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Abstract:In previous two papers, we have demon-
strated tracking of fundamental frequency of voiced
signals in clean and noisy environment by ASMDF
and compared them with two classical methods auto-
correlation and AMDF. It was shown that ASMDF
gives near error-free results in case of clean signal.
But in case of noisy signals, the percentage of rel-
ative errors have increased. Also weighted autocor-
relation method gives somewhat better results than
ASMDF. In this paper, we propose a new method
which is derived by refining ASMDF and show that
the results using this method are better than ASMDF
and weighted autocorrelation.

Index terms: AMDF,ASMDF, autocorrelation,Pitch tracking,

Signal processing.

1 Introduction:ASMDF

Extraction or determination of fundamental fre-
quency (or pitch) of a speech signal is a funda-
mental problem in both speech processing and
speaker recognition. The typical pitch range for
a male human being is 80-200 Hz, and for fe-
males 150-350 Hz. Many methods to extract the
pitch of speech signals have been proposed. Im-
provements in accuracy of performance, robust-
ness against noise of these methods are still de-
sired. As a whole, there are no reliable and accu-
rate method for pitch extraction. Also measuring
the period of a speech waveform, varying in and
with the detailed structure of the waveform, can
be quite difficult. Another problem is automatic
selection of the window of the voiced speech seg-
ments.

Autocorrelation method [15] and the average
magnitude difference function (AMDF) method
[21] are known to be the most primitive standard
time-domain methods to find pitch. Based on
these two methods several refinements like audi-
tory modeling [6], probabilistic AMDF modeling
[9], real-time digital hardware pitch detector [17],
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semiautomatic pitch detector (SAPD) [18], auto-
matic formant analysis [19], weighted autocorre-
lation [22], modified autocorrelation and AMDF
[23], projection measure technique [24], pseudo-
pitch synchronous analysis [25] and many more
[16] are proposed. Some other ideas on pitch ex-
traction have also been discussed in the paper [12]
and some tutorials [3] and [7].

In all the propositions, different functions of
speech signals have been proposed, optimized
(peaks or dips of the function have been traced)
and a sequence of harmonics have been found.
Then a ‘best fit’ value or the most significant har-
monics has been chosen from the sequence and the
frequency corresponding to this value has been
defined as the fundamental frequency.

For an idealized speech signal in a stationary noisy
environment the following mathematical abstrac-
tion has been consistently assumed in this thesis.

ŷn =
∑

j

aj exp {if(j)n} +
∑

j

cjzj exp {ijn} , (1)

where {zj} is an uncorrelated sequence of random
variables or white noise and {cj} are coefficients of
discrete spectrum of stationary noise. In case the
main signal {ŷn} possesses a pure fundamental fre-
quency (or pitch), which is again another idealized
view, it is assumed in this thesis that f(j) = jfp for
a suitable pitch value fp. The actual situation can
become complicated further if the idealized signal
contains multiple pitch streams or is convoluted
with a channel filter. Therefore, from a practical
point of view, the estimation of the pitch of a sig-
nal is essentially a statistical problem. Here a new
method for extraction of fundamental frequency
of speech signal in clean and to some extent noisy
environment using simple statistical techniques is
proposed. Motivationally, the technique has sim-
ilarity with Zero Crossing based techniques ([7]
and [11]), however, the theory is much simpler
and statistical in nature. The main novelty of this
approach actually lies in formulating the problem
in this manner and putting a certain number of
standard measures (such as, Autocorrelation and
AMDF) of pitch in the same framework with the
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proposed measure (Average Squared Mean Differ-
ence Function or ASMDF). This way a more com-
prehensive approach is presented and left open for
further refinements.

Given a discrete time signal y = (y1, y2, . . . , yn)
(which is the real part of the complex idealized
signal (1)), the autocovariance function is defined
as

ry(k) =
1

n − |k|
n−|k|∑
i=0

(yi − y)(yi+k − y), (2)

and the autocorrelation function is defined by

ρy(k) =
ry(k)
ry(0)

(3)

defined for all n and lag k.

A variation of autocorrelation analysis for mea-
suring the periodicity of voiced speech uses the
average magnitude difference function (AMDF),
defined by the relation

Dy(k) =
1

n − |k|
n−|k|∑
j=1

|yj+k − yj | .

In case of AMDF, Dy(k) has been approximated
by a scalar multiple of

1
n − |k|

⎧⎨
⎩

n−|k|∑
j=1

(yj+k − yj)2

⎫⎬
⎭

1/2

which again has been approximated by the scalar
multiple of [2 {ry(0) − ry(k)}]1/2

, where ry(k) is the
autocovariance defined as above. These approxi-
mations may suppress calculations important for
pitch extraction.

Also AMDF can be considered as a replica of
Ginis mean difference formula ([8], page 233-
234). But the new method described below gives
more optimal results as it is a replica of vari-
ance of the data set. Consider the voiced seg-
ment y = (y1, y2, . . . , yn) in a digital speech sig-
nal. Since most speech signals can be viewed
as quasi-periodic sequences the fundamental fre-
quency may not be uniquely defined mathemati-
cally. In this approach the fundamental frequency
is estimated, statistically enhancing the most sig-
nificant harmonics present in y.

The algorithm for estimation of the pitch in this
voiced segment is described below. For 1 ≤ i ≤
n, and k ≥ 1 consider the downsampled subsets
(windows) of the original signal,

yi,k = (yi+pk : p = 0,±1,±2, . . .).

Note that due to finiteness of the data stream,
for each (i, k) pair one has to consider only those
values of p so that yi+pk is within the range. Fur-
thermore, for several (i, k) pairs, yi,k will become
singleton and they will not come under further
considerations. One of the basic assumption is
that the fundamental frequency of the voiced part
is estimable for the given signal.

Next, let for each k ≥ k0, define

Sk = {i : 1 ≤ i ≤ n; yi,k has at least two elements} ,

and, let qk be the number of elements in Sk. This
automatically sets an upperbound for k ≤ kmax <
([(n + 1)/2]− 1) ([x] being the greatest integer less
than x). Finally define for k values with qk > 0,

g(k) =
1
qk

∑
i∈Sk

Var(yi,k), (4)

where Var(yi,k) denotes the sample variance of the
signal values in the subset yi,k. It is interest-
ing to note that aliasing, statistical precision of
the sample variances (requiring larger values of
qk over a large range of k) of downsampled sig-
nals and robustness of the method under noisy
environments considered are largely related is-
sues.We call g the ’Average Squared Mean Dif-
ference Function’ (ASMDF) [26],[27].

Let f0 be the sample rate of the original speech
signal and f(k) = f0

k , where k0 ≤ k ≤ kmax. In view
of (4), g can be thought of as a function of f . Also
g can be thought of as a mean squared mutual dif-
ference function which can be approximated with
the standard autocorrelation function.

Let i be the index of the second minimum of the
components of g(k), i.e. g(i) = minkg(k) Then
fp = f(i) is referred as the estimated fundamental
frequency of the speech signal of y.

2 Proposed Method: WEIGHTED AS-
MDF

Let us assume that ŷn, is a speech signal given by

ŷn = An + Zn, (5)

where
An =

∑
j

aj exp {if(j)n} (6)

is clean and

Zn =
∑

j

cjzj exp {ijn} (7)

is additive white Gaussian noise. In this case, the
autocovariance function is given by,
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ry(k) = 1
n−|k|

∑n−|k|
i=0 (yi − y)(yi+k − y)

= 1
n−|k|

∑n−|k|
i=0 (Ai + Zi − A − Z)

(Ai+k + Zi+k − A − Z)

= 1
n−|k|

∑n−|k|
i=0 (Ai − A)(Ai+k − A)

+ 1
n−|k|

∑n−|k|
i=0 (Ai − A)(Zi+k − Z)

+ 1
n−|k|

∑n−|k|
i=0 (Zi − Z)(Ai+k − A)

+ 1
n−|k|

∑n−|k|
i=0 (Zi − Z)(Zi+k − Z)

= rA(k) + rAZ(k) + rZ(k), (8)

where rAZ(k) is the crosscovariance function of An

and Zn.

For large n, rAZ(k) = 0.

Therefore, ry(k) = rA(k) + rZ(k).

Now,

gy(k) =
1
qk

∑
i∈Sk

Var(yi,k),

where qk = |Sk| and yi,k = (yi+pk : p = 0,±1,±2, . . .).
This leads to

gy(k) =
1
qk

∑
i∈Sk

Var(Ai,k + Zi,k),

where Ai,k = (Ai+pk : p = 0,±1,±2, . . .). and Zi,k =
(Zi+pk : p = 0,±1,±2, . . .). Hence

gy(k) ≤ 1
qk

∑
i∈Sk

Var(Ai,k) +
1
qk

∑
i∈Sk

Var(Zi,k)

= gA(k) + gZ(k). (9)

Hence the additive noise behaves independently
with that included in gy(k).

Now since g was being minimized to get pitch of
clean speech, 1/gy(k) should give a peak and hence
can be used to weight ry(k). It can be expected
that the true peak can be found and errors can
be minimized if the following function is used to
get pitch of noisy speech :

η(k) =
ry(k)

gy(k) + β
. (10)

where β is a constant. This η is maximized for
different windows to get corresponding pitch val-
ues.

3 Experiments

One male (RL) and one female speaker (SB) each
spoke 50 sentences, out of which, fifteen speeches

of each speaker (with known pitch) were taken
from FDA Evaluation Database [2] for experi-
ment. Taking window size of 400 samples, data
sets of pitch and the following graphs (where sam-
ple rate of each is given to be 20000Hz) of such
speeches are found using autocorrelation, AMDF,
ASMDF and weighted ASMDF.To save space,
only few of such graphs are presented here. All
the graphs have time (in ms) as horizontal axis
and pitch (in Hz) as vertical axis.

Fig. 1(a): Graph of true pitch values of speech RL001.

Fig. 1(b): Graph of ASMDF pitch values of speech
RL001.
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Fig. 1(c): Graph of autocorrelation pitch values of
speech RL001.

Now Gaussian white noises of -5, -10, -15, -20, -
25 and -30 decibels are added with all the thirty
files. Then weighted ASMDF and later weighted
autocorrelation have been applied and compared
with the true pitch of clean signals. The results
are in next section. One of the graphs of speech
RL001 with -5DB of white noise is given below.

Fig. 2: Pitch graph of speech RL001 with -5 DB
white noise using weighted ASMDF.

Independent discrete random points zi with Gaus-
sian distribution on interval (-1, 1) make the
white noise. Correlated random points Ni are ob-
tained by averaging of white noise in radius Rc

sphere, i.e.

Ni =
Rc∑

j=−Rc

zi+j . (11)

Correlated noises of -10, -20, -30, -50 and -70 deci-
bels and radii (Rc) 5, 25, 50 and 100 are added
with these signals. Then weighted ASMDF and
later weighted autocorrelation have been applied
and compared with the true pitch of clean sig-
nals. The results are in next section. One graph
of speech RL001 added with correlated noise of
-50 decibel with Rc value of 100 using weighted
ASMDF is given below.

Fig. 3: Pitch graph of speech RL001 with correlated
noise of -50 DB and Rc = 100 using weighted ASMDF.

Comparison

Now let us compare this η with that in the paper
“Weighted Autocorrelation for Pitch Extraction of Noisy
Speech” by Shimamura and Kobayashi [22]. The graphs of
the same files using Shimamura and Kobayashi’s method
are found and one graph of speech RL001 added with cor-
related noise of -50 decibel with Rc value of 100 using
weighted autocorrelation is shown below.

Fig. 4: Pitch graph of speech RL001 with correlated
noise of -50 DB and Rc = 100 using wtd.autocorrln.

4 Comparative Analysis
Let Pc , Pm and Ps be the pitch contour found using au-
tocorrelation, AMDF and ASMDF respectively calculated

Proceedings of the World Congress on Engineering 2010 Vol I 
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010



over the same window for the above three speeches of the
two speakers. Let P be the true pitch value over the same
window. Let us denote by

es = (P − Ps)/P , ec = (P − Pc)/P and em = (P − Pm)/P

the relative pitch error or percentage gross error. Let us
define the standard deviation of the relative pitch error as

σe =

√√√√ 1

Le − 1

Le∑
i=1

e2(i) − e2

where e(i) = es(i), em(i), ec(i); Le being the length of each of

the relative pitch error and e = 1
Le

∑Le

i=1
e(i) is the mean

pitch error.

Here, “σe(s) for speech RL001 is 0.0248” means that gross
pitch error for speech RL001 by ASMDF is 2.48% with
respect to the true pitch value. If the standard deviation
of gross pitch error is more than 20% (threshold) with
respect to the true value, it’s consistency is questionable.

The experimental values of σe for speeches with additive
white noise and subsequently, additive correlated noise us-
ing ASMDF, weighted ASMDF and weighted autocorre-
lation are given in Tables I and II below:

Table I: Comparison of gross pitch errors in presence of
White Noise.

Table II: Comparison of gross pitch errors in presence of
Correlated Noise.

5 Conclusion
Based on the experimental results it has been shown that
autocorrelation weighted by inverse ASMDF (or, con-
versely, ASMDF, weighted by inverse autocorrelation)
is more useful than weighted autocorrelation method in
noisy environments. Also there is a scope of using smooth-
ing technique(s) for evaluation of this method.
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