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Combined Eigenfunction Expansion and
Convergence Accelerator Approach to the Rapid
Numerical Evaluation of Hilbert Transforms
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Abstract—The numerical evaluation of a class of Hilbert LP(R) denotes the Banach space of Lebesgue integrable
transforms using an eigenfunction approach is considered. functions:
Judicious selection of convergence accelerators allows for the

Je's}
efficient evaluation of the resulting series. The approach is IPR)={f:R—C / If(@)|Pde <oop. (3)
particularly accurate for functions having a Gaussian-like Y

asymptotic behavior. For more slowly decreasing functions, the The most important case occurs for the Hilbert space

accuracy of the evaluation decreases. . .
Y L?(R). If f(x) is an even functionf(—z) = f(x), then
Index Terms—Hilbert-transform, eigenfunction expansion, Eq. (1) can be expressed as
convergence accelerators.

wpw=2r[ Fa @
d if f(z) is an odd functionf(—x) = f( ), then

|. INTRODUCTION

ILBERT transforms occur widely in a variety of prob-an
lems in science and engineering [1], [2], [3], including (Hf)(z) == p/ Sf (5)
applications in the treatment of nonlinear waves, dispersion
relations in optical data analysis, and in scattering problems Equations (4,5) are often referred to as the Kramers-
Gaussian-type functions play a special role in sign&ronig transforms of even and odd functions, respectively.
analysis, since they are localized in both the time and A comment on notation is appropriatéH f(s))(x) in-
frequency domains. The construction of the Hilbert transfordicates the Hilbert transform of evaluated at the point,
of many signals such as Gaussian-type pulses is performgis is the dummy integration variable. This is written more
in order to cancel negative frequency components, and tencisely ag H f)(x), when there is no need to specify the
transform is most often carried out numerically [2]. Arintegration variable. If there is no risk of confusion, we will
interesting application of the Hilbert transform of Gaussianrite H|[f(z)] for the Hilbert transform when the functional
functions occurs in the analysis of the heat equation [4]. Asrm is specified.
a consequence in part, the numerical evaluation of HilbertThere is continuing interest in the development of accurate
transforms has been studied intensely using a numbermimerical methods for the evaluation of Hilbert transforms
different approaches [3], [5], [6], [7], [8], [9], [10], [11].  and other related singular integrals [6], [7], [8], [9], [10],
The Hilbert transform of a functiorf, denotedH f, is [11], [15], [16], [17], [18], [19]. There is also an extensive

defined by body of work devoted to the numerical determination of the
1 = f(s) Kramers-Kronig transforms [16].
(Hf)(x)=—=P ds, 1) Weideman [17] studied the numerical evaluation of the
T o T — 8

Hilbert transform of a functiorf € L?(R) using an expan-
where P designates the Cauchy principal value, which casion technique in terms of the eigenfunctions of the Hilbert

be expressed as transform operator, which can be written as:
L [  f(s) on) = L pornen ()
(H) (@) =7 I, Uoo FEFLA e W= a

2) Weideman examined several examples, for which he ob-
The Hilbert transform is also defined using the oppositained the coefficients,,. For the casef(z) = 1/(1 + 22),
sign convention to that given in Eq. (1) is a linear operator the results are exact, since the function can be expanded
from LP(R) — LP(R), for 1 < p < oo [3], [13], [14], where in a compact closed form in terms of the eigenfunctions in

Eq. (6). For functions that decay in a significantly different
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Two similar methods are presented here for the numericglhich can be rearranged, using the propesty(—z) =
evaluation of the Hilbert transform in terms of a numerical—1)"u,,(x), to yield
series. . o

In our first approach, the Hilbert transform is expressed,,, = Z o (—i)" [1 _ (_1)n+m] / U (), () dz.
in terms of an expansion of Hermite functions, which are 0

eigenfunctions of the Fourier transform operator. We start o _ _ (19)
by expanding our function of interest (assumedI3{R)) The non-vanishing terms in the previous sum are those for
as which n +m is odd. Letm = 2k andn = 2j + 1, for any
> k, j non-negative integers, then
Z Uy @)
fhak = _ZZQQJ-‘FI ) I (20)

whereu,, (z) are the orthonormal Hermite functions, defined
in terms of the standard Hermite polynomidls,(x) by:

un(‘r) = ;Hn(x)eiag/a (8)
V2rnly/m W2k+1 = Z agj(—1)" 1k, (21)
and the coefficients,, are determined from:
o wherel} ; is defined b
| st d. (9) b /

and if m = 2k 4+ 1 andn = 2j, then

Iy =2 uok(x)ug,11 () do. 22
An analysis of convergence issues associated with the h /0 2(@)uzj+1 () 22)
expansion in Eq. (7) can be found in the work of Boyd [20]. ysing the key connection between the Fourier and Hilbert

We define the operator transforms [3], [13], [14],
7 =sgnz 7, (10) (FH[)(x) = —i sgnz (Ff)(x), (23)
where sgn: denotes the signum function: it follows from Eq. (12) and employing Eq. (16), that
1 , T > 0 9]
sgnz={ 0 , 2=0, (12) (Hf) @) = —iF (Z umum@)) (z)
-1 , =<0 m=0
and F stands for the Fourier transform operator, a unitary - i L™t (). (24)

operator onZ?(R). It is obvious that7 is a linear isometric
(bounded) operator oh?(RR), therefore it is continuous. The
action of 7 on the functionf(x) can be also expanded in
the same basis set:

Rewriting Eqg. (24) to account for the even and odd
contributions ofm and substituting Egs. (20) and (21), leads
to the final result:

oo

T = 2 pmenl) B wp@ = -0 ) Y asl
k=0 j=0

where the coefficientg,,, can be expressed as:

00 + (—1)*ugpy1 (z Y aoiI; k. (25)
Mo, = / sgnz (F f)(x)um(x) d. (13) kZ:o ]ZO
Thel} ; integral can be evaluated from Eq. (22) by using a
relationship between I—ge)rmite polynomials and the associated
Laguerre polynomialg *’ (z), and employing the change of
n n 14 ; A
sgne (Ff) (@ Z O SGNT (Fun) (), (14) variablet = z?, to obtain

— 00

Applying 7 to Eq. (7), it follows that:

n=0
where we have used the fact tiatis linear and continuous. ; (—1)F ok F1/2E1 1 LY L (1)t ar
The basis functions., (x) satisfy [21]: W 2025+ D' b / '
N (26)
(Fun)(z) = (=)"un(2) 15 The integral in Eq. (26) can be solved in terms of the
and gamma function'(z), by writing both polynomials as a
(F up)(x) = i"up (). (16) series inZ{Y and then employing the orthogonality relation
. o for Laguerre polynomials, to yield
Employing Eq. (15) allows Eq. (14) to be simplified to .
(=1/2) (1/2) —t
L (LY (t) e " dt
sgnz (Ff)(x) = sgnz Zan un(z).  (17) /o g !
1 . 3
_ o (k+3)T (j+3) 27
On substituting Eq. (17) into Eq. (13) leads to the follow- 725 — 2k + 1)k + DT + 1)’
ing result for the coefficientgs,,,: so that
00 ‘ ~00 —1)ktiQk+i+3/20 (b YT (7 4+ 3
= Zan(fz)"/ SONT Uy, () uy () da, (18) Iyj = (-1 ( + 2) (] + 2)_ (28)
—o0 73/2(25 — 2k + 1)/(2k)!(25 + 1)!
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TABLE |

The preceeding formula can be expressed in terms Ofyact HiLBERT TRANSFORMS FOR THE FUNCTIONS INVESTIGATED

double factorials as

NUMERICALLY.

, (—1)*+7y/2(2k — 1)!1(25 + 1)!! (29) Case f(z) (Hf)(=)
k,jg — A - . —ax?
(2 — 2k + 1)/7(2k)!(25 + 1)! (ea>0) G(a,x)

Equation (25) reflects the fact that the Hilbert transform ze~ %% 2Gla, z) — —
of an even function is an odd function andlce versa. (“>0)2 var
When the functionf(z) is even or odd, the right-hand side z?emor 22G(a, 7) — —
reduces to only one double sum because ewgfy 1 Or asy, (@a>0) . rvan
respectively, is zero. Furthermore, for functions for which all cos(bx)e™** e—az?|m {eibzerf [\/5 (i n m)} }
o are zero form greater than a finite value, the secon (@>0b2>0) 2a
summation of both terms is a finite sum. e~all sgnz [e*l#| By (ale]) + e=*1* Ei(ale])]

The second numerical approach investigated involves ap- G T 0) T —
plying the Hilbert transform directly to Eq. (7), to obtain 6 122 1122

o]

(H)(@) nz:;)a"H ln(@)]- (30) I1l. COMPUTATIONAL APPROACH

For the numerical evaluation of the Hilbert transform we
have selected the test functions displayed in Table I. These
unctions show a range of different asymptotic decays and
?heir Hilbert transforms can be evaluated analytically, and
therefore provide useful test cases for numerical comparison.

For notational compactnes§(a,z) is used to denote
the Hilbert transformH[e*”Q/Q], for a > 0, and can be
expressed as

where we have made use of the fact tihais a continuous
operator onL?(R). Therefore, the right-hand side converge
in the norm sense. If we expand explicitly the Hermit
polynomials, we can write:

HAE) = 7 32 ol
n=0

Vi, 2
+ 2 2V D asnax(? (31) G(a,x) = —ie~*erf(iv/az). (36)
n=0

The special functions appearing in Table | are the expo-

where nential integral functions, defined by (see for example [22],
) . 228
W Gy [a2n-mg=a/] p. 228) | o et
e mzzo 4mm!(2n — 2m)! (32) Biz) = —F .t " 4D
and and o
n (_1)mH |:$2(n—m)+1e—w2/2:| Ey (Z) = / n dt, (38)
NREDY (33) o
= 4mml(2n — 2m + 1)! and Im denotes the imaginary part.
For the test functions employed, the corresponding expan-
The Hilbert transforms H[z2(n—me=="/2] and Sion coefficientsy, obtained from Eq. (9) are tabulated in

H[$2(n—m)+1e—x2/2] can be reduced in closed formTable Il _In these cases, they can be evaluated in_ clqsed
to the functionH[e*zz/Q], and the latter can be evaluatedo'™m, which is an obV|ou_s advantage_ for the appllca_tlon
[3] as: of our method, and we will use them in the con_wputaﬂons
reported. However, this approach does not require that the
expansion coefficients be known explicitely, as they can
be determined numerically by Gauss-Hermite quadrature or
where erfz) denotes the error function, defined by ([22], pether numerical integration methods in a straightforward

Hie /%] = —ie="Perf(iz/V/3), (34)

297) manner. In this tablel(a, z) denotes the incomplete gamma
2 [F _p function and; Fi (a; b; z) designates the Kummer confluent
erf(z) = ﬁ/o e dt. (35) hypergeometric function.

It is obvious that if the function has a well defined parity,

One of the strengths of this approach occurs when thaly non-zero coefficients with either an even or odd index
function of interest can be expanded in a finite series usiagse.
Eq. (7), then the Hilbert transform can be computed accu-We note parenthetically that it is easy to find examples
rately. Only one infinite series is encountered for a genemghere the«,, expansion coefficients can be determined
function of interest, not taking into account the particulaginalytically, but the Hilbert transform cannot be evaluated
evaluation strategy foH [xke‘”ﬁ/Q , whereas in the Fourier in a simple closed form, for example:
transform approach, two infinite series will be encountered

in many cases.

f(z) =log |x|e*‘”2, for a > 0. (39)
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TABLE Il
EXPANSION COEFFICIENTS OF DIFFERENT TEST FUNCTIONS

fx) Expansion coefficientsva,, Or aon41
z2me—as’ (2n)/m i (=13 @m +2n - 25)! (a+ 1)’
(014 =
(a > 0) T im0y )R 0 im0 - )
2 j=
p2mt 1 g—az? (2n + DIVF i (—1)1(2m+2n+272j)!(a+%)1
o = -
(a>0) e grintd (o4 1) o mtn 4 1= )l +1-2))
. .
i 1\J 1 . 1. —b?
cos(bac)e_‘“”2 N (2n)lvr  — (=1 (a+ 5) 171 (5 —Jtngs 2(1+2a))
2n = 1 ) 3
+1 I(n—5)!
(a>0,b>0) 2n(a+§)" i jln—3)
2773 /2n) & (—1)7 1 11 a?
= - r —J+ = )1F —J+ ===
o—alz| 2n /4 Z8Jj!(2n—2j)! (" it 2)1 L\"mIt g
=0
(a>0) 3 a2
— V2al(n—j+ 1)1 F (n—j+1;5;%ﬂ
1 ey e\/%z”:(—l)fr(j—wr%,%)
14 2 dan = o i — )
=0

The present approach is demonstrated by first consideringrhat is, the Hilbert transform can be evaluated using

the simple example

flx) = 2me=z"/2, (40)

Since this function is even, it can be expanded us
Eq. (7) only containing terms with even indexes. Thu

Eq. (25) simplifies to:

(Hf) (@) =Y (=D ugra(z) Y (~1)azljx.  (41)
= j=0

k=0 J

Let us consider the particular test cage= 1, then the
expansion coefficients arey = 7'/4/2, ay = n'/*/21/2,
oo, = 0 for n > 1, and hence

(Hf)(z) = \/ g Z(—l)k (\/QIO,IC - Il,k) Uop41().
= (42)
As a second example, consider

flx) = pimtle—a®/2, (43)

(Hf)(z) = (%)ml—] {tQmeftz/Q} ( 2a$) , (46)

.nand the expansion in Eq. (41).
9YFor the preceding examples in Eqgs. (40), (43) and (45),

The Hilbert transform can be found in terms of a single infi-
nite series, which is most effectively evaluated by applying
convergence acceleration techniques, when direct summation
is too inaccurate. We now focus on the general case where
a finite series for Eq. (7) cannot be obtained, resulting in a
double infinite series. To apply a convergence accelerator to
the general case we make use of an interchange of order of
summation [23] for Eq. (25), transforming the double infinite
series to a combination of finite and infinite series of the
form:

%) k

Z(fl)k Z i+ 1dk—j,j ua(h—j) ()

—0 §=0

(Hf)(x) =

k
+ (_1)kza2jlj,k—j u2(k,j)+1(:(;). (47)

k
o0
=0 j=0

k

In an analogous fashion, the expansion coefficients can bd-ive different convergence accelerators were tested: these

found, and Eq. (25) simplifies to

(Hf)(@) == (=DFusp(z) Y (1) agjialy;. (44)
k=0 7=0

In the two preceeding examples, the functions can be
written as a finite series using Eq. (7), and the resultir{ﬂ

Hilbert transform contains a single infinite series.

A slightly more generalized example is the followin

function wherea > 0, anda # 1/2,

f(z) = 2?mema7", (45)

were the Levinu [24] and Levin#’ [25], [26] transforma-
tions, the Weniger-1 and Weniger-2 [26], [27], [28] transfor-
mations, and the Wynga-algorithm [29], [30].

IV. RESULTS ANDDISCUSSION

Using the exact formulas from Table | we were able to test
e numerical evaluations for the two different approaches. A
comparison of the numerical results obtained using Eq. (31),

QNith the exact evaluations of the Hilbert transform for the

test functions is shown in Table IlI.
The test functions 1-4 gave the best results, with the
number of significant digits decreasing as the value of

and the expansion coefficients are displayed in Table Il. Theincreased. These four test functions exhibit a Gaussian
resulting Hilbert transform now involves two infinite seriesbehaviour similar to the Hermite functions, () and hence

However, it should be noted that a rescaling of the expansitite expansion coefficients obtained from Eq. (9) are ex-
variable leads to the inner series expansion being a finite symacted to converge rapidly. The test functions 5 and 6 gave

which yields a more efficient numerical approach.
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TABLE Il

TABLE |. THE VALUES @ = 12/11 AND b = 11/13 HAVE BEEN EMPLOYED.

Case|| zo

(Hf)(wo)

(from the exact result)

(Hf)(wo)

(numerical result)

1/4 || 0.2920051338671717464647163
0.595985918897246073259537
7 0.07479733191561997571

6 0.2920051338671717464647165
0.595985918897246073259513
0.07479733191561997524

[y

1/4 || -0.445977651041350169480472
0.0770069843891029671629
7 0.0046023889011967239

[ -0.445977651041350169480471
0.0770069843891029671619
0.0046023889011967220

0.07700698438910296716288
7 0.032216722308377067

1/4 -0.111494412760337542370118 -0.11149441276033754237014

0.07700698438910296716301
0.032216722308377080

)

1/4 0.3370871404860270460661

0.3370871404860270460659

A COMPARISON OF NUMERICAL VALUES FOR THEHILBERT TRANSFORM VERSUS THE EXACT EVALUATION FOR THE TEST FUNCTIONS GIVEN IN

4 1 0.559773149180786017822 0.559773149180786017818
7 0.062416237155745896 0.062416237155745869
1/4 0.3157 0.3184
5 1 0.4027 0.4036
7 0.0798005012 0.0798005051
1/4 0.2352941 0.2352957
6 1 0.500000 0.500008
7 0.14000 0.14013
functions have an asymptotic decay that closely matche: a(x)
Gaussian function, and as a result the expansion coefficie
converge much more slowly. By examining either Eq. (31 002 T
or Eg. (47), we see that the only difference between tl .
numerical Hilbert transform of two different functions is the 001 <L
expansion coefficients associated with that function. Th oo .
indicates a direct correlation between the behaviour of tl ) 20" oy 60- 80".'.'-'.‘,':100 k
expansion coefficients and the rate of convergence of t = C
Hilbert transform. -0.01 .o
For functions with a Gaussian character, the expansion
the present work will improve on the accuracy obtained usir  -0.02

the expansion of Weideman [17]. This is expected because
the choice of basis functions for the expansion. As we mowv.
to functions exhibiting slower rates of asymptotic decay, the, | piot of the individual termsu(z) for the Hilbert transform
expansion of Weideman will lead tg higher accuracy. F@elculated from Eq. (48) for case 4 with= 1.

example, for cases lik¢(z) = 22e™" ¢ > 0, the present
approach gives a very compact closed form expansion, which
can be evaluated with high efficiency. Here the preseghd analyzing the individual termsg (z) for case 4 with: =
approach is significantly better in both computational spegd the sequence behaved in a non-monotonic manner with
and accuracy compared with the Weideman approach, whiigkgular signs, as shown in Fig. 1. This would be somewhat
for a case likef (z) = (1+2?)~" we encounter the oppositesimilar to the terms generated from the functién(kz)/k.
situation, where the latter technique leads to a closed foggy this situation, Wynn's algorithm is expected to be the
solution with only two terms, and the approaches describaghst suitable choice for convergence acceleration [31].
in this work would require much more computational ef- the | evin and Weniger convergence accelerators offered
fort. For cases mchdmg some oscnlatory beha\gour, f%ratisfactory accuracy, but less compared to the Wynn
example, working withf(x) = (cosz + sinz)e™ OF  gia5rithm. Based on the form of the series, the performance
f(x) = 555ze™"» we have found that the computationahy this method is not surprising [31]. Table IV shows a com-
speed of both approaches is similar, but the accuracy is befigfison of the convergence accelerators employed using the
with the approach of the present work. test functionf (z) = cos(bz)e~**" and employing Eq. (47).
With respect to the performance of the convergence accg¢he other test functions exhibited similar trends in the
erators employed in this work, the best results were obtaingdative precision for the different convergence accelerators
using the Wynne-algorithm. On writing the general result,investigated, so the results in Table IV are representative of
given by Eq. (47), in the form: the observed trends.
From Table Il we can see that the numerical method
(48) works well for functions exhibiting a Gaussian asymptotic
behavior. By examining the expansion coefficients in Fig. 2

(Hf) @)=Y (),
k=0
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TABLE IV
A COMPARISON OF THE DIFFERENT CONVERGENCE ACCELERATOR
METHODS USING THE FUNCTIONf(z) = cos(bx)e™**" . THE VALUES
a=12/11 AND b = 11/13 HAVE BEEN EMPLOYED.
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Fig. 2. Comparison of the expansion coefficients for cases 4né 6.
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