-Huxley (HH) neuron 

as a black box and reconstruct the stimulus by learning the 

dynamics [5]. Other implementations use a reverse filter that 

predicts the sensory input from neuronal activity and 

recursive algorithms to reconstruct stimulus from an 

ensemble of neurons [6-7]. The principles of a Time 

Encoding and Decoding Machines for signal recovery have 

been explored to reconstruct a neural stimulus whereas, a 

more direct approach to recover stimulus focuses to make  the 

HH neuron Input-Output (IO) equivalent to an Integrate and 

Fire (IF) neuron [8-13]. These approaches establish a 

relationship between the neural response and the stimulus but 

are not designed to capture or retrieve the neural dynamics. In 

other words, they offer some starting point for stimulus 

reconstruction but it is quite a challenge to analytically invert 

a neuron. However, it is possible to reconstruct stimulus from 

a neural response using numerical approximations and small 

time-steps for integration.  

This paper aims to reconstruct constant-current and 

periodic stimuli by a) extracting the maximal conductances 

from a trace of neural response and b) solving the neural 

equations for the stimulus. To reconstruct the stimulus, it is 

imperative that linearization is carried out. This paper 

demonstrates the above approach using a Hodgkin-Huxley 

(HH) neuron [14] and Euler integration. The results show that 

for a small time-step , the accuracy of extracted maximal 

conductances is very high. Also, the reconstructed stimulus 

matches the original stimulus accurately. As reconstruction 

of the stimulus involves solving the neural equations, this 

approach can replicate the neural dynamics, the 

time-dependent changes in the voltage-gated ionic channels 

of  Na+, K+ and Cl-. This technique, though computationally 

demanding, offers a local solution to the problem of inverting 

a neural response.  

II. NEURONAL MODEL AND SYNAPSE 

A. The neuron model 

The computational model and stimulus for an HH neuron is 

replicated from [15]. The differential equations of the model 

are the result of non-linear interactions between the 

membrane voltage V and the gating variables m, h and n for 

,  and . 
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The variable V is the resting potential of the membrane and 

NaV , KV and LV are the reversal potentials of the Na , K

channels and leakage. The values of the reversal potentials

.5.54,77,50 mVVmVVmVV LKNa  
The conductance 

for the ionic channels are 2/120 cmmSg Na , 2/36 cmmSg K  

and 2/3.0 cmmSgL . The capacitance of the membrane is

2/1 cmFC . 

  

B. The synaptic current 

An input spike train give by [16]  is considered to generate 

the pulse component of the external current.   

n

fai ttVtU )()(             (4) 

where, 
ft is the firing time and is defined as 

Ttt
nfnf )()1(

                (5) 

0
)1(ft                                                (6) 

T represents the ISI of the input spike train and can be 

varied to generate a different pulse current. The spike train is 

injected through a synapse to give the pulse current PI . 

)()( syna

n

fsynP VVttgI                     (7) 

synsyn Vg , are the conductance and reversal potential of the 

synapse. [32] define the function  as 

),()/()( / tett t                          (8) 

where,  is the time constant of the synapse and )(t is the 

Heaviside step function. ,30mVVa
mssyn 2 , 

2/5.0 cmmSgsyn  and mVVsyn 50 . 

  

C. The total external current 

The total external current applied to the neuron is a 

combination of static and pulse component 

PSi III                                        (9) 

where, 
SI is the static and pI is the pulse current, is the 

random Gaussian noise with zero mean and standard 

deviation 025.0 .  

On injection of a periodic or sinusoidal stimulus the steady 

state response of a neuron is no longer preserved [17-25].  

The self-excited oscillations of the HH neuron [14] may 

become chaotic when a sinusoidal stimulus is applied with 

proper choices of magnitude and frequency [20-21, 25-26]. 

Physiological experiments on squid giant axons [18-19] and 

Onchidium neurons [22] have confirmed the occurrence of 

chaotic oscillations. It is understood that distinct sinusoidal 

stimuli induce different chaotic oscillations which result in 

dissimilar neural responses [27-29]. 

III. STIMULUS RECONSTRUCTION 

Let  be the neural response of the HH neuron to a 

synaptic stimulus  and ionic conductances , and 

. Assuming that  is unknown and only the neural 

response and the reversal potentials are known, the aim is to 

reconstruct the stimulus  such that  and  are 

identical. Therefore the target is to retrieve , and  

and get  without any information of . 

A. Extracting Maximal Conductances 

Equations (1-3) show that the gating variables ,  and  

only depend on the instantaneous voltage at time . The 

instantaneous voltage at time  is given by  
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To retrieve the three ionic conductances, linear equations 

in three unknowns need to be solved. The formulation of the 

equations is proposed as an algorithm in [30]. Given a small 

voltage trace , select three times ,  As the 

voltage trace  is known over all ,  is known for 

. 

Let functions 3,2,1),( jtf j be defined as 
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and  defined as  
t

dttIvtvtb
0

')'()0()()(         (12) 

Hence,  

)(')(')(')( 321 tfgtfgtfgtb LKNa       (13) 

If 

t

dttI
0

')'( is a known analytic function, the value of 

)(tb is known for all values of . Hence, for a voltage trace 

 and external stimulus , approximations to the gating 
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variables, ,  and  are obtained by integrating the HH 

equations. If ,  and  are the gating-variables’ estimates 

and  is the resultant approximation of , then the 

retrieving maximal conductances can be defined as a solution 

to the linear system  

Nixtftb j

j

iji ...1,)()(
3

1

'
      (14) 

This is an overdetermined system of linear equations in the 

form . An approximate solution can be obtained by 

using the full set of data generated during the integration of 

the HH equations and treating (14) as a linear least squares 

problem.  

Hence, the best fit solution in the linear least squares sense 

is obtained by solving 
2

1

3

1

)(')(min
N

i j

jiji
x

xtftb       (15) 

If is the matrix whose entries are 

 and , 

2
min bxA

x
             (16) 

As the equations are linear in , a solution is 

obtainable.  

B. Reconstructing the stimulus  

The approach defined above requires the knowledge of 

both the voltage  and the external stimulus , for all 

time . In principle, it is unrealistic to know the stimulus for 

all times  and in majority cases, the stimulus  remains 

unknown. Therefore, retrieving the maximal conductances 

using the equations (11-16) is specific when all parameters 

are known. 

However, it is possible to reconstruct the stimulus entirely 

without the knowledge of corresponding for a neural 

response . As the type of the neuron and the reversal 

potential for Na+, K+ and Cl- is known, we propose that the 

neural stimulus can be reconstructed without the knowledge 

of the original stimulus . 

1. Record any neural response  whose stimulus, 

say , requires to be reconstructed 

2. Inject a supra-threshold stimulus,  for a 

small time duration  

3. Record the corresponding voltage trace 

generated,  

4. Retrieve the maximal conductances using 

equations (11-16) and  as the external 

stimulus 

5. Using the approximated maximal conductances, 

, and , solve the HH equations using 

the recorded neural response and the 

stimulus as the only unknown to get the 

reconstructed stimulus  

 

The HH equations can be re-written as  
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where, , and  are the approximated maximal 

conductances calculated from  and ,  and  are 

the estimates of the gating variables ,  and  respectively. 

As  is known for all times , the rate of change of 

voltage ( ) can be numerically approximated.  
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This approach provides a local solution to reconstructing 

the neural stimulus of a HH neuron and also approximates the 

gating variables. In addition to the retrieval of stimulus 

parameters, it also estimates the neural dynamics which are 

important represent the open-close mechanism of ionic gates. 

IV. COMPUTATIONAL RESULTS 

A. Generating a Voltage Trace 

Let be a small supra-threshold step current that evokes an 

action potential. The resultant voltage trace is sufficient to 

retrieve the maximal conductance values.  

 
Fig.1: The voltage trace generated by a small step-current . This small 

trace of neural voltage is sufficient to retrieve the maximal conductances. 

 

B. Retrieving Maximal Conductances 

Given the voltage trace and the corresponding external 

stimulus , near approximation of the maximal conductance 

values can be obtained using equations (11-16). Let  be the 
time-step of the Euler integration. It is observed that the 

accuracy of the approximated conductances is dependent on 

. Accuracy increases if  chosen is close to 0. These 

approximated conductances are consistent with the 

observations of [30]. As (15) is an overdetermined system of 
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linear equations, an exact solution cannot be obtained for all 

values of . 

 

Original↓/Retrieved→  
  

 
   

    

 
   

Table 1: Retrieved maximal conductance values for various values of . The 

conducances are highly accurate as  becomes close to 0.  

 

The relative error of the approximations decreases as  

becomes close to 0. 

 

 Relative error ( ) 

0.01 0.0037 

0.001 0.00038 

0.0001 0 
Table 2: The relative error  decreases as   becomes close to 0. 

 

The voltage traces reconstructed from the approximated 

conductances are shown in fig. 2. The estimated maximal 

conductance values produce a good fit to the original trace . 

 
Fig.2: The reconstructed voltage trace using the approximated maximal 

conductance values for different time-steps . As  becomes close to 0, the 

approximations approach the actual conductance values. For , 

the approximated conductance values are equal to the original values. Hence 

the trace generated by  overlaps with the original trace . 

C. Stimulus Reconstruction 

The retrieval of maximal conductance values such that a good 

fit of the original voltage trace is produced indicates that the 

approximations are nearly accurate. Using equations (17-19), 

a linearised reconstruction of a stimulus can be obtained.  

 

1) Constant-Current Stimulus 

Let the HH neuron be stimulated by an unknown step-current 

such that it evokes a series of action potentials . The 

maximal conductances are approximated in Table 1. The 

reconstructed stimulus is shown in fig. 3. 

 
Fig.3: The reconstructed stimulus is good fit to the original stimulus. The 

original stimulus is very well approximated if chosen  is close to 0. 

 

 
Fig.4: The approximations become less accurate with an increase in . 

 

Results show that if the time-step of Euler integration is 

sufficiently small i.e. , the maximal conductances 

can be accurately retrieved. The stimulus reconstructed  using 

these maximal conductance values, is a near approximation 

of the original unknown stimulus. 
 

2) Periodic Stimulus 

 

If  the HH neuron is stimulated by an unknown periodic 

stimulus , the resultant neural response is . 

Generating a trace voltage to retrieve the maximal 

conductance values, the unknown stimulus can be 

reconstructed using (17-19). 

 
Fig. 5: The reconstructed periodic stimulus for  close to 0. For , 

the reconstructed stimulus is a near-fit of the original stimulus. 
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Fig.6: The approximation of the reconstructed stimulus become less accurate 

with an increase in  ( ). The numerical approximation of the 

derivatives causes some jitters. 

 

 
Fig. 7: Due to the presence of noise in original stimulus, the reconstructed 

stimulus cannot be an exact match. The jitters are due to the numerical 

approximation to the rate of change of voltage. However, the reconstruction 

is very close to the original stimulus for  close to 0. 

 

It is observed that the unknown stimulus can be predicted 

accurately if  is small and close to 0. As a result, the 

computational time required by this approach is directly 

proportional to the choice of . However, this is approach 

provides a local solution to reconstructing unknown stimuli 

using the knowledge of the computational model of a neuron. 

It is also possible to retrieve the neural dynamics which 

cannot be retrieved by a purely analytical approach (fig. 8). 

 

 
Fig.8: The reconstructed neural dynamics. This numerical solution can 

retrieve the gating variables  and their time constants 

. 

V. CONCLUSIONS 

The neural dynamics of the HH neuron have been the 

subject of research for many years now. The dynamics put 

forth by Hodgkin and Huxley have been well studied and 

replicated by many researchers. In much the same way, 

inverting the HH neural equations has attracted interest in 

recent years. The equations of the HH neuron are highly 

non-linear due to the incorporation of probability of the 

gating variables  which regulate the open-close 

mechanism of ionic channels. 

Previous research has addressed the problem of inverting 

this non-linear neuron by using digital filters, neural 

networks, algorithms and complexity, and digital signal 

processing. Other approaches point to the use of 

reconstruction algorithms, time encoding/decoding machines 

or an IF neuron. These approaches establish a relationship 

between the neural response and the stimulus but they are not 

designed to capture or retrieve the neural dynamics.   

The approach described in this paper provides a numerical 

solution to reconstruct an unknown neural stimulus. An 

unknown stimulus can be numerically reconstructed by 

1. Recording any neural response  whose 

stimulus, say , requires to be reconstructed 

2. Injecting a supra-threshold stimulus,  for a 

small time duration  

3. Recording the corresponding voltage trace 

generated,  

4. Retrieving the maximal conductances using 

equations (11-16) and  as the external 

stimulus 

5. Using the approximated maximal conductances, 

, and , solve the HH equations using 

the recorded neural response and the 

stimulus as the only unknown to get the 

reconstructed stimulus  

 

It is observed that the accuracy of maximal conductances 

retrieved by solving an overdetermined system of linear 

equations depends on the time-step ( ) of Euler integration. 

A small value of can reproduce almost exact 

maximal conductances. Accurate maximal conductance 

values help reconstruct a near-fit approximation of the 

original stimulus. Due to the nature of numerical 

approximation and the inherent non-linearity in the neural 

dynamics, the reconstructed stimulus shows some jitters. 

Also, it is noticed that if the original stimulus carries any 

noise, an exact match of the stimulus cannot be reconstructed. 

However, the reconstructed stimulus still matches the 

original stimulus to a high degree of accuracy. The choice of 

 is very important and there is a trade-off between 

computational time and accuracy. The accuracy increases 

with a decrease in . 

The approached described in this paper can reconstruct 

very good approximations of the original stimuli. The results 

show that the unknown periodic and constant current stimuli 

are well approximated by this reconstruction method. It is 

also worth mentioning that although establishing an IO 

relationship can provide some information of the stimulus 

parameters, the current approach can accurately reconstruct 

the neural dynamics in addition to an unknown stimulus.  
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