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Abstract—This paper presents an application of a Type-2
Fuzzy Inference System for fault detection and diagnosis (FDD)
in an alternative gas compressor (Sales Gas Compressor - SGC)
of a Gas Processing Unit (GPU). The SGC system operates
at high loads compressing about 2.5 million cubic meters
of natural gas per day. Due to this its operation conditions
comprises high temperatures that can trip the system and
shutdown the whole unit. In order to avoid such events a
FDD system is needed. FDD systems reduce downtime, improve
security operation and can contribute to reduce operational
costs. Furthermore, early fault detection can extend the process
life cycle preventing product deterioration as well as material
and human damage.

Index Terms—fault detection and diagnosis, fuzzy c-means,
instrumentation, interval type-2 fuzzy logic

I. INTRODUCTION

IN the last three decades process control and automation

area had a tremendous improvement due to advances

on computational tools. Many of regulatory control actions

that were performed by human operators are now performed

automatically with aid of computers. Nonetheless, in a pro-

cess with hundreds of variables, instruments and actuators

it is impossible that a person or a group can manage every

and any alarm triggered by an abnormal event. Therefore

the Fault Detection and Diagnosis (FDD) field had received

extensive attention. According to [1], the current challenge

for control engineers is the automation of Abnormal Event

Management (AEM) using intelligent control systems. Inside

this field, Instrument Fault Detection and Diagnosis is a

potential tool to prevent process performance degradation,

false alarms, missing actions, process shutdown and even

safety problems. A well-known strategy related to this pro-

blem is preventive maintenance. In that, periodical tests and

calibration are made in instruments. This is a cumbersome

task where instruments are dismantled, cleaned, reassembled

and calibrated. Even so, this is not a guarantee that faults

will not occur [2]. This paper presents an Interval Type-

2 Fuzzy Logic (IT2FL) classifier to detect and diagnose

temperature sensor faults in an alternative compressor, named

Sales Gas Compressor (SGC), operating in a Gas Processing

Unit (GPU).

II. INSTRUMENT FAULT DETECTION AND DIAGNOSIS -

IFDD

Fault Detection and Diagnosis is concerned with detecting

an abnormal event and finding its localization. FDD tech-

niques use two basic approaches based on a priori knowledge
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Universidade Federal da Bahia - UFBA, Salvador, BA, CEP 40.210-630
Brasil e-mail: vitor.e.a@gmail.com

Fig. 1. Type-2 fuzzy set.

about the process: model-based and process history-based.

The former, also known as analytical redundancy, generates

residuals between the process and its model in order to detect

changes in parameters or variables of the process. In the

latter a large amount of historic process data is required

to extract features about the process that will be used in

the diagnostic system. This feature extraction consists of

a data transformation. Two transformation approaches can

be adopted, namely, quantitative and qualitative [1], [3].

In the quantitative case, the feature extraction comprises

the use of statistical methods such as Principal Component

Analysis (PCA) or non-statistical methods based on Artificial

Neural Networks (ANN) and Fuzzy Logic (FL). Most of

the IFDD techniques use model-based techniques (analytical

redundancy) due to the high costs required to implement

hardware redundancy which needs at least three sensors to

isolate a fault. In cases in which data measurement is noisy

and incomplete or analytical model is not available, artificial

intelligence techniques are good alternatives [2], [4], [5]. The

recent popularity of process history-based methods is related

to the complexity of industrial plants and the difficulty to

model them, which also justifies the application of such a

method to detect and diagnose faults in this work.

III. FUZZY LOGIC

In [6] Zadeh introduced the concept of Type-2 Fuzzy Sets

(T2FS) generalizing his former concept of ordinary fuzzy

sets - Type-1 Fuzzy Sets (T1FS). In a T1FS membership

functions are crisp and not capable of handling uncertainties.

Otherwise in a T2FS membership functions are themselves

fuzzy with each primary membership grade having a se-

condary grade [7] (Fig. 1).
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Fig. 2. Interval type-2 fuzzy logic system.

According to [8] this generalization enables modeling

and minimizing the effect of uncertainties present in rule-

based fuzzy inference systems. Although, a simplification is

required in order to reduce the computational complexity of

the general type-2 fuzzy sets operations. This simplification

is achieved using interval type-2 fuzzy sets represented by

an upper and a lower membership function defining the

Footprint of Uncertainty (FOU). These are just simple T1FS

and are “very useful when we have no other a priori

knowledge about membership function uncertainties” [9].

An Interval Type-2 Fuzzy Logic System (IT2FLS) has

five subsystems; fuzzifier, fuzzy inference system (FIS), rule-

base, type-reducer and defuzzifier (Fig. 2).

The FIS subsystem uses many rules with some of them

extracted from data and others from surveys applied to

experts. To extract rules from data, [9] used a supervised

clustering technique employing statistics to determine the

mean and the standard deviation for each pattern. Another

way to extract rules is using unsupervised clustering. A well-

known technique used in unsupervised clustering is the Fuzzy

C-means (FCM) [10]. The FCM algorithm comprises the

minimization of the following cost function:

J =

n
∑

k=1

c
∑

i=1

µm
ik‖xk − vi‖

2
(1)

Where n is the number of data points, c is the number of

clusters, xk is the k-th data point, vi is the i-th cluster center,

µik is the degree of membership of k-th data in the i-th

cluster and m is a constant that express cluster fuzziness, also

called fuzziness exponent [11]. The degree of membership

µik is defined as

µik =
1

∑c
j=1

(

‖xk−vi‖
‖xk−vj‖

)2/(m−1)
(2)

According to [10] the quality of the FCM solution depends

on the choice of the number of clusters, c. In this work

the Xie-Beni index [12] was used to find the value of

c that minimizes the FCM cost function (1). The results

obtained from the FCM algorithm are presented in two

vectors, one containing the cluster centers vi and another

containing the degree of membership µik. From the latter it is

possible to obtain continuous membership functions for rules

antecedents based on Gaussian function approximation [13].

With this procedure, Gaussian type-1 fuzzy sets, centered at

clusters center, are generated.

Here, an interval type-2 fuzzy set for the antecedent in

each rule must be defined. One way to achieve this goal

is to use the FCM algorithm with two values for fuzziness

TABLE I
PATTERNS DATA POINTS.

Pattern 0 1 2 3 4 5 6 7 8

Hours 8 4 7 1.6 4 4 2 4 4

Data Points 954 482 844 194 482 482 241 482 482

exponent (m1 and m2), resulting in two vectors of degrees

of membership and two vectors of clusters centers. Then, a

Gaussian function approximation using each cluster center as

median is applied in the corresponding vector of membership

degrees. According to [14], with this procedure two standard

deviations, resulting in a “two-sided” Gaussian interval type-

2 fuzzy set, are obtained to represent the T2FS with better

accuracy.

IV. IFDD SYSTEM

In a GPU the gas delivered to consumers is pumped

through an alternative SGC compressor. This alternative

machine presents high vibrations and one of the parts that can

be affected by this vibration are the temperature instruments

used to detect high temperature values and avoid mechanical

damage in the machine cylinders. The vibrations often cause

breaks in the temperature instruments triggering false alarms

that trip the SGC and causes the shutdown of the entire unit.

The IFDD system proposed and presented in this work has

the purpose to detect these false alarms and prevent undesired

SGC trips.

Analyzing the data from the temperature instruments it

was identified nine patterns, one representing the normal state

(no-fault state) and eight patterns of fault state. The fault state

was subdivided in two types of faults, namely, bias state (with

two patterns) and broken state (with six patterns).

To extract the rules that will compose the knowledge base

of the IFDD system we used a sample of process history

data associated to each pattern, comprising a total period of

39 hours of operation. Each sample contains data points with

a sampling period of 30 seconds. Table I presents the total

period (in hours) of the sample associated to each pattern

and the sample size in each case.

The patterns for each state are presented in Fig. 3 to

11. The normal state is characterized by a temperature

range of operation between about 75◦C and 95◦C (Fig. 3).

Temperature values between 100◦C and 140◦C are associated

to sensor bias as shown in Fig. 4 and 5. The span range of

the instrument is 0◦C to 200◦C and temperature values above

160◦C trigger the high-high alarm, tripping the SGC.

Fig. 6 to 11 show patterns of broken sensors. Fig. 6 and

7 show broken sensors with readings near 0◦C and 200◦C,

respectively. Both sensors are faulty, since temperature values

never reach these extremes. Fig. 8 and 9 show disperse

readings indicating a situation where the instrument is broken

but the SGC vibrations interfere with instrument signal

transmission and produce a lot of noise. Fig. 10 and 11

present patterns that characterize a common situation of

broken instrument with readings at 0◦C or 200◦C.

After selecting the patterns, the IT2FL system was struc-

tured comprising 20 antecedents and one consequent for each

rule. The fuzzy operations used were max-product composi-

tion, product implication and centroid type-reduction. The
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Fig. 3. Pattern 0 - Normal state.
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Fig. 4. Pattern 1 - Bias state
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Fig. 5. Pattern 2 - Bias state.

only difference from the classical FL system is the rule

aggregation that was not used. Following [15], the “winner

takes all” strategy was adopted where the output of the fuzzy

classifier is the class of the rule with the highest degree of

activation.

The number of clusters (Table II) and consequently the

number of rules was determined using the Xie-Beni index,

using fuzziness exponent values m1 = 1.5 and m2 = 3.0.

The FCM algorithm was computed twice, once for each

fuzziness exponent. Four vectors were obtained from FCM,

two related to the clusters centers and the others related to
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Fig. 6. Pattern 3 - Broken state.
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Fig. 7. Pattern 4 - Broken state.
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Fig. 8. Pattern 5 - Broken state.

TABLE II
PATTERNS WITH NUMBER OF CLUSTERS AND CORRESPONDING

CLASSES.

Pattern 0 1 2 3 4 5 6 7 8

Cluster Number 7 2 3 8 9 4 4 4 4

Class 0 1 1 2 2 2 2 2 2

the respective degrees of membership. Two-sided Gaussian

functions were generated providing the Interval Type-2 Fuzzy

Set for each rule antecedent.
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Fig. 9. Pattern 6 - Broken state.
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Fig. 10. Pattern 7 - Broken state.
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Fig. 11. Pattern 8 - Broken state.

The consequent part for each rule is represented by a

type-1 triangular membership function with a universe of

discourse [0; 2]. Three linguistic variables (or classes) were

considered for the consequent and the respective parameters

(position of the vertices of each triangular membership

function) are shown in Table III.

In order to test the performance of the IFDD system the

“leaving-one-out” error method [16] was adopted. This is

a well-established strategy based on the “cross-validation”

methods [17]. The error rate is defined as the ratio between

TABLE III
CONSEQUENTS CLASSES, PARAMETERS AND LABELS.

Class 0 1 2

Label Normal Bias Broken

Parameters [0, 0, 0.5] [0.5, 1.0, 1.5] [1.5, 2.0, 2.0]

the number of wrongly classified points and the total number

of data points (sample size). Table IV summarizes the results

of the simulation tests.

TABLE IV
PATTERNS ERROR RATE.

Pattern 0 1 2 3 4 5 6 7 8

Error 4.30% 7.47% 0.83% 0.00% 0.00% 0.42% 0.00% 0.00% 0.00%

The IFDD system presented an error of 4.30% in the

classification of situations of pattern 0 (normal state). In these

cases the IFDD system triggered false alarms of broken state.

On the other hand, for patterns 1 and 2 (bias states) the IFDD

system classified as broken 7.47% and 0.83% of the data,

respectively, when it should be classified as bias.

The most challenging pattern was number 5 (broken state)

due to its behavior (see Fig. 6). In this case, the IFDD system

detected correctly 99.58% of the data, returning as normal

only two of these data (0.42%).

V. CONCLUSION

In a GPU each SGC trip implies in at least two hours

of shutdown until the SGC system can be restarted, which

represents a cost of thousands of dollars for the company.

This work shows the potentiality, simplicity and viability of

a fuzzy inference system using only interval type-2 fuzzy

sets to instrument fault detection and diagnosis. The IFDD

system developed can be applicable and useful for a variety

of real-world systems.

Real data of a commercial gas plant were used as a case

study and the IFDD system presented a good performance

in the prediction of eight different patterns, without the

application of any tuning method. Notably, the worst result

was an error of 7.47% (pattern 1) in a situation where a

misclassification can occur without tripping the SGC.

Further improvements can be done applying genetic al-

gorithm for optimization of fuzzy sets parameters or using

artificial neural networks to build a self-evolving system.
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