
 

 

 

  

Abstract — Power maximization approach is applied for 

dynamical chemical engines and static solid oxide fuel cells 

(SOFC) treated as power generators. Performance curves of a 

dynamical chemical engine and a static SOFC system are 

analyzed. Hamiltonian based algorithm is displayed and applied 

in optimization of static and dynamic models. Dynamic chemical 

engine is optimized subject to the period constraint and criterion 

of total power produced. Also, a steady state model of a 

high-temperature fuel cell is optimized, which refers to constant 

chemical potentials of incoming hydrogen fuel and oxidant. 

Lowering of the cell voltage below its reversible value is 

attributed to polarizations (activation, concentration and ohmic) 

and imperfect conversions of reactions. Power formula 

subsumes effects of efficiency, transport laws and irreversible 

polarizations. The reversible electrochemical theory is extended 

to the cases of efficiency lowering; these cases include systems 

with reduced affinities and an idle run voltage. Optimum 

conditions are found for definite currents. Power data differ for 

power generated and consumed, and depend on system’s 

characteristics (current intensity, mass transfer coefficients, 

polarization, electrode surface area, etc.). They provide bounds 

for power generators, which are more exact and informative 

than classical reversible bounds for the chemical or 

electrochemical transformation. 

 
Index Terms—Keywords. Resources, chemical efficiency, 

electrochemical efficiency, entropy production, engines.  

I. INTRODUCTION 

Limited amount or flow of resources working in engines 

causes lowering of resource potentials in time (chronological 

or spatial). Consequently, all studies of the resource 

downgrading in engines apply the methods of dynamic 

optimization [1]. From the optimization viewpoint, dynamical 

process is every one with sequence of states, developing 

either in the chronological time or in (spatial) holdup time. 

The first group refers to unsteady processes in non-stationary 

systems, the second group may involve steady state systems. 

Approaches of finite rate thermodynamics to power systems 

lead to solutions which describe various forms of limits on 

power and energy generation (consumption), including, in the 

dynamical cases, finite-rate extensions of standard 

availabilities [1].  

In this research we treat power limits in (static and 

dynamical) chemical or electrochemical power systems 

driven by fluids that are restricted in their amount or 

magnitude of flow, and, as such, are the system resources. A 
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power limit is an upper (lower) bound on power produced 

(consumed) in the system. A resource is a valuable substance 

or energy used in a process; its value is often quantified by 

specifying its exergy, a maximum work that can be obtained 

when the resource relaxes to the equilibrium. Reversible 

relaxation of the resource is quantified by the classical exergy. 

When dissipative phenomena prevail, generalized exergies 

play a role. In fact, generalized exergies quantify deviations 

of the real system’s efficiencies from the perfect (reversible) 

efficiencies.  

An exergy type function is obtained as the standardized 

potential which is the component of solution to the variational 

problem of extremum work under suitable boundary 

conditions. Other components of the dynamic solution are 

optimal trajectory and optimal control. In purely thermal 

systems (those without chemical changes) the trajectory is 

characterized by temperature of the resource fluid, T(t), 

whereas the control is Carnot temperature T’(t) defined in our 

previous work [1, 2]. For chemical and electrochemical 

systems Carnot chemical potential(s) µ’k(t) also play a role. 

Whenever T’(t) and µ’k(t) differ from T(t) and µk(t) the 

resource relaxes with a finite rate, and with an efficiency 

vector different from the perfect efficiency. Only when T’ = T 

and µ’k(t) = µk(t) the efficiencies are ideal, but this 

corresponds with an infinitely slow relaxation rate of the 

resource (for example the resource relaxation to the 

thermodynamic equilibrium with the fluid of the lower 

(second) reservoir). The concept of Carnot controls can be 

applied to both static and dynamical power systems working 

in quite diverse configurations. 

The structure of this paper is as follows. Section II displays 

a canonical Hamiltonian algorithm which is particularly 

suitable for dynamic problems of power optimization. Basic 

properties of steady chemical generators are recalled in Sec. 

III, and their theory is extended to dynamic systems in Sec. 

IV. Section V presents a discrete optimization algorithm for a 

dynamical chemical engine. Power outputs of steady-state 

electrochemical engines (fuel cells) are analyzed in Sec. VI. A 

theoretical assessment of limits on real power yield in 

thermo-electrochemical systems is presented in Sec. VII. 

Section VIII summarizes main findings of the paper.  

The size limitation of our paper does not allow for inclusion 

of all derivations to make the paper self-contained, thus the 

reader may need to turn to some previous works, [1] - [6].  

II. HAMILTONIAN ALGORITHMS 

 

The dynamic changes for the discrete state of a multistage 

system can be described by a set of ordinary difference 

equations called the state transformations which describe the 

discrete state Xn = (xn, tn) from the stage n-1 in terms of the 
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state from the stage n and some control variables U
n
. Fig.1 

illustrates the corresponding block scheme. 
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Figure 1. A block scheme of general dynamical process. 

 

The set of discrete state transformations can be written in 

the following general form 
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and   
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t t θ− = − ,          (2) 

 

where Xn = (xn, tn) and  ( ),
n n nθ=U u  is an enlarged vector 

of control variables which includes the discrete interval of 

time 
nθ , and the time variable t

n
 is identified with any state 

variable growing monotonically. After defining the function 
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the above state transformations can be transformed into the 

form [7, 8] 

 

           nnnnnnnn t θθ ),,,( uxfxx −=1−      (4) 

and 

 nnn
tt θ−=1−          (5) 

 

As they involve the discrete rates  (f
n
, 1), we call this form the 

“standard form”.  

A performance index describing a generalized profit is in 

this formalism (total power in our case) is defined by the 

following equation 

        nnnnnn
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where f0 is the generation rate for the generalized profit 

(power in the case of energy  yield problems). To solve the 

optimization problem of extremum W, a (enlarged) 

Hamiltonian is defined in the following form 

 

1−

1=

1−
0

1−1−

++

≡

∑ n
t

s

i

nnnnn
i

n
i

nnnnn

nnnnnn

ztfztf

tH

),,,(),,,(

),,,,(
~

θθ

θ

uxux

uzx
   (7) 

where zi are adjoint (Pontryagin’s) variables [1]. 

In an optimal process the enlarged Hamiltonian 1~ −n
H  

satisfies in the enlarged phase space x = (x, t) and z = (z, zt) the 

following equations: 
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(adjoint equations), and the equations which describe the 

necessary optimality conditions for decision variables un. For 

example, if the optimal control lies within an interior of 

admissible control set 
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[7, 8]. Equation (10) implies constancy of the enlarged 

Hamiltonian along a discrete optimal path whenever discrete 

rates fi are independent of θn. In addition, the energy-like 

Hamiltonian (without zt term) is constant for the process 

whose rates are independent of time t
n
. Under the convexity 

properties for rate functions and constraining sets the optimal 

controls are described by the following equations 
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(n=1,...N; i=1,...s+1 and j  =1,...r.)  

 

Optimization theory for generalized (θθθθn
 -dependent) costs 

and rates [7,8] provides the bridge between constant-H 

algorithms [9,10] and more conventional ones such as those 

by Katz [11], Halkin [12], Canon et al. [13], Boltyanskii [14], 

and many others. Since, as shown by Eq. (10), control θn can 

be included in the Hamiltonian definition, i.e. an effective 

Hamiltonian can be used H
n-1

 = 1−n
H
~

θn
, extremum conditions 

(8)-(13) can be written in terms of H
n-1

. The related canonical 

set is that of Halkin   
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[12]. Qualitative difference between the role of controls un 

and θn
 in the optimization algorithm is then lost since they 

both follow from the same stationarity condition for 

Hamiltonian H
n-1 in an optimal process. For example, in the 

weak maximum principle 
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in agreement with Eqs. (10) and (11) above. Moreover, Eq. 

(16) implies the necessary condition (10) if the discrete model 

is independent of time interval θ. 

To date Hamilonian algorithms were used in power systems 

for models with θ- independent discrete rates [15]. Yet, 

Poświata and Szwast have shown many their applications in 

exergy optimization of thermal and separation systems, in 

particular fluidized dryers [7,16]. Sieniutycz has shown some 

other applications for energy and separation systems and for a 

minimum time problem [8].  In view of diversity of discrete 

rates, which may contain explicit time intervals θ as the 

consequence of various ways of discretizing, applications of 

algorithm (4) - (13) in power or separation systems may be 

quite appropriate and useful. In particular, the algorithm is 

suitable in numerical studies of the optimal solutions for the 

discrete equations of the unsteady chemical engine in Fig. 2. 

III. CHEMICAL SYSTEMS WITH STEADY POWER OUTPUT 

Thermodynamic approaches can be applied to power 

optimization in chemical and electro-chemical engines. In 

chemical engines, Fig. 2, mass transports drive transformation 

of chemical energy into mechanical power. Yet, as opposed to 

thermal machines, in chemical ones generalized streams or 

reservoirs are present, capable of providing both heat and 

substance [6].  

 
 

Figure 2. Scheme of a chemical engine controlled by a suitable 

choice of Carnot variables T’and µ’. 

 

Large streams or infinite reservoirs assure constancy of 

chemical potentials. Problems of maximum of power 

produced or minimum of power consumed are then static 

problems. For a finite “upper reservoir”, however, the amount 

and chemical potential of an active reactant decrease in time, 

and considered problems are those of dynamic optimization 

and variational calculus. This motivates the use of the 

optimization algorithm presented in Sec. II.  

Because of the diversity and complexity of chemical 

systems the area of power producing chemistries is broad. The 

simplest model of power producing chemical engine is that 

with an isothermal isomerization reaction, A1-A2=0 [5, 6]. 

Power expression and efficiency formula for the chemical 

system follow from the entropy conservation and energy 

balance in the power-producing zone of the system (‘active 

part’). In an ‘endoreversible chemical engine’ total entropy 

flux is continuous through the active zone. When a formula 

describing this continuity is combined with energy balance we 

find in an isothermal case 

 

  121 −= np )( '' µµ ,                       (17) 

               

where n1=n is an invariant molar flux of reagents for the 

reactor with a complete conversion. Process efficiency ζ is 

defined as power yield per molar flux, n, i.e. 

 

'2'1/ µµζ −== np             (18) 

 

This efficiency is identical with the chemical affinity of our 

reaction in the chemically active part of the system. While ζ is 

not dimensionless, it describes correctly the system.  

In terms of Carnot control, µ’, [1], the efficiency is 

 

2−′= µµζ .                                    (19) 

 

For a steady engine the following function describes Carnot 

control µ’ in terms of fuel flux n = n1 and its mole fraction x 
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An associated formula defines the chemical efficiency in 

terms of flux n and mole fraction x. Its consequence is the 

sketch of flux n in terms of efficiency in Fig.3  
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Figure 3. Fuel flux n in a chemical engine in terms of the efficiency 

of power production ζ . 
 

Equation (21) shows that an effective concentration of the 

reactant in upper reservoir  x1eff = x1 – g1
-1

n is decreased, 

whereas an effective concentration of the product in lower 

reservoir x2eff = x2 + g2
-1 n is increased due to the finite mass 

flux. Therefore, as shown in Fig.3, the fuel flux, n, decreases 

nonlinearly with the efficiency ζ. When the effect of 

resistances 1−
kg is ignorable, the reversible efficiency, ζC, can 

be attained, yet for finite resistances and efficiencies in the 

vicinity of ζC fuel flux n must be very small. Extensions of Eq. 

(21) are available for complex multireaction systems [12].  

The power function, described by the product p=ζ(n)n, 

exhibits a maximum for a finite value of the fuel flux, n. The 

location of optimal n may be found from the graph of power 

 engine range 
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p=ζ(n)n. This “static” case of the optimization is described in 

details in the previous publications [1,5,6].  

IV. OPTIMIZATION OF POWER IN DYNAMIC SYSTEMS 

 

For the reaction considered, a related dynamical problem 

may be formulated. It refers to a cascade of small engines in 

Fig.2. Application of Eq. (21) to an unsteady system leads to a 

work function describing the dynamical limit of the system 
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(X=x/(1-x).) Here X=x/(1-x) and j equals the ratio of upper to 

lower mass conductance, g1/g2 [6]. The path optimality 

condition may be expressed as the constancy condition for the 

following Hamiltonian 
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For  low rates and large concentrations X  (mole fractions x1 

close to the unity) optimal relaxation rate is approximately 

constant. Yet, in an arbitrary situation optimal rates are state 

dependent so as to preserve the constancy of H in Eq. (23). 

The Hamiltonian H in Eq. (23) is of “energy type”, which 

means that it is an additive component of the enlarged 

Hamiltonian of Sec. 2. In the optimal process both 

Hamiltonians differ by a constant time adjoint zt,   
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As zt is constant in optimal autonomous systems the 

maximization of each Hamiltonian with respect to controls 

leads to the same optimality conditions. 

The analytical theory for the optimal criterion (22) leads to 

a partial differential equation usually called the 

Hamilton-Jacobi-Bellman equation (HJB equation [1,10]) 
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(25) 

where u=dX/dτ1. As it is impossible to solve this equation 

analytically, we describe below numerical solving based on 

the Bellman’s method of dynamic programming (DP; [17]).  

V. DISCRETE MODEL FOR NUMERICAL OPTIMIZATION  

 

Considering computer needs we introduce a related discrete 

scheme. In the discrete optimization context one has to search 

for the maximum of the performance index 
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( 21 / ggj ≡ ) with the difference constraints 
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We search for maximum of the sum (26) subject to discrete 

constraints (27) and (28). In particular, the task includes the 

defining a solving algorithm for the discrete set in question 

and conditions when the numerical schemes of dynamic 

programming for the set (26)-(28) converge to solutions of the 

Hamilton-Jacobi-Bellman equation (25), [4].  

While the analytical treatment of Eq. (25) is a quite difficult 

task, it is quite easy to solve numerically the related Bellman’s 

recurrence equation of dynamic programming (DP; [17]). 

Consequently, we apply the DP method to search for the 

solution of Bellman’s recurrence equation. In terms of cost 

function nn
fl 00 −≡ a general form of this equation is 
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where Rn (xn, tn) = min (-Wn) is the function describing the 

problem in terms of the minimum of power consumed. This is 

a function of optimal cost type. In an isothermal case x=X1, 

u=u and t=τ1. Applying Eq. (29) to the problem described by 

Eqs. (26) - (28), leads to the following recurrence equation 
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This is the discrete recurrence structure whose solution 

approximates for large number of stages the solution of the 

continuous HJB equation ( 27). Numerical solving of Eq. (30) 

is quite easy. Low dimensionality of the state vector in Eq. 

(30) assures a decent accuracy of DP solution. Moreover, an 

original accuracy can be significantly improved after 

performing the so-called dimensionality reduction associated 

with the elimination of time t
n
 as the state variable. In the 

transformed problem, without coordinate t
n
, accuracy of DP 

solutions is high (see Chapters 7 and 9 of book [1]). 

VI. ELECTROCHEMICAL ENGINES: FUEL CELLS 

 

Power maximization approaches can also be applied to 

electrochemical engines, in particular fuel cells [18, 19].  

A fuel cell (Fig.4) is an electrochemical energy converter 

which directly and continuously transforms a part of chemical 

energy into electrical energy by consuming fuel and oxidant. 

Fuel cells have attracted great attention by virtue of their 

inherently clean and reliable performance. Their main 

advantage as compared to heat engines is that their efficiency 

is not a major function of device size. 

Voltage lowering in fuel cells below the reversible value is 

often a good measure of their imperfection.  
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Figure 4. Principle of a solid oxide fuel cell 

 

Reversible cell voltage E0 is often a reference basis 

calculated from the Nernst equation. Yet, in more general 

cases, actual voltage without load must take into account 

losses of the idle run, which are the effect of flaws in electrode 

constructions and other imperfections.  

In [19] the operating voltage of a cell is evaluated as the 

departure from the idle run voltage E0 

 

V = E0 - Vint= E0 -Vact -Vconc - Vohm    (31) 

 

Losses, which are called polarization, include three main 

sources: activation polarization (Vact), ohmic polarization 

(Vohm), and concentration polarization (Vconc). Activation and 

concentration polarization occurs at both anode and cathode 

locations, while the resistive losses occur throughout the cell.  

An example of the experimental data of voltage and power 

in a SOFC is shown in Fig. 5.  

 

 
Figure 5. Voltage-current density and power-current density 

characteristics of the SOFC for various temperatures. 

Continuous lines represent the Aspen PlusTM calculations 

testing the model consistency with the experiments. These lines 

were obtained in Wierzbicki’s MsD thesis supervised by S. 

Sieniutycz and J. Jewulski [19]. Points refer to experiments of 

Wierzbicki and Jewulski in Warsaw Institute of Energetics ([19] 

and ref [18] therein). 

 

Power density is the product of voltage V and current 

density i. Large number of approaches for calculating 

polarization losses has been presented in literature, as 

reviewed in [18]. Both theory and experiments show power 

maxima in fuel cells [18,19]. As the voltage losses increase 

monotonically with current, the initially increasing power 

begins finally to decrease for sufficiently large currents, so 

that the emergence of power maxima is obvious [18, 19].  

Power effects in thermal and electrochemical systems can 

be treated jointly (Sec. VII). Power data subsume effects of 

irreversible transports, reversible voltage and the detrimental 

effect of the idle run attributed to the electrode flaws.  
 

VII. THEORETICAL POWER LIMITS IN ELECTROCHEMICAL 

GENERATORS 

 

Theoretical evaluation of power limits in (electro)chemical 

generators and fuel cells is an important problem. Let us focus 

on fuel cells described by the formalism of inert components 

[20, 21] rather than the ionic description [22].  

Assume, for simplicity, that the active (power producing) 

driving forces involve only: one temperature difference, 

single chemical affinity and an operating voltage φ1 - φ2. A 

generalization involving more affinities is obvious.  

Total power production is the sum of thermal, substantial 

and electric components, i.e.  
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After introducing the enlarged vector of all driving potentials  

µ~ = (T, µµµµ, V), the flux vector of all currents and the overall 

resistance tensor R
~

, Eq. (32) can be written in a simple 

matrix-vector form 
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Maximum power corresponds with the vanishing of the partial 

derivative vector 
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Therefore, the optimal (power-maximizing) vector of currents 

at the maximum point of the system can be written in the form 
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This result means that the power-maximizing current vector  

in strictly linear systems equals one half of the purely 

dissipative current at the Fourier-Onsager point,  at which no 

power production occurs. Moreover, we note that Eqs. (33) 

and (35) yield the following result for the maximum power 

limit of the system 
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In terms of the purely dissipative flux vector at the  

Fourier-Onsager point,  the above limit of maximum power is 

represented by an equation 
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Of course, the power dissipated at the Fourier-Onsager point 

equals 
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:
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Equations (37) and (38) prove that, in linear systems, only at 

most 25% of power (38), dissipated in the natural transfer 

process, can be transformed into the noble form of the 

mechanical power. This is a general result which, probably, 

cannot be easily generalized to nonlinear transfer systems 

where significant deviations from Eq. (37) could be possible 

depending on the nature of diverse nonlinearities. Despite of 

the limitation of the result (37) to linear transfer systems its 

value is significant because it shows explicitly the order of 

magnitude of thermodynamic limitations in power production 

systems. The above analysis also proves that a link exists 

between the mathematics of the thermal engines and fuel 

cells, and also that the theory of fuel cells can be unified with 

the theory of thermal and chemical power generators.  

VIII. CONCLUSIONS  

 

This research provides data for the power production limits 

which are enhanced in comparison with those predicted by the 

classical thermodynamics. Our power limits are 

“thermokinetic” rather than “thermostatic”. In fact, 

thermostatic limits are often too far from reality to be really 

useful. Generalized limits, obtained here, are more exact and 

informative than those predicted by the thermostatic theory. 

As opposed to the limits of classical thermodynamics, 

generalized limits depend not only on state changes of 

resources but also on process resistances, process direction 

and mechanism of heat and mass transfer.  

Common methodology was developed for thermal, 

chemical and electrochemical systems. Fuel cells are included 

into this methodology. It is shown that, with irreversible 

thermodynamics, we can predict power limits for quite 

diverse practical systems.  

The future of power production will certainly include fuel 

cell systems. The fuel cell operates continuously generating 

electricity as long as the fuel and oxidant are supplied. In fact, 

fuel cells have recently attracted great attention by virtue of 

their inherently clean, very efficient, and reliable 

performance. Major advantage of fuel cells compared to heat 

engines is that their efficiency is not a major function of 

device size. Fuel cells are particularly suitable when they are 

used in relatively small systems requiring very clean energy.  

In this paper effect of incomplete conversions in SOFC’s 

has been modeled by assuming that substrates can be 

remained after the reaction and that side reactions may occur. 

Optimum and feasibility conditions are discussed for basic 

input parameters of the cell. The developed FC model 

describes the performance of fuel cells at various operating 

conditions. Lowering of SOFC efficiency is linked with 

polarizations (activation, concentration and ohmic) and 

incomplete conversions. Power limits for fuel cells are 

obtained in terms of parameters such as efficiency, resource 

input, and electric current density. Experiments confirm that 

the power data differ for power generated and consumed, and 

depend on system’s parameters, e.g., current intensity, 

number of mass transfer units, polarizations, electrode 

surface, average chemical rate, etc.. These data define bounds 

for SOFC energy generators, which are more informative than 

the familiar reversible bounds evaluated for electrochemical 

transformations. 

 

REFERENCES  

[1] S. Sieniutycz and J. Jeżowski, Energy Optimization in Process 

Systems, Chap.3, Elsevier, Oxford, 2009. 

[2] S. Sieniutycz, “Carnot controls to unify traditional and work-assisted 

operations with heat & mass transfer”, International J. of Applied 

Thermodynamics, 6 (2003), 59-67. 

[3] S. Sieniutycz, “Complex chemical systems with power production 

driven by mass transfer”, Intern. J. of Heat and Mass Transfer, 52 

(2009), 2453-2465. 

[4] S. Sieniutycz, “Dynamic programming and Lagrange multipliers for 

active relaxation of fluids in non-equilibrium systems”, Applied 

Mathematical Modeling, 33 (2009), 1457-1478. 

[5] A. de Vos, Endoreversible Thermodynamics of Solar Energy 

Conversion, pp.30-41, Oxford University Press, Oxford, 1994.  

[6] S. Sieniutycz, “An analysis of power and entropy generation in a 

chemical engine,” Intern. J. of Heat and Mass Transfer 51 (2008) 

5859–5871. 

[7] A. Poświata, Optimization of Drying Processes with Fine Solid in 

Buble Fluidized Bed, PhD thesis, Faculty of Chemical & Process 

Engineering, Warsaw Technological University Press, Warsaw 2005. 

[8] S. Sieniutycz, “State transformations and Hamiltonian structures for 

optimal control in discrete systems”, Reports on Mathematical Physics 

57 (2006), 289-317. 

[9] S. Sieniutycz, “The constant Hamiltonian problem and an introduction 

to the mechanics of optimal discrete Systems”, Reports of Inst. of 

Chem. Eng. at Warsaw Tech. University, 3(1974), 27-53. 

[10] S. Sieniutycz, Optimization in Process Engineering, 2-nd edn, 

Wydawnictwa Naukowo Techniczne, Warszawa, 1991. 

[11] L. T. Fan and C.S. Wang, The Discrete Maximum Principle, A Study of 

Multistage System Optimization, Wiley, New York, 1964. 

[12] H. Halkin, “A maximum principle of the Pontryagin type for systems 

described by nonlinear difference equations”, SIAM J. Control, ser. A, 

4(1966), 528-547. 

[13] M.D. Canon, C.D., Cullun and E.R. Polak, Theory of Optimal Control 

and Mathematical Programming,  Wiley, New York, 1972. 

[14] V.G. Boltyanskii, Optimal Control of Discrete Systems, Nauka, 

Moscow, 1973. 

[15] S. Sieniutycz and R.S. Berry, “Discrete Hamiltonian analysis of 

endoreversible thermal cascades”, Chap. 6 (p. 143-172) in: S. 

Sieniutycz and A. de Vos, eds, Thermodynamics of Energy 

Conversion and Transport, Springer, New York, 2000. 

[16] A. Poświata and Z. Szwast, “Optimization of fine solid drying in 

bubble fluidized bed”, Transport in Porous Media, 2 (2006), 785-792.  

[17] R.  E.  Bellman, Adaptive Control Processes: a Guided Tour, 

Princeton, University Press, 1961, pp.1-35. 

[18] Z. Zhao, C. Ou and J. Chen, “A new analytical approach to model and 

evaluate the performance of a class of irreversible fuel cells,  

International Journal of Hydrogen Energy, 33(2008), 4161- 4170. 

[19] M. Wierzbicki, Optimization of SOFC Based Energy System Using 

Aspen PlusTM, MsD Thesis, The Faculty of Chemical and Process 

Engineering, Warsaw University of Technology Press, Warsaw 2009. 

[20] B.R. Sundheim, “Transport properties of liquid electrolytes”, p.p. 

165-254 in B.R. Sundheim, ed., Fused Salts, Mc Graw Hill, New 

York, 1964. 

[21] A. Ekman, S. Liukkonen and K. Kontturi, “Diffusion and electric 

conduction in multicomponent electrolyte systems”,  Electrochemica 

Acta, 23(1978), 243-250. 

[22] J. Newman, Electrochemical Systems, Prentice Hall, Englewood 

Cliffs, 1973. 

Proceedings of the World Congress on Engineering 2011 Vol I 
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-18210-6-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011




