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Abstract—.Traders make trade decisions specifying
entry, exit, and stop loss prices. Technicians often de-
cide on entry, exit, and stop loss prices based on a
predefined set of technical rules. In this paper, we
employ a method based on grammatical evolution to
coevolve technical rules for entry, exit, and stop loss
for trading a London Stock Exchange (LSE) based
stock in high frequency. We consider the case of two
class of investors with risk averse, and loss prefer-
ences and build a partial trading frontier given the
preferences considered. The performance of the rules
evolved is compared to a publicly available trading
system called the turtle trading system (TTS) and
the best rules produced by our method outperforms
TTS.

Keywords: Coevolution, Grammatical Evolution, Trad-

ing Systems, Turtle Trading System, High Frequency

Trading.

1 Introduction

Traders make trade decisions specifying entry, exit, and
stop loss prices. The entry rule dictates when to enter the
market, the exit rule dictates when to exit the market,
and the stop loss rule dictates when to exit a losing trade.
There exists an interdependency between these prices [3,
6]. A trader that consistently fails to exit a loosing trade
when they have incurred a tolerable amount of loss will
almost certainly be wiped out after a couple of loosing
trades. Moreover, a trader that takes profit too early or
too late before making a required amount of profit will
have very little to cover their costs and loss or loose part
of the profit she has made [3, 6]. Technicians decide on
entry, exit, and stop loss prices based on technical trading
rules [3]. However, as the amount of candidate indicators
increases, the search space of trading rules grows larger
and more complex.

In a previous paper we employ a method based on gram-
matical evolution to coevolve technical trading rules for
entry, exit, and stop loss for low frequency trading. The
performance of the rules in [4] is assessed using the Sharpe
ratio [4] and the objective is to find a collaborating set of
entry, exit, and stop loss rules that maximise the Sharpe
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ratio. In [9] they employ a four tree genetic program-
ming approach in developing trading rules for entering
and exiting a long or short GBP/EUR trade. They as-
sess the performance of the rules evolved using a power
utility function under three major assumptions about the
preference of agents namely, loss aversion, risk aversion,
and risk neutrality. The performance of the rules evolved
in [9] is evaluated as the average performance under the
three preferences. In this paper, we employ the method
we used in [4] to coevolve entry, exit, and stop loss rules
for trading Amvesco (Amvesco is listed on the London
Stock Exchange) in high frequency. The performance of
the rules evolved is compared to a publicly available trad-
ing system called the turtle trading system (TTS) [5, 6].
In addition, we compare the performance of our coevo-
lutionary approach, which we will refer to henceforth as
coevolutionary grammatical evolution (CGE), to a set of
randomly distributed strategies. Similar to [9], we em-
ploy a power utility function as our fitness function how-
ever, we assess the performance of the rules evolved under
three independent scenarios, risk aversion, and loss aver-
sion and we build a partial trading frontier for these pref-
erences (assuming a power utility, of course). Moreover,
similar to [4, 9], we consider the case of a unit investor
trading only one unit at any instant. The rest of the pa-
per is organised as follows. Section 2 gives an overview of
the TTS, coevolution, and Grammatical Evolution (GE).
We present our data in Section 4, and a description of
our framework is given in Section 3. We disccuss our re-
sults in Section 5, and the paper ends with a conclusion
in Section 6

2 Background

2.1 Turtle Trading System

The entry, and exit rules, for the turtle trading system are
specified in Algorithm 1, and Algorithm 2 respectively.
Ht, t ∈ {1, 2, 3, 4.....T} is the current highest price, and

Algorithm 1 Entry rules for TTS
if Ht > Ht−55 or Ht > Ht−20 then

GO LONG
else if Lt < Lt−55 or Lt < Lt−20 then

GO SHORT
end if
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Lt, t ∈ {1, 2, 3, 4.....T} is the current lowest price. The
entry, and exit rules of TTS are breakout rules. In other
words, it is expected that if a global high (low) is made
within a certain window (in this case a window of 55 bars
or 20 bars) then there is a likelihood that prices will start
to move in the direction of the breakout.

Algorithm 2 Exit rules for TTS
if Lt < Ht−20 or Lt < Lt−10 then

Exit long position
else if Ht > Lt−20 or Ht > Ht−10 then

Exit short position
end if

The TTS places the initial stop loss at entry using the
following equation:

Stopt =

{
Stopt−1 − 2N if Long
Stopt−1 + 2N if short

(1)

where N is the average true range and it is calculated as
follows:

N = 19Nt−1TRt/20 (2)

TRt, t ∈ {1, 2, 3, 4.....T} is the true range and its calcu-
lated as follows:

TRt = max(Ht − Lt, Ht − Ct−1, Ct−1 − Lt) (3)

Ct, t ∈ {1, 2, 3, 4.....T} is the price at the end of the time
interval t, t ∈ {1, 2, 3...T}.

2.2 Grammatical Evolution

In GE, initially a population of random integer strings is
initialized. The integer strings are a numeric representa-
tion of the solutions [1]. Solutions are mapped from in-
teger strings to a human readable (executable) solutions
using a set of production rules (grammar) [1].

The fitness of the mapped solutions is assessed and par-
ents are selected for producing offspring solutions based
on a roulette wheel principle [2]. Offspring solutions are
mutated based on prespecified probabibity of mutation.
Solutions with high fitness survive and pass down their
genetic material to their offspring, and solutions with low
fitness are replaced using tournament by solutions that
surpass them in fitness. The process is repeated over sev-
eral generations until a halting criterion is met.

2.3 Coevolution

Coevolution in the literature usually refers to a situa-
tion where a trait in one species evolves in response to
a change in the trait in another species [10]. In other
words, it is a situation where one species exerts evolu-
tionary pressure on the other causing it to evolve and

vise versa [10]. Coevolution in nature can either be co-
operative, or competitive. Coevolutionary computation
borrows from the idea of coevolution in nature. In co-
evolutionary computing a problem is decomposed into
subcomponents and the subcomponents are evolved si-
multaneously. This way, interdependencies between the
different subcomponents is taken into account [10]. For
instance, in this paper the trading problem is divided into
different but interdependent subcomponents.

3 Framework

In our framework, we coevolve entry rules for long po-
sitions, exit rules for long positions, stop loss rules for
long positions, entry rules for short positions, exit rules
for short positions, and stop loss rules for short posi-
tions. Each set of rule is a species on its own. We
denote the species of entry rules for long positions as
Ei

L, i ∈ {1, 2, 3...P}, the species of exit rules for long po-
sitions as Ci

L, i ∈ {1, 2, 3...P}, and the stop loss rule for
long positions as Si

L, i ∈ {1, 2, 3...P}. ES is the notation
for entry rules for short positions, CS is the notation for
exit rules for short positions, and Si

S , i ∈ {1, 2, 3...P} is
the notation for entry rules for short positions. Sexual
reproduction is inter-species and solutions are rewarded
based on how well they contribute to the overall prob-
lem. Collaborators are chosen at random from other
species. For instance, when assessing a solution from
the set Ei

L, i ∈ {1, 2, 3...P}, collaborators are chosen at
random from Ci

L, i ∈ {1, 2, 3...P}, Si
L, i ∈ {1, 2, 3...P},

Ei
S , i ∈ {1, 2, 3...P}, Ci

S , i ∈ {1, 2, 3...P}, and Si
S , i ∈

{1, 2, 3...P}. Each species asserts evolutionary pressure
on the other. Solutions that contribute to solving the
problem attain high fitness and survive to pass down their
genetic material to their offspring. On the other hand, so-
lutions that do not contribute are awarded low fitness and
are eventually replaced by solutions with higher fitness.
Algorithm 3 illustrates the algorithm for our coevolution-
ary framework.

3.1 Utility Function

The framework for assessing the fitness of the rules pro-
duced using CGE is as follows:

In this paper, we employ a power utility function as our
fitness function [9]. The power utility function is defined
by the following equation [9]:

U(Wi) =
Wi

1−γ

1 − γ
− 1

1 − γ
, γ > 1 (4)

Wi =

{
W0(1 + vi) vi > 0
w0(1 + vi)λ vi < 0, λ > 1

(5)

vi = (Pt − Pt − k)/Pt−k) × Ii, k ∈ {1, 2, 3....T} (6)
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Algorithm 3 Framework for Coevolutionary Grammat-
ical Evolution (CGE)

for each population do
Initialise random population of integer strings
Map integer strings
Evaluate fitness of population
Check for best solution (elitist)

end for
while halting criterion is not met do

for each population do
Generate offspring solutions
Map offspring solutions
Evaluate fitness of offspring solutions
Select new population of solutions

end for
Check for new elitist
Evaluate fitness of ecosystem

end while

Algorithm 4 Framework for fitness assesment
if Entry rule for long position is met then

Go Long
else if Entry rule for short position is met then

Go short
end if
if Long and (Exit rule for long position is met) then

Exit long position
calculate utility of wealth

else if Stop rule for long position then
Exit long position
calculate utility of wealth

end if
if Short and (Exit rule for short position is met) then

Exit short position
calculate utility of wealth

else if stop rule for short position is met then
Exit short position
calculate utility of wealth

end if

Ii =

{
+1 Long position
−1 Short position

(7)

vi is the return for trade interval i, i ∈ {1, 2, ....N}, Wi

is a modified level of wealth for the given trade interval
i, i ∈ {1, 2, ....N}, and Ii, i ∈ {1, 2, 3...N} is the trade
indicator for a given trade interval. For this study we
consider the case of a unit investor and set the initial
level of wealth W0 = 1. λ, and γ define the risk, and loss
preference of the agents respectively. The fitness, f , of a
trading strategy is then taken to be the expected utility,
which is calculated as follows:

f = ˆE(U(W )) =
1
N

N∑
i

U(W ) (8)

The following assumptions are implicit in the fitness eval-
uation:

1. Only one position can be traded at any instant.

2. Only one unit can be traded at any instant.

3. The is no market friction (zero transaction cost, zero
slippage, zero market impact). Arguably, since only
one unit is traded at any instant, the effect of market
impact can be be considered to be negligible.

Our objective is to find rules for entry, exit, and stop loss
that maxisimise the expected utility, ˆE(U(W )).

3.2 Parameter Settings

In this paper, we set the population size of Ei
L, Ei

S , Ci
L,

Ci
S , Si

L, Si
S to 50 (i.e N=50). Collaborators are chosen at

random for cooperation and this is done every generation
(the epoch length for cooperation is epoch=1 ). The max-
imum number of generations, Gmax, is set to 200 and if
after Gmax/2 there is no improvement in the mean fitness
of Ei

L, the search is terminated and a new search is ini-
tialised. We run 10 searches in this fashion. For one set
of 10 searches we consider the case of a loss averse agent
with γ=35 and λ=1.15. For a second set of 10 searches
we consider the case of risk averse agents with γ=35, and
λ=1.

The grammar used in mapping Ei
L, Ei

S , Ci
L, and Ci

S is
shown in Table 1 and the grammar used in mapping Si

L,
Si

S is shown in Table 2. In our notation, O(t-n:t-1) rep-
resents a set of open prices, C(t-n:t-1) represents a set
of closing prices, H(t-n,t-1) represents a set of highest
prices, and L(t-n:t-1) represents a set of lowest prices be-
tween t-n and t-1. O(t-n) represents the open price at
t-n, C(t-n) represents the closing price at t-n, H(t-n) rep-
resents the highest price at t-n, and L(t-n) represents the
lowest price at t-n. Where n ∈ {10, 11, 12......99} and
t ∈ {1, 2, ....}.
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Table 1: Grammar for mapping Ei
L, Ei

S , Ci
L, and Ci

S . φ
is the set of non terminals, r are the rules for mapping the
non-terminal φ, and n is the number of rules for mapping
the non-terminal φ
φ r n

< expr >:: < binop > (< expr >, < expr >)
< rule > (2)

< rule >:: < var >< op >< var >
< var >< op >< fun >
< fun >< op >< fun > (3)

< binop >:: and, or, xor (3)
< var >:: H(t− < window >)

L(t− < window >)
O(t− < window >)
C(t− < window >)

< op >:: >, <,=,≤,≥, (4)
< window >:: < integer >< integer > (1)
< integer >:: 1, 2, 3, 4, 5, 6, 7, 8, 9 (9)
< fun >:: sma(H(t-< window >:t-1))

ema(H(t-< window >:t-1))
max(H(t-< window >:t-1))
min(H(t-< window >:t-1))
sma(L(t-< window >:t-1))
ema(L(t-< window >:t-1))
max(L(t-< window >:t-1))
min(L(t-< window >:t-1))
sma(O(t-< window >:t-1))
ema(O(t-< window >:t-1))
max(O(t-< window >:t-1))
min(O(t-< window >:t-1))
sma(C(t-< window >:t-1))
ema(C(t-< window >:t-1))
max(C(t-< window >:t-1))
min(C(t-< window >:t-1)) (15)

Table 2: Grammar for mapping Si
L, and Si

S . φ is the set
of non terminals, r are the rules for mapping the non-
terminal φ, and n is the number of rules for mapping the
non-terminal φ
φ r n
< expr >:: < preop >(< expr >,< expr >)

< rule > (2)
< rule >:: < rule >< op >< rule >

< var >< op >< var >
< var >< op >< fun >
< fun >< op >< fun >
< fun >
< var > (6)

< preop >:: min, max (2)
< var >:: H(t-< window >)

L(t-< window >)
O(t-< window >)
C(t-< window >) (4)

< fun >:: sma(H(t-< window >:t-1))
ema(H(t-< window >:t-1))
max(H(t-< window >:t-1))
min(H(t-< window >:t-1))
sma(L(t-< window >:t-1))
ema(L(t-< window >:t-1))
max(L(t-< window >:t-1))
min(L(t-< window >:t-1))
sma(O(t-< window >:t-1))
ema(O(t-< window >:t-1))
max(O(t-< window >:t-1))
min(O(t-< window >:t-1))
sma(C(t-< window >:t-1))
ema(C(t-< window >:t-1))
max(C(t-< window >:t-1))
min(C(t-< window >:t-1))(15)

< window >:: < integer >< integer > (1)
< ineteger >:: 1, 2, 3, 4, 5, 6, 7, 8, 9 (9)

Proceedings of the World Congress on Engineering 2010 Vol I 
WCE 2010, June 30 - July 2, 2010, London, U.K.

ISBN: 978-988-17012-9-9 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2010



4 Data

In this paper, we compress historical high frequency tic-
data into a sequence of high, low, open, and close proxy
prices for five minutely trading intervals [7]. The data we
use is Amvesco tic-data for the period between 1 March
2007 to 1 April 2007. The descriptive statistics of the
data is shown in Table 4

Table 3: Descriptive statistics of data
Mean Standard deviation Skewness Kurtosis

-0.0193 1.6072 -1.4265 24.6282

Table 4:

The data was divided into four blocks for K-fold cross
validation [8].

5 Results & Discussion

Table 5 shows the descriptive statistics for the set of
loss averse agents (λ=1.15, γ=35) produced using CGE,
the set of risk averse agents (λ=1, γ=35) produced us-
ing CGE, and random strategies (MC) with loss averse
(λ=1.15, γ=35), and risk averse (λ=1, γ=35) preferences.
Also included in Table 5 is the expected utility obtained
by the TTS for a risk averse (λ=1, γ=35), and loss averse
(λ=1.15, γ=35) preference.

The results in Table 6 are results for a sign test for the
null hypothesis that the median of the set of loss averse
strategies produced using CGE is different from the ex-
pected utility of the TTS with the same preference, and
for the null hypothesis that the median of the set of risk
averse strategies produced using CGE is different from
the expected utility of the TTS with the same prefer-
ence. The results in Table 6 indicates a failure to reject
the hypothesis at 95% confidence interval. This means
given the preferences considered we have not produced
sets of strategies with medians that are statistically dif-
ferent from the expected utility of TTS. However, the
best strategies produced using CGE outperform TTS for
both scenarious considered.

The results in Table 7 is for the null hypothesis that the
median of the set of loss averse agents is different from the
median of random strategies with the same preference.
It also includes results for the null hypothesis that, the
median of the set of risk averse agents is different from
the median of a set of random strategies with the same
preference, and the median of a set of random strategies
is different from the expected utility of the TTS. The
results in Table 7 show that we should reject the null at
95% confidence interval for all of the strategies.

Figure 1 shows the trading frontier from the two sets of
strategies produced using CGE. μr, σr, αr, and γr are

Table 5: Descriptive statistics of the distribution of utility
for different strategies. μ is the mean, σ is the standard
deviation, α is the skewness, and ω is the kurtosis. MC
is a set of random strategies

μ σ α ω
CGE(λ=1.15, γ=35) +0.0001 0.008 -1.49 5.31
CGE(λ=1, γ=35) -0.0055 0.007 -0.75 1.94
MC(λ=1.15, γ=35) -0.0018 0.008 -3.52 20.80
MC(λ=1, γ=35) -0.0003 0.003 -0.99 21.65
TTS (λ=1.15, γ=35) -0.001 0.0001 -1.10 2.29
TTS (λ=1, γ=35) -0.0003 0.0001 -1.05 2.24

Table 6: Sign test for the null hypothesis that the medians
of the sets strategies produced using CGE is the same as
the expected utility of the TTS with the same preference.

z-value p-value sign
(λ=1.15, γ=35) 1.5811 0.10940 2
(λ=1, γ=35) -0.9487 0.34380 2

the mean, standard deviation, skewness, and kurtosis of
the strategies respectively. Figure 1 shows that quite a
number of loss averse CGE strategies dominate their risk
averse strategies in the μr and σr frontier, and produce
considerably positively skewed returns compared to their
loss averse counterparts.

6 Conclusions and Future Work

Technical traders make trade decisions specifying entry
exit, and stop loss prices based on technical trading rules.
In this paper, we have coevolved rules that tell a trader
when to enter the market, and when to exit the market
for long, and short positions respectively as well as rules
that tell a trader when to exit a loss making position (stop
loss). Two set of rules were produced for two different
preferences. The performance of the rules produced is
compared with a publicly available trading system called
the turtle trading system (TTS) and the best rule pro-
duced by our method outperforms the TTS. Our rules
were also compared to a set of random strategies and the
strategies produced by our method are statistically better

Table 7: Sign test for the null hypothesis that the medians
of random strategies is same as the median of strategies
produced using CGE, and for the null hypothesis that the
median of random strategies is the same as the expected
utility of the TTS

z − value p-value sign
(λ=1.15, γ=35) -8.5000 0.0000 7
(λ=1, γ=35) +8.5000 0.0000 7
TTS +3.1000 0.0019 34
TTS +2.7000 0.0069 36
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Figure 1: Trading frontier of CGE strategies for different
preferences. μr is the mean return, σr is the standard
deviation of return, αr is the skewness of return, γr is
the kurtosis of return

than random strategies in trading the stock of Amvesco
for both of the preferences considered (i.e loss aversion,
and risk aversion). The TTS is also shown to be statis-
tically better than a set of random strategies in trading
the stock of Amvesco. Moreover, we have generated a
partial trading frontier and most of the loss averse strate-
gies dominate the risk averse strategies in the mean, and
standard deviation setting, and produced highly skewed
positive returns.

In this paper, we make an assumption of frictionless
markets. In future work we will include transaction
cost. Moreover, we will allow for multiple positions to
be traded.
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