
 
 

 

 
Abstract— A non-linear image filtering scheme is described. 

The scheme is inspired by the duel domain bilateral filter but 
owing to much simpler pixel weighting arrangement the 
computation of the result is much faster. The scheme relies on 
two principal assumptions: equal weight of all pixels within an 
isotropic kernel and a constraint imposed on the intensity of 
pixels within the kernel. The constraint is defined by the 
intensity of the central pixel under the kernel. Hence the name 
of the scheme: Intensity Constrained Flat Kernel (ICFK). 
Unlike the bilateral filter designed solely for the purpose of edge 
preserving smoothing, the ICFK scheme produces a variety of 
filters depending on the underlying processing function. This 
flexibility is demonstrated by examples of edge preserving noise 
suppression filter, contrast enhancement filter and adaptive 
image threshold operator. The latter classifies pixels depending 
on local average. The versatility of the operators already 
discovered suggests further potentials of the scheme. 
 

Index Terms— Non-linear image processing scheme, local 
smoothing with intensity constraint, edge-preserving noise 
suppression, contrast enhancement, adaptive image 
thresholding. 
 

I. INTRODUCTION 

THE initial stimulus for the development of the proposed 
scheme arose from the need for noise suppression, edge 
preserving smoothing filter with a quasi real-time 
performance. The literature on edge preserving smoothing is 
plentiful. The most successful methods employ a dual 
domain approach: they define the operation result as function 
of “distances” in two domains, spatial and intensity. The 
“distances” are measured from a reference pixel of the input 
image. Well known examples are SUSAN [1] or, in more 
general form, the bilateral filter [2]. The main design purpose 
of these filtering schemes was the adaptation of level of 
smoothing to the amount of detail available within the 
neighborhood of the reference pixel. The application of such 
schemes ranges from adaptive noise suppression to creation 
of cartoon-like scenes from real world photographs [3]. The 
main weakness of the bilateral filter is its slow execution 
speed due to exponential weighting functions applied to the 
image pixels in both spatial and intensity domains. There is a 
range of publications describing the ways of improving the 
calculation speed of the bilateral filter [4], [5], [6]. In this 
paper we shall see that the simplification of weighting 
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functions in both spatial and intensity domains not only 
increases the speed of computation without loosing the 
essence of edge preserving smoothing, but also suggests a 
filter generation scheme, versatile enough to produce 
operators beyond the original task of adaptive smoothing. 

 

II. INTENSITY CONSTRAINED FLAT KERNEL FILTERING 

SCHEME 

A. Intensity Constrained Flat Kernel filter as a 
simplification of the bilateral filter 

The bilateral filter is considered here in the light of its 
original purpose: single pass application. The output of the 
bilateral filter [2] is given by the formula [5] 
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normalization coefficient. 

Formula (1) states that the resulting intensity b
pI  of the 

pixel at position p  is calculated as a weighted sum of 

intensities of all other pixels in the image with the weights 
decreasing exponentially with increase of the distance 

between the pixel at variable position q  and the reference 

pixel at position p .  The contributing distances are measured 

in both spatial and range domains. Owing to the digital nature 
of the signal, function (1) has a finite support and its 
calculation is truncated to that in the neighborhoods of the 

pixel at position p  and intensity Ip. The size of the 

neighborhood is defined by parameters σS and σR and 
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sampling rates in both spatial and intensity domains. The 
computation scheme proposed below truncates (1) further by 
giving all pixels in the selected neighborhood the same 
spatial weight. Furthermore the intensity weighting part of 
(1) applied to the histogram of the neighborhood is reduced 
to a range constraint around the intensity Ip of the reference 
pixel. The idea is illustrated by Fig.1 and Fig 2. For simplicity 
a single-dimension signal is presented on the graphs. The 
components which make the output of the bilateral filter (Fig. 

1) at a particular spatial position p  are: 

i. Part of the signal under the kernel centered at 

the pixel at p , 

ii. Gaussian spatial weighting function with its 

maximum at pixel at p  and “width” parameter 

σS, 
iii. Histogram of the pixels under the kernel 

centered at pixel at p , 

iv. Gaussian intensity weighting function with its 
maximum at Ip  and “width” parameter σR 

 
 

  
Figure 1 Components making the bilateral filter 

 
 
The components which make the proposed filtering 

scheme (Fig. 2) replace the components ii and iv, the 
Gaussians, with simple windowing functions. The flat kernel 
works as a spatial filter selecting spatial information in the 

neighborhood of the reference pixel at p . This information 

in the form of a histogram is passed to the intensity filter, 
which limits the processed information to that in the intensity 
neighborhood of the reference pixel Ip . This is where the 
commonality between the bilateral and ICFK filtering 
schemes ends. For the ICFK scheme the result of the 
operation depends on the processing function applied to 
spatially pre-selected data.   
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Figure 2 Components making the Intensity Constrained Flat Kernel filtering 
scheme 

 
Introduction of the second function G, applied only when 

the intensity level Ip is unique within the region masked by 
the kernel, is a way of emphasizing the need for special 
treatment of potential outlayers. Indeed, if the intensity level 
of a pixel is unique within a sizeable neighborhood, the pixel 
most likely belongs to noise and should be treated as such. 

As will be shown below the selection of functions F and G, 
as well as the constraint K, defines the nature of the resulting 
filter, which includes but is not limited by adaptive 
smoothing. 

The output of the filter (2) also depends on the shape of the 
kernel χ. Often in digital image processing, selection of a 
kernel shape is based on the speed of calculation of filter 
results as kernel scans across the image. In the case of ICFK 
filters, this translates into the speed of histogram updates 
during the scan. There is a significant number of publications 
[7], [8], [9] on methods of speeding up of histogram updates 
as a square kernel scans the image. In order to avoid shape 
distortion of the filter output it is more appropriate to use an 
isotropic kernel, a digital approximation of a circle. A 
method to speed up the histogram updates while scanning 
with an isotropic kernel is described in [10]. It is based on the 
idea proposed in [11]. In the analysis and examples below an 
isotropic kernel is used. Such a kernel is fully defined by its 
radius r. 
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   A few words have to be said about the choice of the 
constraint K(p). In the bilateral filter this role is played by the 
exponent. By separating the constraint function from the 
processing functions F and G an extra degree of freedom is 
added to the filtering scheme. One possible definition of K(p) 
is offered in Fig. 2, where the exponent is replaced by the 
window function with a fixed window size.  

K(p) = Ip ±, where  is a fixed number that depends on the 
dynamic range of the source image. For example, for integral 
image types it is an integer. 

In some cases, when looking for dark features on a bright 
background one may want to employ stronger smoothing to 
the brighter part of the image and reduce smoothing as the 
intensity decreases. Then the constraint can take the form 

K(p) = Ip ± Ip ·,                           (3) 
where   is a fixed ratio. 
Furthermore, one can make the constraint adaptive and for 

example shrink the domain of the function F as the variance 
within the area masked by the kernel increases: 

K(p) = Ip ±  )( minmaxmax    ,  

where  max  and min are fixed minimum and maximum 
values for the intensity range, 
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III. OPERATORS DERIVED FROM INTENSITY CONSTRAINED 

FLAT KERNEL FILTERING SCHEME  

A. Edge preserving smoothing filter 

This filter can be considered a mapping of the bilateral 
filter into the ICFK filtering scheme. The functions F and G 
are given by the following formulae 

)(
H

pKpF   

is the  average intensity within that part of the histogram 
under the kernel mask, which satisfies the constraint K(p), 

)H( 
pmedianG                                 (4) 

is the  median of the area under the kernel mask. 
   The median acts as a spurious noise suppression filter. 

From a computational point of view, the update of the 
histogram as the kernel slides across the image is the slowest 
operation. It was shown in [10] that the updates of the 
histogram and the value of the median for an isotropic kernel 
can be performed efficiently and require O(r) operations, 
where r is the radius of the kernel.  

   The edge preserving properties of the filter emanate from 

the adaptive nature of the function F. The histogram 
pH  is a 

statistic calculated within the mask of neighborhood χ of the 

pixel at p and comprises intensities of all pixels within that 

neighborhood. However, the averaging is applied only to the 
intensities, which are in a smaller intensity neighborhood of 

Ip constrained by K(p). Thus the output value ICFK
pI  is 

similar in intensity to Ip and intensity-similar features from 
the spatial neighborhood are preserved in the filter output. If 
the level Ip is unique in the neighborhood, it is considered as 
noise and is replaced by the neighborhood median. 

 

 
Figure 3 Fragment of an underwater image 733 x 740 pixels with a large 
number of suspended particles 

 

 
Figure 4 The underwater image after application of the edge preserving 
smoothing filter with the radius r=12, subject to intensity constraint K(p) = 
Ip ± Ip • 0.09 

    
An example of the application of the filter is given in Fig. 3 

and Fig. 4. The condition (3) was used as a constraint. The 
filter is effective against small particle noise; such as noise 
produced by camera gain, where linear or median filters 
would not only blur the edges but would also create 
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perceptually unacceptable noise lumps. Similarly to the 
bilateral filter, application of the proposed filter gives the 
areas with small contrast variation a cartoon-like appearance. 
 

B. Contrast enhancement filter for low noise images 

The expression (2) is general enough to describe not only 
“smoothing“ filters, but “sharpening” ones as well. Consider 
the following expression for the operator function F :  

F = 

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where  
pH is the average intensity of the area under the 

kernel χ at p   

 
Figure 5 An example of a dermatoscopic image 577 x 434 pixels of a skin 
lesion 

 

 
Figure 6 The dermatoscopic image after application of the contrast 
enhancement filter with the radius r=7, subject to intensity constraint K(p) = 
Ip ± Ip · 0.03 

 
For the purpose of noise suppression the function (4) is the 

recommended choice for G in (2). The function F pushes the 
intensity of the output to one of the boundaries defined by the 
constraint, depending on the relative position of the reference 
intensity Ip and the average intensity under the kernel. As any 
other sharpening operator, the operator (5) amplifies the 
noise in the image. Hence it is most effective on low noise 

images. Dermatoscopic images of skin lesions can make a 
good example of this class of images. Dermatoscopy or 
epiluminescence microscopy is a technique for imaging skin 
lesions using oil immersion. The latter is employed in order 
to remove specular light reflection from the skin surface. This 
technique has a proven diagnostic advantage over clinical 
photography [12], [13]. Normally the technique uses 
controlled lighting conditions. With proper balance of light 
intensity and camera gain, images taken with digital cameras 
would have a very low level of electronic noise, while the 
specular reflection noise is removed by the immersion. An 
example of such an image is given in Fig. 5. Some of the 
lesions can have a very low inter-feature contrast. Thus both 
image processing techniques as well as visual inspections can 
benefit from contrast enhancement. The images in Fig. 6 and 
Fig. 7 show application of the filter (5) and clearly indicate 
that the constraint parameter γ (3) gives a significant level of 
control over the degree of the enhancement. Another 
property of this filter that is worth emphasizing is that  due to 
its intrinsic nonlinearity, this filter does not produce any 
ringing at the edges it enhances. 

 

 
Figure 7 The dermatoscopic image after application of the contrast 
enhancement filter with the radius r=7, subject to intensity constraint K(p) = 
Ip ± Ip · 0.1 

 

 
Figure 8   A dermatoscopic image 398 x 339 pixels of a skin lesion with hair 
 

Proceedings of the World Congress on Engineering 2010 Vol I 
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010



 
 

 

C. Local adaptive threshold 

If sharpening could be considered a dual operation to 
smoothing and a processing scheme producing a smoothing  
filter is naturally expected to produce a sharpening one, then 
here is an example of the versatility of the ICFK scheme and 
its ability to produce somewhat unexpected operators still 
falling within the definition (2). 

Consider a local threshold operator defined by the 
functions: 

F =G=
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where 
pH  is the average intensity of the area under the 

kernel χ at p  

 
Figure 9 Overlay of direct application of the local adaptive threshold with 
kernel of radius r= 5 and intensity constraint K(p) = Ip ± Ip · 0.2  
 

 
Figure 10 Overlay of application of the local adaptive threshold with kernel 
of radius r=5 and intensity constraint K(p) = Ip ± Ip · 0.2 followed by 
morphological cleaning  

 
The operator (6) produces a binary image, attributing to 

the background the pixels at which local average for the 

whole area under the kernel χ at p is outside the constrained 

part of the histogram. The detector (6) can be useful in 
identifying the narrow linear features in the images. Here is 
an example, one of the problems in the automatic diagnosis 
of skin lesions using dermoscopy is removal of artifacts like 
hairs and oil bubbles trapped in the immersion fluid. The 
detector (6) can identify both of those features as they stand 
out on the local background. Fig. 8 shows the image with the 
hair. In order to remove the ringing around the hairs caused 
by sharpening in the video capture device, this image has to 
be preprocessed with the edge preserving smoothing filter 
with the kernel radius r=3 and the intensity constraint (3) 
where γ=0. 08. Direct application of filter (6) gives the 
combined hair and bubble mask, which is presented as an 
overlay in Fig. 9.  Application of the same filter followed by 
post-cleaning, which utilizes some morphological operations 
is presented in Fig 10. The advantage of this threshold 
technique is in its adaptation to the local intensity defined by 
the size of the processing kernel. 

 
All ICFK filters described above are implemented and 

available as part of the Pictorial Image Processor© package 
at www.pic-i-proc.com. 
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