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Abstract-The analysis and recognition of auditory brainstem 
response (ABR) signals is a medical problem of great importance, 
since it is the best known technique of the auditory organs 
evaluation. The task of construction of fully automatic method of 
ABR recognition  present considerable technical difficulties, 
because the signals are in general hardly readable, and in 
particular the evaluation of the data part obtained for low 
intensities of the audio stimulus is especially difficult. It can be 
assumed that the methods of analysis and recognition of ABR 
signals can be of some interest to other investigators, not 
necessarily directly interested in audiology, but trying to cope 
with the difficulties of interpretation and recognition of totally 
different signals. The survey of the different methods of Analysis 
of ABRs is presented. 
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I.  BACKGROUND 
The first description of the human ABR was made by Jewett 
and Williston in 1971[1]. Auditory Evoked Potentials (AEPs) 
are scalp-recorded electrical responses of the brain elicited by 
acoustical stimuli. Auditory brainstem responses (ABRs) 
comprise the early portion (0-12 msec) of auditory EPs are 
composed of several waves or peaks. The ABR waves or 
peaks, labelled using Roman numerals I-VII  as shown in the 
Fig 1, are typically 1 msec apart and have amplitudes of about 
100-500 nanovolts. Waves I, III and V are generally considered 
major peaks, generated by the synchronous electrical activity 
of the auditory nerve, caudal and rostral auditory brainstem 
structures, respectively, in response to onset of auditory 
stimuli. The ABR is a far-field, differentially averaged, electro-
physiologically recorded signal. It represents the summed and 
averaged responses of thousands of nerve fibres to repeated 
acoustic stimulation. The ABR is one of the best recognised 
electrophysiological tools used by Audiologists, having 
numerous applications including: hearing threshold estimation 
(especially for neonatal hearing screening), monitoring 
traumatic brain injury (TBI) patients and intraoperative 
monitoring (IOM) for skull base surgery. 
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Fig 1: ABRs in the time domain showing seven waves. 
The task of construction of fully automatic method of ABR 
recognition seems to present considerable technical 
difficulties. The shapes of the ABR recordings obtained for 
various patients can be considerably different, and even in 
consecutive studies of ABR signals for the same patient 
certain differences are observed, because in spite of 
application of highly sophisticated signal revealing 
techniques the ABR signals are highly distorted by 
influence of various interference signals, in particular 
heterogeneous bio potentials. Particularly difficult is the 
elimination of influence of other EEG signal( i.e. not 
invoked by the audio stimulus). The above mentioned 
difficulties particularly concentrates in that part of the study 
which regards the border zone between hearing and lack of 
hearing between presence and absence of hearing, and  is of 
particular interest for the examining physician. It follows 
from the fact that in the course of presentation the 
fluctuations and deformations of the ABR signals resulting 
from presence of external signals intensify, introduce 
considerable difficulties to the process of proper signal 
interpretation and its automated recognition. This is also the 
reason that makes the problem of automated ABR signal 
recognition more interesting from the scientific point of 
view, because a similar task of revealing and interpretation 
of subliminal signals, objectively placed below the noise 
level is encountered in many tasks of biomedical 
engineering. 
 

II. LITERATURE 
There have been numerous attempts over the past thirty 
years at automating the analysis of ABR waveforms. Over 
the last two decades, three major clinical applications of the 
ABR have been recognized. First are neurological 
applications, where ABR is used for the diagnosis and 
localization of pathologies affecting auditory brainstem 
pathways. The second involves the use of ABRs to estimate 
hearing thresholds. In recent years, the use of ABRs has 
gained popularity as one of the methods of choice in 
determining hearing thresholds of newborns, infants, and 
multiplies handicapped patients who are not able to provide 
consistent or reliable behavioural responses to sound 
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stimulation. However the ABR ability to test peripheral 
auditory function directly has made it an invaluable tool in 
infant hearing screening. The third is the use of intraoperative 
or long-term monitoring. Here ABRs are continuously 
recorded at selected time intervals while the patient is 
undergoing procedures that may affect the peripheral hearing 
organ and brainstem pathways. Acoustic neuroma surgery and 
cornahrain death are some of such conditions in which ABRs 
have been found to be extremely helpful. In this paper around 
20 publications are summarized.  
The search for Biomedical Engineering in IEEE explore 
produced 175 references, which reduced to 150 when the 
search was limited to Auditory Evoked Potentials, Further 
restricting the search to methods of analysis on ABRs produced 
75 references. Few references with methods of analysis on 
ABR are summarized in this review. 
 

III. FINDINGS 
A. The Detection of Auditory Evoked Responses Using a 

Matched Filter. 
The matched filter is used to detect a signal buried in noise 
where the signal is known and the noise is a stationary random 
process. The filter is designed to maximize output signal-to-
noise ratio (SNR) at a particular time tk. It was shown that, if 
the noise is white, the impulse response of the matched filter 
takes on the form of the signal. That is h (t) = S (tk - t) u (t), 
where h (t) is the impulse response, s (t) is the signal, and u (t) 
is the unit step function. The desired impulse response is 
simply the signal waveform reversed in time and delayed by tk 
seconds. The impulse response of the matched filter was 
determined by averaging 2000 individual time windows 
containing both background EEG and individual ABR's. It was 
assumed that there was no variation in the form of the 
individual ABR from stimulus to stimulus, which was tested by 
recording the ABR's for four different volunteers. It was seen 
that the EEG provides more correlation with the impulse 
response at 10 ms than the signal containing both EEG and 
ABR. After analyzing many different input signals, it was 
evident that the shape of the input signal was the overriding 
factor in determining the amount of correlation with the 
impulse response at 10 ms. therefore, the output waveform of 
the matched filter had a significant peak at 10 ms. If output 
signal at 10 ms is to be the only factor in determining the 
presence of an ABR, it can be concluded that the matched filter 
system cannot detect individual ABR's in background EEG. It 
is known that averaging a series of time windows containing 
individual ABR's will help remove the background EEG and 
increase the signal-to-noise ratio. With this in mind, output 
SNR of the matched filter could be improved by first averaging 
the input signal. A threshold level is used as a detection 
criterion. The threshold level is determined by averaging 
background EEG and then applying this averaged EEG signal 
to the input of the matched filter. The maximum output 
amplitude is then used as the threshold level. For click 
intensities greater than 25 dB SL above threshold, 400 
averages were required. At lower click intensities, this number 
increased significantly and it is of little value to use a matched 
filter in place of the conventional averaging technique [2]. 

B. Noise Cancellation for Brainstem Auditory Evoked 
Potentials  

This method described the communication is a form of 
adaptive noise cancellation, in which a second channel that 
estimates the noise without the signal is obtained. The 
second channel is used to cancel the noise in the signal-
plus-noise channel. The acoustic stimulus was delivered in 
the middle of the data window. The control interval, the 
part of the data window that precedes the stimulus, shows 
the background noise in both the signal and the noise 
channels. In the signal channel, the response occurs in the 
interval following the stimulus. For a BAEP, 1000 or more 
of these individual responses would be combined to form 
the final average. The cancellation technique is based on the 
assumptions that the noise components in the signal and 
noise channels are correlated and that the correlation is 
constant throughout a given individual response. That is, 
the correlation observed in the control interval is the same 
as that observed in the response interval. The correlation 
can change completely between two individual responses. 
The correlation between channels is modelled by the system 
with impulse response h (t) as shown in Fig 2.  

 
Fig 2: Block diagram of cancellation technique. x(t) is the 
waveform measured in the signal channel, n(t) is the 
waveform measured in the noise channel, and e(t) is the 
output. w(t) represents the correlated noise component. s (t) 
is the evoked signal and u(t) and v(t) represent uncorrelated 
noises in the signal and noise channels. 
The output signal e (t) is given by 
e (t) = x(t) -f(t) * n(t)    (1) 
Where x (t) and n (t) are the electrode potentials recorded 
from the signal and noise channels, respectively, f (t) is the 
filter function. The algebraic cancellation technique 
described here offers an effective method of reducing 
external electrical interference in evoked potential 
recordings. Applying the method directly to a complete 
average provides a substantial improvement, but applying it 
to each of the individual responses may provide even 
further improvement if the noise is intermittent or variable 
in time. The complete filter technique also provides a 
substantial cancellation effect, but it is not as effective as 
the algebraic technique. It appears that, for the type of noise 
studied here, the filter function is approximately constant in 
frequency [3]. 
 

C. An Autoregressive Model of the BAEP Signal for 
Hearing-Threshold Testing 

The autoregressive (AR) model which is used in hearing 
level research is a linear system H (Z) having an all-pole 
transforms 

 H(Z) = 1/ 1+ p∑i=1 aiz
-i  (2) 

where ai are model parameters, and p is the order of the 
model.It is supposed that averaged BAEP signal s(n) is the 
output of the system excited by white noise w(n). Once the 
model has been established, the forward prediction 
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error e(n) will be determined as follows: 
 e (n)= s(n)- s^(n) 
        = s (n) – [- p∑i=1ais(n-i) ] 
        = w(n)   (3) 
where  is the estimated output. 
The modelling algorithm which was used was the least squares 
method, which chose the parameters ai so that the total sum of 
forward and backward prediction error energy e would be 
minimized.To determine the hearing threshold, the AR model 
parameters are estimated for the truncated averaged BAEP 
signal at different stimulus levels; also the ac signal energy eo 

and the normalized prediction error enor are calculated. They 
are defined, respectively, as follows: 
eo=∑[s(n)- s͞(n)]2  
enor= e/eo    (4) 
Where  s͞ (n) is the mean value of the signal and e is the total 
prediction error energy.  
Table I: below shows the mean values and the standard 
deviations of eo, enor and a1 

 
The hearing threshold is successfully estimated by the 
normalized prediction error enor. The model parameters 
effectively characterize the different structures of the signal; it 
appears promising to use the modelling technique not only in 
hearing level testing but also in other wide clinical practice [4]. 
 

D. BAEP Enhancement by Weighted Ensemble 
Averaging 

The method proposed here in has been found to enhance the 
lower frequency components of the BAEP, including wave V. 
The scheme averages sweeps having a positive correlation with 
the current ensemble average to form ensemble average X1. 
Those sweeps having a negative correlation with the ensemble 
average are averaged together to form a second ensemble 
average X2. The method can be implemented on-line and 
correlations are computed with the current ensemble average. 
The results suggest the possibility that some single sweep 
signal components have polarities that are opposite to the 
ensemble average polarity [5]. 
 
       E. Auditory Evoked Potential Classification by 
Unsupervised Art 2-A and Supervised Fuzzy Artmap Networks 
The basic architecture in an ART system is an unsupervised, 
self-organizing pattern clustering module. Clustering is based 
on template matching where the prototype template vectors are 
created from all the available patterns presented to the module. 
In Predictive ART or ARTMAP architecture two clustering 
ART modules are linked by a third ART module which forms 
predictive associations between the categories formed by 2 
clustering modules. When the 2 clustering ART modules are 
Fuzzy ART modules, the resulting Fuzzy ARTMAP 
architecture can classify analog as well as binary patterns. 
During teaching a clustering module receives a pattern from 
the training set and the other clustering module receives its 
correct class. The linking module forms predictive associations 

between the categories established by the two clustering 
modules. The ART 2-A and Fuzzy ARTMAP networks are 
applied to the classification of Brainstem Auditory Evoked 
Potential (BAEP) signals into two classes, Response (R) or 
No Response (NR), corresponding to the presence or 
absence of a sound evoked waveform following an auditory 
stimulus. In ART 2-A higher generalization was obtained at 
high values of p* with a large number of fine categories 
most of which representing one or two input patterns. The 
constant α, which determines the initial values of the weight 
vectors, had no effect on the number of categories at this 
high p*. However, it affected generalization, because when 
the test set was presented with large α, new F2 nodes were 
chosen in favour of those F2 nodes which represent the 
training set patterns [6]. 
 

F. Estimation of Single Brainstem Auditory Evoked 
Potential using Time-Sequenced Adaptive 
Filtering 

The TSAF uses multiple filters and each filter is adapted for 
filtering a particular portion of the interval between 
regeneration times, and is suitable for tracking signals 
whose statistical properties recur at various points in time. 
The filters are trained and the filter weights are obtained via 
an adaptive algorithm. Fig 3 shows the conceptual 
realization of TSAF. The averaged TSAF is shown in Fig 4 
together the EA using 2000 trials. TSAF and EA are very 
similar and their correlation coefficient is 0.983, and the 
measurement time greatly reduced using TSAF. The 
tracking ability of TSAF makes it possible for the clinician 
to observe the signal variation trace in every single 
ensemble [7].   

 
Fig 3: The time-sequences adaptive filter                                  

 
Fig 4: A comparison of averaged TSAF (solid 
line) and EA (dotted line) 

 
G. An Adaptive RBF Neural Network Model for Evoked 
Potential Estimation 
The RBFNN (radial basis Function neural network) model 
consists of N. RBFs arranged in a hidden layer and a linear 
output node. Its output at time instant k is expressed as 

  (5) 
In the ith node wi, μi and σi represent the height, center and 
width of the RBF. The peaks which being the main 
components of an EP, are modelled by RBFs in the 
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network. Simulation results confirm the successful operation of 
the approach, Fig 5 & Fig 6, where λ is an empirical parameter 
determining the rate of convergence. 

 
Fig 5: The averaged AEP and VEP (Visual evoked potentials) 
clearly show their peak components. The numbers of RBFs 
used are 11 and 7 for AEP and VEP resp. The parameters 
required in training are λ = 0.01, η = 0.05, ε = 0.01 and error 
threshold= 0.005. 

 
Fig 6: The performance of RBFNN and AF (Adaptive Filter) in 
tracking of change in P100 latency. Convergence of RBF” and 
AF are 0.001 and 0.05 resp.  
The results also show that the performance of adaptive RBFNN 
is superior to the AF, this may be accounted for by the 
powerful modelling characteristic of RBFNN,permitting 
accurate estimation of single-trial EP [8]. 
 
H. On Optimal Aperiodic Stimulation for Brainstem Auditory 
Evoked Potentials Estimation 
A method with pseudo Gaussian probability density (PGPD). 
The frequency band occupied by the late EP fractions in each 
trial should be known, and this is easily accessible when the 
stimulation frequency is fixed. This technique seems to give 
better results compared to the uniform probability density 
stimulation. The results obtained with the optimal probability 
density when the late EP covariance matrix is well estimated 
[9]. 

 
I. Multiresolution Adaptive Filter for Estimating 

Brainstem Auditory Evoked Potentials 
Multiresolution Adaptive Filter' (MAF) is implemented by the 
orthonormal wavelet transforming (WT) the reference and 
primary signals, adaptive filtering of each independent, 
frequency channel separately, and then inverse wavelet 
transforming (IWT). This is analogous to the frequency domain 
adaptive filter. There is a stack of time invariant adaptive filters 
(TIAF's). The filters are connected in parallel. The filters are 
fed separately with wavelet transform components. Fig 7 
shows the basic structure of multiresolution adaptive filter of 
order j=2 with Wiener-like TIAF used for average estimation. 

 
Fig 7: Average estimation using: (a) MAF and 

 (b) Wiener-like TIAF. 
An autoregressive process driven by a Gaussian white noise 
simulated the ongoing EEG as follows 
ni (t) = 1.5084ni (t-1) – 0.1587ni (t-2) – 0.3109ni (t-3) – 
0.0510ni (t-4) +w (t)  (6) 
The simulated BAEP’s were generated, which consist of 
peak components with fixed amplitudes but randomly 
varied latencies satisfying a Gaussian distribution with zero 
mean and a covariance equal to 0.2 ms. Fig 10 clearly 
illustrates the feasibility of obtaining BAEP’s using the 
multiresolution adaptive filter. I observed that a significant 
improvement in waveform estimation, compared with the 
ensemble averaging (Fig 8) and TIAF (Fig 9) can be 
achieved by multiresolution adaptive processing. The most 
interesting result of the proposed scheme is that five peak 
components are clearly detected and significantly enhanced 
even with a small number of response trials [10]. 

 
Fig 8: Results for simulated data. Waveform estimates 
given by ensemble averaging (a), TIAF (b), and MAF (c). 

 
Fig 9: The human BAEP waveform estimated by ensemble 
averaging with the different number of trials: (a) 50, (b) 
150, and (c) 500. 

 
Fig 10: The human BAEP waveform estimated by MAF 
with the different number of trials: (a) 50 trials, (b) 150 
trials, and (c) 250 trials. 
 
J. Latency Change Estimation for Evoked Potentials via 
Frequency Selective Adaptive Phase Spectrum Analyzer 
To formulate the EP latency change estimation problem in 
the context of Time delay estimation (TDE), the following 
signal model was considered 
x1(k) =s(k) + v1(k) 
x2(k) = λs(k- Dk) +v2(k)  (7) 
where k is the time index, s (k) denotes the noise free 
signal, s(k-Dk ) is a delayed version of s(k)  , and Dk is the 
time delay to be estimated. The time delay Dk can be either 
time-invariant or slowly varying with time. And v1 (k) and 
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v2 (k) are additive noises uncorrelated with each other and with 
s (k).The time delay or latency change between two time 
sequences can be obtained via their cross correlation function 
as follows: 
Rx1x2 (T, n) = E [x1n (k) x2n (k+T)] = Rss (T – Dn) (8) 
In which Rss (.) is the auto-correlation function of s(k). The 
reference signal is obtained by averaging the first 500 
preimpact acceleration sweeps. The Somatic EP’s are assumed 
to have minimum variations at these sweeps because the 
impact acceleration was applied at the 601st sweep. This 
proposed a method for tracking and estimating the latency 
changes in EP’s by using the phase spectrum via an adaptive 
filter in frequency domain. Theoretical analysis and computer 
simulation as in Fig 11 shows that the latency change 
estimation results are better than those provided by existing 
methods [11]. 

 
Fig 11: The latency change estimation results based on 
computer generated data (SNR = -5 dB and SIR = -5 dB). (a) 
The actual latency changes introduced in the simulated data; 
(b) the estimated latency changes given by the adaptive phase 
spectrum analyzer; (c) the estimated latency changes given by 
direct adaptive time delay estimator; and (d) the estimated 
latency changes  given by the correlation-based method. 
 
K. A new approach for BAEP analysis simulated annealing 
method 
This method is based on an optimal correction of random 
delays. A non convex criterion is then minimized using 
simulated annealing algorithm, the optimal vector is then used 
to analyse the dynamic of the cochlea. This method allows the 
estimated BAEP that are easily identified and interpreted. The 
enhancement is related to the non stationarity hypothesis. the 
BAEP are still smoothed or distorted even using the time delay 
correction, showing that the hypothesis made about the non 
stationarity are not verified. This calls for developing others 
models for improving the averaged BAEP [12].  
 
L. Estimation of the Auditory Brainstem Response’s wave V by 
means of Wavelet Transform 
The performance of different wavelets basis for approximation 
of the morphology of ABR’s wave V was evaluated. The 
wavelet functions Meyer, Daubechies 10, Symlet 10, and 
Biorthogonal 6.8 are used, resulting the last one,the most 
appropriate to fulfill the specific requirement., the performance 
of the Biorthogonal 6.8 wavelet function to approximate the 
morphology of wave V for averaged 1000, 750, 500 and 250 
epochs, was analyzed as shown in Fig 12. The results were 
promising and address the future study in the use of the 
wavelet transform to approximate wave V of ABR using a few 
epochs, with the consequent advantage of reducing the total 
time of recording [13]. 

 
Fig 12: The pattern (dashed line) and the reconstructed 
wave V using Biorthogonal 6.8 wavelet function for (a) 
250, (b) 500, (c) 750 and (d) 1000 epochs (d) (solid line). 
 
M. Automated Analysis of the Auditory Brainstem Response 
This algorithm is for automatically labelling all seven 
waves in an ABR waveform based on first and second order 
derivatives. On a large dataset of normative ABR 
waveforms, accuracy on the primary waves of clinical 
interest (peaks I, III and V) was 96-98%to within 0.2ms of 
human expert [14]. 
 

N. Adaptive Complex Wavelet-based Filtering of EEG 
for extraction of Evoked Potential Responses 

The method is based on adaptive filtering of signals in the 
wavelet domain, where the transform used is a nearly shift-
invariant Complex Wavelet Transform (CWT). The 
algorithm is compared with other existing methods: The 
first simply consists of band pass filtering the input EEG 
signal followed by linear averaging. The second, uses 
signal-adaptive filtering in the Fourier domain based on 
phase variance computed at each spectral component of the 
FFT. Realistic models of EEG and ABR are generated for 
the comparison. Results show that the wavelet-based 
method consistently outperforms the other two methods for 
ABR signals with an initial signal-to-noise ratio less than -
20 dB. 
Table II: below gives the comparison of SNR results for 3 
EP extraction algorithms; SNR values in dB are given as: 
average (standard deviation) of a collection of SNR values 
over a time span of 1 minute (4000 epochs). [15].  

 
(A) Signal: “pc04ABR” (input SNR: - 23.2 dB; 

sampling: 10 kHz); band pass filter: 30-3000 Hz 

 
(B) Signal “pc07ABR” (input SNR: -26.6dB) 

 
O. Chaotic Dynamics in Tracing BAEP and its 

Application on Investigating Brainstem 
Malfunction 

The chaotic dynamics of tracing BAEP were analyzed using 
phase projection and correlation dimension techniques. The 
results demonstrated: there is a much stronger 
determination in BAEP than in noisy BAEP shown by more 
deterministic phase projections and lower correlation 
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dimensions D2 in BAEP; trajectories of BAEP never repeat 
and the value of correlation dimension is fractal; the phase 
projection of BAEP for brainstem malfunction group shows 
more chaotic and has higher D2 than those for the tester group. 
The conclusions suggests that BAEP is chaotic not 
deterministic and there is rich dynamics in BAEP [16]. 
 

P. Fast Extraction Method of Auditory Brainstem 
Response Based on Wavelet Transformation 

The extraction of auditory brainstem potential by wavelet 
transformation is discussed. The wavelet filter obtained from 
correlation analysis between results of wavelet transformation 
and traditional superposing and averaging method, the auditory 
brainstem response signal can be extracted from the signal 
containing spontaneous brain wave interference based on only 
a single measurement of the signal. The comparison of waves 
processed by different methods gives comparison to traditional 
superposing and averaging method, the wavelet transformation 
analysis method provides much more distinct waveforms and 
shortens the time of whole detection by considerably reducing 
the number of tests [17].  
 

Q. Gabor Frame Phase Stability Analysis of Chirp 
Evoked Auditory Brainstem Responses 

This paper proposes for the first time Gabor frame operators as 
an efficient feature extraction technique for ABR single 
sweeps. In particular, the decomposition technique to derive 
the Gabor frame phase stability (GFPS) of sweep sequences of 
click and chirp evoked ABRs is used. It is  shown that the 
GFPS represents a robust feature of ABRs and that GFPS of 
chirp evoked ABRs provide a stable discrimination of the 
spontaneous activity from stimulations above the hearing 
threshold with a minimum number of sweeps, even at low 
stimulation intensities[18]. 
 

IV. CONCLUSIONS 
The system for characterization of the human auditory system 
simulating the auditory brainstem response discussed can be 
found useful in many applications.  
The main important purpose of the work presented here is to 
incorporate an automated system and develop them into an 
improved analysis System. 
 

V.  FUTURE RESEARCH 
The Nervous System plays a vital role in the well being of the 
subject. The purpose of most studies of the average evoked 
potential is to determine the extent to which the complex 
waveform of the auditory evoked potentials varies with the 
parameters of the stimulation, the state of the subject, or the 
recording site. Abnormalities can be in the form of slow 
impulse propagation velocities or an irregular wave shape 
measured on the scalp. Based on the analysis of sensory 
evoked potentials, a trained physician determines the presence 
of a variety of disorders including multiple sclerosis, metabolic 
disorders, nutritional deficiencies, degenerative diseases, spinal 
trauma, tumors, infarctions, hemorrhages, and exposure to 
toxic chemicals. There is definitely a need for a robust and 
accurate system for monitoring ABRs. 
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