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Abstract—The numerical evaluation of a class of Hilbert
transforms using an eigenfunction approach is considered.
Judicious selection of convergence accelerators allows for the
efficient evaluation of the resulting series. The approach is
particularly accurate for functions having a Gaussian-like
asymptotic behavior. For more slowly decreasing functions, the
accuracy of the evaluation decreases.

Index Terms—Hilbert-transform, eigenfunction expansion,
convergence accelerators.

I. I NTRODUCTION

H ILBERT transforms occur widely in a variety of prob-
lems in science and engineering [1], [2], [3], including

applications in the treatment of nonlinear waves, dispersion
relations in optical data analysis, and in scattering problems.

Gaussian-type functions play a special role in signal
analysis, since they are localized in both the time and
frequency domains. The construction of the Hilbert transform
of many signals such as Gaussian-type pulses is performed
in order to cancel negative frequency components, and the
transform is most often carried out numerically [2]. An
interesting application of the Hilbert transform of Gaussian
functions occurs in the analysis of the heat equation [4]. As
a consequence in part, the numerical evaluation of Hilbert
transforms has been studied intensely using a number of
different approaches [3], [5], [6], [7], [8], [9], [10], [11].

The Hilbert transform of a functionf , denotedHf , is
defined by

(Hf) (x) =
1

π
P

∫

∞

−∞

f(s)

x − s
ds, (1)

whereP designates the Cauchy principal value, which can
be expressed as

(Hf) (x) =
1

π
lim

ǫ→0+

[
∫ x−ǫ

−∞

f(s)

x − s
ds +

∫

∞

x+ǫ

f(s)

x − s
ds

]

.

(2)
The Hilbert transform is also defined using the opposite

sign convention to that given in Eq. (1).H is a linear operator
from Lp(R) → Lp(R), for 1 < p < ∞ [3], [13], [14], where
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Lp(R) denotes the Banach space of Lebesgue integrable
functions:

Lp(R) =

{

f : R → C ,

∫

∞

−∞

|f(x)|p dx < ∞
}

. (3)

The most important case occurs for the Hilbert space
L2(R). If f(x) is an even function,f(−x) = f(x), then
Eq. (1) can be expressed as

(Hf) (x) =
2x

π
P

∫

∞

−∞

f(s)

x2 − s2
ds, (4)

and if f(x) is an odd function,f(−x) = −f(x), then

(Hf) (x) =
2

π
P

∫

∞

−∞

sf(s)

x2 − s2
ds, (5)

Equations (4,5) are often referred to as the Kramers-
Kronig transforms of even and odd functions, respectively.

A comment on notation is appropriate:(Hf(s))(x) in-
dicates the Hilbert transform off evaluated at the pointx,
ands is the dummy integration variable. This is written more
concisely as(Hf)(x), when there is no need to specify the
integration variable. If there is no risk of confusion, we will
write H [f(x)] for the Hilbert transform when the functional
form is specified.

There is continuing interest in the development of accurate
numerical methods for the evaluation of Hilbert transforms
and other related singular integrals [6], [7], [8], [9], [10],
[11], [15], [16], [17], [18], [19]. There is also an extensive
body of work devoted to the numerical determination of the
Kramers-Kronig transforms [16].

Weideman [17] studied the numerical evaluation of the
Hilbert transform of a functionf ∈ L2(R) using an expan-
sion technique in terms of the eigenfunctions of the Hilbert
transform operator, which can be written as:

ϕn(x) =
(1 + ix)n

(1 − ix)n+1
, for n ∈ Z. (6)

Weideman examined several examples, for which he ob-
tained the coefficientsbn. For the casef(x) = 1/(1 + x2),
the results are exact, since the function can be expanded
in a compact closed form in terms of the eigenfunctions in
Eq. (6). For functions that decay in a significantly different
manner from this example, the eigenfunction decomposition
approach of Weideman yielded more slowly convergent
series.

II. T HEORY

In this work an alternative to the Weideman scheme is
investigated. Our focus is on more rapidly decaying func-
tions, which arise in several important areas [1], [2], [3].
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Two similar methods are presented here for the numerical
evaluation of the Hilbert transform in terms of a numerical
series.

In our first approach, the Hilbert transform is expressed
in terms of an expansion of Hermite functions, which are
eigenfunctions of the Fourier transform operator. We start
by expanding our function of interest (assumed ofL2(R))
as

f(x) =
∞
∑

n=0

αnun(x), (7)

whereun(x) are the orthonormal Hermite functions, defined
in terms of the standard Hermite polynomialsHn(x) by:

un(x) =
1

√

2nn!
√

π
Hn(x)e−x2/2, (8)

and the coefficientsαn are determined from:

αn =

∫

∞

−∞

f(x)un(x) dx. (9)

An analysis of convergence issues associated with the
expansion in Eq. (7) can be found in the work of Boyd [20].

We define the operator

T = sgnx F , (10)

where sgnx denotes the signum function:

sgnx =







1 , x > 0
0 , x = 0

−1 , x < 0
, (11)

andF stands for the Fourier transform operator, a unitary
operator onL2(R). It is obvious thatT is a linear isometric
(bounded) operator onL2(R), therefore it is continuous. The
action of T on the functionf(x) can be also expanded in
the same basis set:

T f(x) =
∞
∑

m=0

µmum(x), (12)

where the coefficientsµm can be expressed as:

µm =

∫

∞

−∞

sgnx (Ff)(x)um(x) dx. (13)

Applying T to Eq. (7), it follows that:

sgnx (Ff)(x) =

∞
∑

n=0

αn sgnx (Fun)(x), (14)

where we have used the fact thatT is linear and continuous.
The basis functionsun(x) satisfy [21]:

(Fun)(x) = (−i)nun(x) (15)

and
(F−1un)(x) = inun(x). (16)

Employing Eq. (15) allows Eq. (14) to be simplified to

sgnx (Ff)(x) = sgnx
∞
∑

n=0

αn(−i)nun(x). (17)

On substituting Eq. (17) into Eq. (13) leads to the follow-
ing result for the coefficientsµm:

µm =

∞
∑

n=0

αn(−i)n

∫

∞

−∞

sgnx um(x)un(x) dx, (18)

which can be rearranged, using the propertyun(−x) =
(−1)nun(x), to yield

µm =

∞
∑

n=0

αn(−i)n
[

1 − (−1)n+m
]

∫

∞

0

um(x)un(x) dx.

(19)
The non-vanishing terms in the previous sum are those for

which n + m is odd. Letm = 2k andn = 2j + 1, for any
k, j non-negative integers, then

µ2k = −i

∞
∑

j=0

α2j+1(−1)jIk,j (20)

and if m = 2k + 1 andn = 2j, then

µ2k+1 =

∞
∑

j=0

α2j(−i)jIj,k, (21)

whereIk,j is defined by

Ik,j = 2

∫

∞

0

u2k(x)u2j+1(x) dx. (22)

Using the key connection between the Fourier and Hilbert
transforms [3], [13], [14],

(FHf)(x) = −i sgnx (Ff)(x), (23)

it follows from Eq. (12) and employing Eq. (16), that

(Hf)(x) = −iF−1

(

∞
∑

m=0

µmum(y)

)

(x)

= −i

∞
∑

m=0

µmimum(x). (24)

Rewriting Eq. (24) to account for the even and odd
contributions ofm and substituting Eqs. (20) and (21), leads
to the final result:

(Hf)(x) = −
∞
∑

k=0

(−1)ku2k(x)
∞
∑

j=0

(−1)jα2j+1Ik,j

+

∞
∑

k=0

(−1)ku2k+1(x)

∞
∑

j=0

(−1)jα2jIj,k. (25)

TheIk,j integral can be evaluated from Eq. (22) by using a
relationship between Hermite polynomials and the associated
Laguerre polynomialsL(α)

j (x), and employing the change of
variablet = x2, to obtain

Ik,j =
(−1)k+j2k+j+1/2k!j!
√

(2k)!(2j + 1)! π

∫

∞

0

L
(−1/2)
k (t)L

(1/2)
j (t)e−tdt.

(26)
The integral in Eq. (26) can be solved in terms of the

gamma functionΓ(z), by writing both polynomials as a
series inL

(0)
m and then employing the orthogonality relation

for Laguerre polynomials, to yield
∫

∞

0

L
(−1/2)
k (t)L

(1/2)
j (t) e−t dt

=
2Γ
(

k + 1
2

)

Γ
(

j + 3
2

)

π(2j − 2k + 1)Γ(k + 1)Γ(j + 1)
, (27)

so that

Ik,j =
(−1)k+j2k+j+3/2Γ

(

k + 1
2

)

Γ
(

j + 3
2

)

π3/2(2j − 2k + 1)
√

(2k)!(2j + 1)!
. (28)
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The preceeding formula can be expressed in terms of
double factorials as

Ik,j =
(−1)k+j

√
2(2k − 1)!!(2j + 1)!!

(2j − 2k + 1)
√

π(2k)!(2j + 1)!
. (29)

Equation (25) reflects the fact that the Hilbert transform
of an even function is an odd function andvice versa.
When the functionf(x) is even or odd, the right-hand side
reduces to only one double sum because everyα2k+1 or α2k,
respectively, is zero. Furthermore, for functions for which all
αm are zero form greater than a finite value, the second
summation of both terms is a finite sum.

The second numerical approach investigated involves ap-
plying the Hilbert transform directly to Eq. (7), to obtain

(Hf)(x) =
∞
∑

n=0

αnH [un(x)] . (30)

where we have made use of the fact thatH is a continuous
operator onL2(R). Therefore, the right-hand side converges
in the norm sense. If we expand explicitly the Hermite
polynomials, we can write:

(Hf)(x) =
1

π1/4

∞
∑

n=0

2n
√

(2n)! α2nχ(1)
n

+

√
2

π1/4

∞
∑

n=0

2n
√

(2n + 1)! α2n+1χ
(2)
n (31)

where

χ(1)
n =

n
∑

m=0

(−1)mH
[

x2(n−m)e−x2/2
]

4mm!(2n − 2m)!
(32)

and

χ(2)
n =

n
∑

m=0

(−1)mH
[

x2(n−m)+1e−x2/2
]

4mm!(2n − 2m + 1)!
. (33)

The Hilbert transforms H [x2(n−m)e−x2/2] and
H [x2(n−m)+1e−x2/2] can be reduced in closed form
to the functionH [e−x2/2], and the latter can be evaluated
[3] as:

H [e−x2/2] = −ie−x2/2erf(ix/
√

2), (34)

where erf(z) denotes the error function, defined by ([22], p.
297)

erf(z) =
2√
π

∫ z

0

e−t2 dt. (35)

One of the strengths of this approach occurs when the
function of interest can be expanded in a finite series using
Eq. (7), then the Hilbert transform can be computed accu-
rately. Only one infinite series is encountered for a general
function of interest, not taking into account the particular
evaluation strategy forH

[

xke−x2/2
]

, whereas in the Fourier
transform approach, two infinite series will be encountered
in many cases.

TABLE I
EXACT HILBERT TRANSFORMS FOR THE FUNCTIONS INVESTIGATED

NUMERICALLY.

Case f(x) (Hf)(x)

1
e−ax2

(a > 0)
G(a, x)

2
xe−ax2

(a > 0)
xG(a, x) − 1√

aπ

3
x2e−ax2

(a > 0)
x2G(a, x) − 1

x
√

aπ

4
cos(bx)e−ax2

(a > 0, b ≥ 0)
e−ax2

Im
{

eibxerf
[√

a

(

b

2a
+ ix

)]}

5
e−a|x|

(a > 0)

sgnx

π

[

ea|x|E1(a|x|) + e−a|x|Ei(a|x|)
]

6
1

1 + x2

x

1 + x2

III. C OMPUTATIONAL APPROACH

For the numerical evaluation of the Hilbert transform we
have selected the test functions displayed in Table I. These
functions show a range of different asymptotic decays and
their Hilbert transforms can be evaluated analytically, and
therefore provide useful test cases for numerical comparison.

For notational compactnessG(a, x) is used to denote
the Hilbert transformH [e−ax2/2], for a > 0, and can be
expressed as

G(a, x) = −ie−ax2

erf(i
√

ax). (36)

The special functions appearing in Table I are the expo-
nential integral functions, defined by (see for example [22],
p. 228)

Ei(z) = −P

∫

∞

−z

e−t

t
dt, (37)

and

E1(z) =

∫

∞

1

e−zt

t
dt, (38)

and Im denotes the imaginary part.
For the test functions employed, the corresponding expan-

sion coefficientsαn obtained from Eq. (9) are tabulated in
Table II. In these cases, they can be evaluated in closed
form, which is an obvious advantage for the application
of our method, and we will use them in the computations
reported. However, this approach does not require that the
expansion coefficients be known explicitely, as they can
be determined numerically by Gauss-Hermite quadrature or
other numerical integration methods in a straightforward
manner. In this table,Γ(a, z) denotes the incomplete gamma
function and1F1(a; b; z) designates the Kummer confluent
hypergeometric function.

It is obvious that if the function has a well defined parity,
only non-zero coefficients with either an even or odd index
arise.

We note parenthetically that it is easy to find examples
where theαm expansion coefficients can be determined
analytically, but the Hilbert transform cannot be evaluated
in a simple closed form, for example:

f(x) = log |x|e−ax2

, for a > 0. (39)

Proceedings of the World Congress on Engineering 2011 Vol I 
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-18210-6-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011



TABLE II
EXPANSION COEFFICIENTS OF DIFFERENT TEST FUNCTIONS.

f(x) Expansion coefficientsα2n or α2n+1

x2me−ax2

(a > 0)
α2n =

√

(2n)!
√

π

22m+n
(

a + 1
2

)n+m+ 1
2

n
∑

j=0

(−1)j(2m + 2n − 2j)!
(

a + 1
2

)j

j!(m + n − j)!(2n − 2j)!

x2m+1e−ax2

(a > 0)
α2n+1 =

√

(2n + 1)!
√

π

22m+n+ 3
2

(

a + 1
2

)n+m+ 3
2

n
∑

j=0

(−1)j(2m + 2n + 2 − 2j)!
(

a + 1
2

)j

j!(m + n + 1 − j)!(2n + 1 − 2j)!

cos(bx)e−ax2

(a > 0, b ≥ 0)
α2n =

√

(2n)!
√

π

2n
(

a + 1
2

)n+ 1
2

n
∑

j=0

(−1)j
(

a + 1
2

)j
1F1

(

1
2
− j + n; 1

2
; −b2

2(1+2a)

)

j!(n − j)!

e−a|x|

(a > 0)

α2n =
22n+ 1

2

√

(2n)!

π1/4

n
∑

j=0

(−1)j

8jj!(2n − 2j)!

[

Γ

(

n − j +
1

2

)

1F1

(

n − j +
1

2
;
1

2
;
a2

2

)

−
√

2aΓ(n − j + 1)1F1

(

n − j + 1;
3

2
;
a2

2

)]

1

1 + x2
α2n =

√

(2n)! e
√

π

2n

n
∑

j=0

(−1)jΓ
(

j − n + 1
2
, 1
2

)

j!(n − j)!

The present approach is demonstrated by first considering
the simple example

f(x) = x2me−x2/2. (40)

Since this function is even, it can be expanded using
Eq. (7) only containing terms with even indexes. Thus,
Eq. (25) simplifies to:

(Hf)(x) =
∞
∑

k=0

(−1)ku2k+1(x)
m
∑

j=0

(−1)jα2jIj,k. (41)

Let us consider the particular test casem = 1, then the
expansion coefficients areα0 = π1/4/2, α2 = π1/4/21/2,
α2n = 0 for n > 1, and hence

(Hf)(x) =

√√
π

2

∞
∑

k=0

(−1)k
(√

2I0,k − I1,k

)

u2k+1(x).

(42)
As a second example, consider

f(x) = x2m+1e−x2/2. (43)

In an analogous fashion, the expansion coefficients can be
found, and Eq. (25) simplifies to

(Hf)(x) = −
∞
∑

k=0

(−1)ku2k(x)

m
∑

j=0

(−1)jα2j+1Ik,j . (44)

In the two preceeding examples, the functions can be
written as a finite series using Eq. (7), and the resulting
Hilbert transform contains a single infinite series.

A slightly more generalized example is the following
function wherea > 0, anda 6= 1/2,

f(x) = x2me−ax2

, (45)

and the expansion coefficients are displayed in Table II. The
resulting Hilbert transform now involves two infinite series.
However, it should be noted that a rescaling of the expansion
variable leads to the inner series expansion being a finite sum,
which yields a more efficient numerical approach.

That is, the Hilbert transform can be evaluated using

(Hf)(x) =

(

1

2a

)m

H
[

t2me−t2/2
] (√

2ax
)

, (46)

and the expansion in Eq. (41).
For the preceding examples in Eqs. (40), (43) and (45),

the Hilbert transform can be found in terms of a single infi-
nite series, which is most effectively evaluated by applying
convergence acceleration techniques, when direct summation
is too inaccurate. We now focus on the general case where
a finite series for Eq. (7) cannot be obtained, resulting in a
double infinite series. To apply a convergence accelerator to
the general case we make use of an interchange of order of
summation [23] for Eq. (25), transforming the double infinite
series to a combination of finite and infinite series of the
form:

(Hf)(x) = −
∞
∑

k=0

(−1)k
k
∑

j=0

α2j+1Ik−j,j u2(k−j)(x)

+
∞
∑

k=0

(−1)k
k
∑

j=0

α2jIj,k−j u2(k−j)+1(x). (47)

Five different convergence accelerators were tested: these
were the Levin-u [24] and Levin-t′ [25], [26] transforma-
tions, the Weniger-1 and Weniger-2 [26], [27], [28] transfor-
mations, and the Wynnǫ-algorithm [29], [30].

IV. RESULTS AND DISCUSSION

Using the exact formulas from Table I we were able to test
the numerical evaluations for the two different approaches. A
comparison of the numerical results obtained using Eq. (31),
with the exact evaluations of the Hilbert transform for the
test functions is shown in Table III.

The test functions 1-4 gave the best results, with the
number of significant digits decreasing as the value of
x increased. These four test functions exhibit a Gaussian
behaviour similar to the Hermite functionsun(x) and hence
the expansion coefficients obtained from Eq. (9) are ex-
pected to converge rapidly. The test functions 5 and 6 gave
results with a reduced accuracy. Neither of these two test
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TABLE III
A COMPARISON OF NUMERICAL VALUES FOR THEHILBERT TRANSFORM VERSUS THE EXACT EVALUATION FOR THE TEST FUNCTIONS GIVEN IN

TABLE I. THE VALUES a = 12/11 AND b = 11/13 HAVE BEEN EMPLOYED.

Case x0 (Hf)(x0) (Hf)(x0)

(from the exact result) (numerical result)

1/4 0.29200513386717174646471636 0.29200513386717174646471651

1 1 0.595985918897246073259532 0.595985918897246073259513

7 0.07479733191561997571 0.07479733191561997524

1/4 -0.4459776510413501694804727 -0.4459776510413501694804716

2 1 0.0770069843891029671629 0.0770069843891029671619

7 0.0046023889011967239 0.0046023889011967220

1/4 -0.111494412760337542370118 -0.111494412760337542370149

3 1 0.07700698438910296716288 0.07700698438910296716301

7 0.032216722308377067 0.032216722308377080

1/4 0.3370871404860270460661 0.3370871404860270460659

4 1 0.559773149180786017822 0.559773149180786017818

7 0.062416237155745896 0.062416237155745869

1/4 0.3157 0.3184

5 1 0.4027 0.4036

7 0.0798005012 0.0798005051

1/4 0.2352941 0.2352957

6 1 0.500000 0.500008

7 0.14000 0.14013

functions have an asymptotic decay that closely matches a
Gaussian function, and as a result the expansion coefficients
converge much more slowly. By examining either Eq. (31)
or Eq. (47), we see that the only difference between the
numerical Hilbert transform of two different functions is the
expansion coefficients associated with that function. This
indicates a direct correlation between the behaviour of the
expansion coefficients and the rate of convergence of the
Hilbert transform.

For functions with a Gaussian character, the expansion of
the present work will improve on the accuracy obtained using
the expansion of Weideman [17]. This is expected because of
the choice of basis functions for the expansion. As we move
to functions exhibiting slower rates of asymptotic decay, the
expansion of Weideman will lead to higher accuracy. For
example, for cases likef(x) = x2e−ax2

, a > 0, the present
approach gives a very compact closed form expansion, which
can be evaluated with high efficiency. Here the present
approach is significantly better in both computational speed
and accuracy compared with the Weideman approach, whilst
for a case likef(x) = (1+x2)−1 we encounter the opposite
situation, where the latter technique leads to a closed form
solution with only two terms, and the approaches described
in this work would require much more computational ef-
fort. For cases including some oscillatory behaviour, for
example, working withf(x) = (cos x + sinx)e−x2

or
f(x) = cos x

2+sin xe−x2

, we have found that the computational
speed of both approaches is similar, but the accuracy is better
with the approach of the present work.

With respect to the performance of the convergence accel-
erators employed in this work, the best results were obtained
using the Wynnǫ-algorithm. On writing the general result,
given by Eq. (47), in the form:

(Hf)(x) =

∞
∑

k=0

ak(x), (48)

Fig. 1. Plot of the individual termsak(x) for the Hilbert transform
calculated from Eq. (48) for case 4 withx = 1.

and analyzing the individual termsak(x) for case 4 withx =
1, the sequence behaved in a non-monotonic manner with
irregular signs, as shown in Fig. 1. This would be somewhat
similar to the terms generated from the functionsin(kx)/k.
For this situation, Wynn’s algorithm is expected to be the
most suitable choice for convergence acceleration [31].

The Levin and Weniger convergence accelerators offered
satisfactory accuracy, but less compared to the Wynnǫ-
algorithm. Based on the form of the series, the performance
of this method is not surprising [31]. Table IV shows a com-
parison of the convergence accelerators employed using the
test functionf(x) = cos(bx)e−ax2

and employing Eq. (47).
The other test functions exhibited similar trends in the
relative precision for the different convergence accelerators
investigated, so the results in Table IV are representative of
the observed trends.

From Table III we can see that the numerical method
works well for functions exhibiting a Gaussian asymptotic
behavior. By examining the expansion coefficients in Fig. 2
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TABLE IV
A COMPARISON OF THE DIFFERENT CONVERGENCE ACCELERATOR

METHODS USING THE FUNCTIONf(x) = cos(bx)e−ax2

. THE VALUES
a = 12/11 AND b = 11/13 HAVE BEEN EMPLOYED.

Method (Hf)(1) (Hf)(1/4)

Levin-u 0.5597737 0.3370875

Levin-t′ 0.5597723 0.3370865

Weniger-1 0.5597735 0.3370865

Weniger-2 0.5597720 0.33708709

Wynn ǫ 0.55977314921 0.3370871404860286

exact 0.55977314918 0.3370871404860270

Fig. 2. Comparison of the expansion coefficients for cases 4, 5, and 6.

for the test functions employed, we indeed see a trend in their
convergence rates as mentioned previously. To keep Fig. 2
uncluttered, only the expansion coefficients for cases 4-6 are
shown. The convergence rate for case 4 is slower than for
cases 1-3, but we see from Fig. 2 that the convergence rate
of case 4 is much faster than either case 5 or case 6. The
results in Fig. 2 provide support for the rate of convergence
of the expansion coefficients in either Eq. (31) or Eq. (47)
being an important factor, as expected, in determining ac-
curate numerical values for the Hilbert transform. The other
important factor in determining accurate results is the optimal
selection of convergence accelerator to apply. The numerical
method proposed by Weideman also showed that a slower
convergence rate for the expansion coefficients resulted in a
slower converging Hilbert transform.

The Fourier transform method offered a few more digits
of precision over the direct series method forx = 1/4. For
x = 1 both methods performed equally well and forx = 7
the direct method offered a few more digits of precision over
the Fourier method.

V. CONCLUSION

Two methods have been presented for the numerical
evaluation of the Hilbert transform, both of which are com-
putationally efficient, and both yield accurate results for a
number of test functions. The approaches are particularly
effective for functions exhibiting a Gaussian-like asymptotic
behavior. Five different convergence accelerator techniques
were employed to sum the series that arise, with the Wynn
ǫ-algorithm providing the best accuracy for this particular
application.
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