
 

 
Abstract—Although many works have been done to construct 

prediction models on yarn spinning performance, the relation 
between the spinning variables and the yarn properties has not 
been established conclusively so far. Support vector machines 
(SVMs), a new learning-by-example paradigm, are receiving 
increasing attention in different application domains for which 
artificial neural networks (ANNs) have had a prominent role. 
The SVM regression algorithms are briefly introduced in this 
study, and then SVM models for predicting yarn properties 
have been presented. Model selection which amounts to search 
in hyper-parameter space is performed for study of suitable 
parameters with Genetic Algorithms. The predictive powers of 
the SVM models are estimated by comparison with ANN 
models. The experimental results indicate that in the small data 
sets and real-life production, SVM models are capable of 
remaining the stability of predictive accuracy, and more 
suitable for noisy and dynamic spinning process. 
 

Index Terms—artificial neural network, genetic algorithms, 
support vector machines, yarn quality 
 

I. INTRODUCTION 

he textile manufacturing is a complex industrial process, 
ranging from the growth of plants and animals (for 

production of cotton and wool) to synthetic chemical 
processing (for fibers such as nylon, polyester, etc.), to rapid 
processing for converting fibers to yarns and yarns to fabrics. 
Along the textile chain, yarn quality always gets the privilege 
of greatest attention as it exerts decisive influence on the 
efficiency of winding, warping and weaving machines [1]. 
Spinners have always attempted to estimate yarn quality from 
existing spinning data in advance in order to select 
appropriate spinning parameters accordingly. However, the 
relation between the spinning variables and the yarn 
properties has not been established conclusively so far. The 
reasons are the high degree of variability in raw materials, 
multistage processing, and a lack of precise control on 
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process control [2]. Therefore, for a long time, many works 
have been done to construct prediction models, which can 
forecast the various yarn properties from the input fiber and 
process parameters. One of the first approaches has been the 
use of mechanistic models by some researchers such as 
Bogdan, Hearle et al [3]. The mathematical or “white” 
models developed again by Aggarwal and Frydrych are 
based on the physical knowledge of spun yarn mechanics [4]. 
These models are not only very appealing but also give 
thorough insight into the mechanism of yarn properties. 
However, to copy with the inherent complexity of yarn 
structural mechanics, some assumptions have to be 
introduced into these models. This ultimately leads to 
relatively low prediction accuracy of mathematical models. 
In addition, the empirical models such as linear multiple 
regressions, which use statistical techniques, have relatively 
higher predictive power. But they do not provide as deep an 
understanding of relationship between inputs and outputs as 
mathematical models. 

The widespread use of artificial intelligence (AI) has 
created a revolution in the domain of prediction modeling 
once more[5,6,7], which includes fuzzy logic model, case 
based reasoning (CBR) model and more popular artificial 
neural network (ANN) model etc. These models are termed 
as “gray box” and “black box” methods as they can connect 
the inputs and outputs without unearthing explicit physical 
information about spinning process. Among them, artificial 
neural network (ANN) has been one of the most universal 
methods for many prediction-related problems in textile 
production. Many researchers have reported the use of ANN 
for the prediction of yarn characteristics from fiber properties 
and processing information [7]. They found that the neural 
network provided a worthwhile alternative to regression 
techniques whenever the fiber/textile structural relationship 
contained significant nonlinearities.  

Although, ANNs are valuable machine learning modeling 
tools, provided enough rich data is available for modeling the 
process nonlinear relationships, they rely on empirical risk 
minimization (ERM). A shortcoming of artificial neural 
networks is that it is very difficult to intuitively know at what 
point the system will over-fit the data, which could result in 
ANN model instability [8]. The theoretical understanding of 
models which are based on minimization of the 
generalization error increase the degree of confidence of their 
use, particularly in noisy and dynamic environments such as 
those found in industry. The increasing quality demands from 
the spinner make clear the need to explore novel ways of 
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quality prediction furthermore. 
In recent years, support vector machines (SVMs), a new 

learning-by-example paradigm, are receiving increasing 
attention in different application domains for which artificial 
neural networks (ANNs) have had a prominent role, due to its 
many attractive features and promising empirical 
performance [8]. This systematic approach motivated by 
statistical learning theory led to a class of algorithms 
characterized by the use of kernels, the absence of local 
minima, the sparseness of the solution and the capacity 
control obtained by acting on the margin. Unlike ANN 
models, SVM models are based on the principle of structure 
risk minimization (SRM), which equips the later with greater 
potential to generalize. Since the foundation of the SVMs 
paradigm was laid down by Vapnik  and co-workers [9], 
applications in many engineering fields have emerged, such 
as wind speed prediction, quality monitoring, fault detection, 
and process optimization [8,10]. In this work, an attempt 
have been made to construct SVM models from spinning data 
sets in order to predict the yarn properties, while SVM model 
parameters optimized with Genetic Algorithms. Results have 
been compared with those of ANN models. The investigation 
shows that SVM predictive models have a reasonably good 
accuracy in most of cases, and more suitable for noisy and 
dynamic spinning process. The relative algorithm, model 
selection and experiments are presented in detail.  

II. SVM REGRESSION ALGORITHMS 

Consider a training data 

set )},(,),,(),,{( 2211 MM yxyxyxG  , such that N
i Rx   

is a vector of input variables and Ryi  the corresponding 

scalar output (target) value. Here, the modeling objective is 

to find a regression function, )(xfy  , such that it 

accurately predicts the outputs {y} corresponding to a new 
set of input–output examples, {(x, y)}, which are drawn from 

the same underlying joint probability distribution, ),( yxP , 

as the training set. To fulfill the stated goal, SVM considers 
the following linear estimation function: 
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where D
iiw 1}{  denotes the weight vector, b a constant known 

as “bias”, D
ii x 1)}({  a function termed feature. In SVM, the 

input data vector, x, is mapped into a high-dimensional 
feature space, F, via a nonlinear mapping 

function, D
ii x 1)}({  , and a linear regression is performed in 

this space for predicting y. Thus, the problem of nonlinear 

regression in lower-dimensional input space NR is 
transformed into a linear regression in the high-dimensional 
feature space, F. Accordingly, the original optimization 
problem involving nonlinear regression is transformed into 
finding the flattest function in the feature space F and not in 

the input space, x. The unknown parameters D
iiw 1}{   and b in 

Equation (1) are estimated using the training set, G. To avoid 
over fitting and thereby improving the generalization 

capability, following regularized functional involving 

summation of the empirical risk and a complexity term
2

w , 

is minimized: 
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where regR and empR denote the regression and empirical 

risks, respectively, 
2

w the Euclidean norm, 


yxf )( a 

cost function measuring the empirical risk and 0 a 
regularization constant. For a given function, f, the regression 

risk (test set error), regR , is the possible error committed by 

the function f in predicting the output corresponding to a new 
(test) example input vector drawn randomly from the same 

sample probability distribution, ),( yxP , as the training set. 

The empirical risk empR , represents the error (termed 

“training set error”) committed in predicting the outputs of 
the training set inputs. Minimization task described in 
Equation (2) involves: (i) minimization of the empirical loss 

function empR and, (ii) obtaining as small w as possible, 

using the training set G. Vapnik (1999) showed that the 
following function possessing finite number of parameters 
can minimize the regularized function in Equation (2): 
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with 0* ii , 0, * ii   and the kernel function 

),( xxk i describes the dot product in the D-dimensional 

feature space. 
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It is important to note that the features D
ii x 1)}({   need not 

be computed; rather what is needed is the kernel function that 
is very simple and has a known analytical form. The only 
condition required is that the kernel function has to satisfy 
Mercer’s condition. Some of the mostly used kernels include 
polynomial, radial basis function, and sigmoid. Note also that 
for Vapnik’s ε-insensitive loss function [9], the Lagrange 

multipliers *, ii   are sparse, i.e. they result in nonzero 

values after the optimization (2) only if they are on the 
boundary, which means that they satisfy the so-called 

Karush–Kuhn–Tucker conditions. The coefficients *, ii   

are obtained by maximizing the following form: 
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Only a number of coefficients *, ii  will be different from 

zero, and the data points associated to them are called support 
vectors. Parameters C and εare free and have to be decided 
by the user. Computing b requires a more direct use of the 
Karush–Kuhn–Tucker conditions that lead to the quadratic 
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programming problems stated above. The key idea is to pick 

those values for a point kx on the margin, i.e. k or *
k in 

the open interval (0, C). One kx  would be sufficient but for 

stability purposes it is recommended that one take the 
average over all points on the margin. Some advances and 
more detailed description of SVM for regression can be 
found in references [8, 10]. 

III. SVM MODELS DEVELOPMENT 

A. Model selection 

In any predictive learning task, an appropriate 
representation of examples as well as the model and 
parameter estimation method should be selected to obtain a 
high level of performance of the learning machine. In fact, 
the task of learning amounts to selecting the model of optimal 
complexity and estimating parameters from training data. In 
our study, ν-support vector regression machines were used. 
Under the approach, the usually parameters to be chosen are 
the following: 
 The penalty term C which determines the tradeoff between 

the complexity of the decision function and the number of 
training examples misclassified; 

 The sparsity parameter ν in accordance with the noise that 
is in the output values in order to get the highest 
generalization accuracy. 

 The kernel function such that ),( yxk .  

In this work, radial basis function (RBF) kernel, given by 
Equitation 6 is used: 

)2/exp(),( 22 yxyxK    (6) 

where σ is the width of the RBF kernel parameter.  
The RBF kernel nonlinearly maps samples into a higher 

dimensional space, so it, unlike the linear kernel, can handle 
the case when the relation between inputs and outputs is 
nonlinear. Furthermore, the linear kernel is a special case of 
RBF as Keerthi and Lin [11] shows that the linear kernel with 
a penalty parameter C has the same performance as the RBF 
kernel with some parameters (C, σ). In addition, the sigmoid 
kernel behaves like RBF for certain parameters. The second 
reason using RBF kernels is the number of hyper-parameters 
which influences the complexity of model selection. The 
polynomial kernel has more hyper-parameters than the RBF 
kernel. Finally, for the RBF kernel, it has less numerical 

difficulties; and a key point is 1),(0  yxk in contrast to 

polynomial kernels of which kernel values may go to infinity 
or zero while the degree is large. Moreover, it is noted that 
the sigmoid kernel is not valid (i.e. not the inner product of 
two vectors) under some parameters. 

B. Cross-validation 

There are three key parameters need choosing while using 
RBF kernels to model: (ν, C and σ). Unfortunately, it is not 
known beforehand which (ν, C and σ) are the best for one 
problem. The goal is just about to identify good (ν, C, and σ) 
so that the model can accurately predict unknown data (i.e., 
testing data). A common way is to separate training data to 
two parts of which one is considered unknown in training the 
model. Then the prediction accuracy on this set can more 

precisely reflect the performance on predicting unknown 
data. The procedure for improved model is called as 
cross-validation. The cross-validation procedure can also 
prevent the over-fitting problem furthermore. In this study, 
the regression function was built with a given set of 
parameters (ν, C, and σ) tuned by genetic algorithms (GAs). 
The performance of the parameter set is measured by the 
computational risk, here mean squared error on the last 
subset. The above procedure is repeated p times, so that each 
subset is used once for testing. Averaging the mean squared 
error (MSE, see Equation 7) over the p trials gives an 
estimate of the expected generalization error for training on 

sets of size l
p

p


1
, l is the number of training data. 
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where q is the sample number of tested subset in the training 

set; )( j
tiy and )( j

piy  are the thi observed value and predicted 

value under thj tested subset, respectively. 

C. Optimal Parameters with Genetic Algorithm 

Obviously, the selection of three parameters (ν, C, and σ) 
of a SVM model is very important to the accuracy of 
prediction. Because structural methods for determining three 
parameters efficiently are lacking, genetic algorithms (GAs) 
based on cross-validation are applied in the proposed SVM 
model to optimize parameters and improve generalization. 
Such algorithms are based on the principle of the survival of 
the fittest, which attempts to retain genetic information from 
generation to generation [12]. The major advantages of GAs 
are the capabilities for finding or near optimal solutions with 
relatively modest computational requirements. Fig.1 presents 
the iteration loop of the genetic algorithm, which is briefly 
described below. 

Step1 (Initialization) Construct randomly the initial 
population of chromosomes. 

Step2 (Evaluating fitness) Evaluate the fitness of each 
chromosome. In this study, the computational risk of SVM 
model, i.e. averaging the mean squared error (MSE, Equation 
8) is used as the fitness function. 

Step3 (Selection) Select mating pair, #1 parent and 2# 
parent, for reproduction. 

Step4 (Crossover and mutation) Create new offspring by 

Initial population 

Selection for 
reproduction 

Crossover Mutation 

Fitness evaluation 

Next generation 

Stop condition 

Fig.1 Iteration loop of genetic algorithm 
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crossover and mutation operations. 
Step5 (Next generation) Form a population for the next 

generation. 
Step6 (Stop condition) If the number of generation is equal 

to a given scale, or the value of fitness function is not 
changed for a long time, then the best chromosomes are 
presented as a solution, otherwise go back to step2. 

In the proposed GA-SVM model, the SVM parameters are 
dynamically optimized by implementing the real-valued GA 
evolutionary process and the SVM model then performs the 
prediction task using these optimal values. Namely, the 
real-valued GA tries to search the optimal values to enable 
SVM to fit various datasets. The optimal values of SVM’s 
parameters are searching by GAs with a randomly generated 
initial populations consisting of chromosomes. The values of 
the three parameters (ν, C, and σ), are directly coded in the 
chromosomes with real-valued data. The proposed model can 
implement either the roulette-wheel method or the 
tournament method for selecting chromosomes. Adewuya’s 
crossover method and boundary mutation method were used 
to modify the chromosome. The single best chromosome in 
each generation is survives to the succeeding generation. The 
proposed model was developed and implemented in the 
MATLAB v7.1 environment. The major tool for training and 
validating the SVM were those developed by Lin et al. [11]. 
The proposed model is able to handle huge data sets and 
easily be combined with the real-valued genetic algorithm in 
the MATLAB environment. 

IV. THE EXPERIMENTAL STUDY 

To demonstrate the generalization performance of SVM 
model used in yarn processing, the relevant experiments were 
completed, and comparisons with ANN models were given in 
our work. Artificial neural network (ANN) is also a powerful 
data modeling tool simulating the behavior of biological 
human neurons. The most representative back propagation 
algorithm in ANN modeling was employed herein. One 
hidden layer was used in the ANN models (for most cases, it 
was sufficient). The relationship between inputs and outputs 
of ANN model was completely same as the SVM model. The 
ANN algorithms and detail procedures of ANN modeling can 
refer to the report [13]. 

A. Data acquisition and preprocessing 

In this work, a small data set (a total of twenty-six different 
data samples) from real industrial process (worsted spinning) 
was acquired. To make problem more simply, like most ANN 
models[7], some fiber properties and processing information 
were selected as the SVM model’s inputs, which were mean 
fiber diameter (MFD, μm), diameter distribute (CVD, %), 
hauteur (HT, mm), fiber length distribution (CVH, %), short 
fiber content (SFC, %), yarn count (CT, tex), twist (TW, 
t.p.m), draft ratio (DR), spinning speed (SS, r.p.m), traveler 
number (TN). The two most important quality characteristics 
of the resulting yarn, namely elongation at break (EB, %) and 
break force (BF, cN), served as the SVM model’s outputs. 
Before training and modeling, the data in the process 
database had to be normalized so that they were bounded 
within the prescribed range of 1 and 0. Scaling of the original 

value )( iv from the process database was carried out 

according to Equation8. 

)min()max(

)min(

,,1,,1

,,1

nn

ni
i vv

vv
x








  (8) 

where ix  is the scaled value, and )min( ,,1 nv   and  

)max( ,,1 nv  are the respective maximum and minimum 

values within each original data array. 

B. Model training 

After selecting a suitable kernel function in SVM model, 
one of the primary aspects of training a SVM regression 
model is the selection of the sparsity parameter ν, the penalty 
term C and the width of the RBF kernel parameter σ. To 
search the three parameters adapting to our problems, the 
Genetic Algorithm Tool from the Matlab 7.1 software has 
been used to realize the optimization of three parameters (ν, 
C, and σ) of the SVM models. Besides, in the our study an 
SVM-implementation known as “ν-SVM” in the LIBSVM 
2.8 software library has also been used to train the two 
SVM-based models. The LIBSVM package utilizes a fast 
and efficient method known as sequential minimal 
optimization (SMO) for solving large quadratic 
programming problems and thereby estimating function 

parameters , *  , and b (see Eq.(2)). Table1 lists the final 
searching area and optimal values of the four SVM models, 
respectively. Before optimization parameters with genetic 
algorithm, “grid-search” method is used to explore the 
possible area of minimal risk in order to prevent the problem 
of local minimization in genetic algorithm. The “grid-search” 
experiments are illustrated as 3D surface plots and the 

(a) 

(b) 
Fig.2 3D surface plot (a) and contour map 
(b) for the predictive risk of BF (ν=0.54) 
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corresponding contour map for the computational risk (MSE) 
(see Fig.2 ~Fig.3). Usually, the “grid-search” need an 
iterative process to estimate the rough area of minimal risk, 
and then GAs are used to optimize the model parameters 
more accurately. The results of the model training based on 
GAs are shown in Fig.4. 

 

C. Experimental results 

After the completion of model development or training, 
the models based on SVM (and ANN) were both subjected to 
the unseen testing data set. Statistical parameters such as the 
correlation coefficient (R) between the actual and predicted 

values, mean squared error, and mean error (%), were used to 
compare the predictive power of the SVM and ANN models. 
Experimental results are shown in Table2. It has been 
observed that for ANN models, the mean error (%) of two 
predictive indices (EB and BF) is 22.80% and 13.67%, and 
especially, the correlation coefficient (R) of the EB is very 
low, shown as only 0.58. However, for SVM models, the 
mean error (%) of two predictive indices (EB and BF) is 
12.71% and 5.52%, and the correlation coefficient (R) of EB 
and BF is improved to 0.87 and 0.99. On the other hand, the 
cases with over 10% error also decrease from 4 and 3 in ANN 
models to 2 and 1 in SVM models respectively 

V. CONCLUSIONS 

Support vector machines are a learning-by-example 
paradigm with many potential applications in science and 
engineering. The salient features of SVM include the absence 
of local minima, the sparseness of the solution and the 
improved generalization. SVMs being a relatively new 
technique, their application on textile production have 
hitherto been quite limited. However, the elegance of the 
formalism involved and their successful use in diverse 
science and engineering applications confirm the 
expectations raised in this appealing learning from examples 
approach. In our study, the SVM models for predicting the 
yarn properties are presented and compared with the BP 
neural network models. The important parameters of SVM 
models to improve the model generalization are optimized 
using genetic algorithms. From the experiments, it has been 
found that the SVM model is able to predict to a reasonably 
good accuracy in most of cases. And a more interested 
phenomenon is that in small data set and real-life production, 
the predictive power of ANN models appears to decrease, 
while SVM models are still capable of remaining the stability 
of predictive accuracy to some extent. The experimental 
results indicate that SVM models are more suitable for noisy 
and dynamic spinning process. Of course, like other 
emerging industrial techniques, applied issues on SVM 
reaffirm the due commitment to their further development 
and investigation, such as the problems how to design the 
kernel function and how to set the SVM hyper-parameters (to 
make the industrial model development more easily). This 
study thus far has demonstrated that SVMs are able to 
provide an alternative solution for the spinners to predict yarn 
properties more correctly and reliably. With advancement of 
artificial intelligent techniques, one looks forward to the era 
in which much of the subjective decision-making in textile 
production will finally be replaced by more intelligent 
systems. 

 
TABLE1  

THE SEARCH AREA AND OPTIMAL VALUES OF ν, σ AND C 

Output parameter Searching area Optimal value 

Breaking force 
(cN) 

ν∈[0.3, 0.6] 
∈σ [0.01, 0.03] 
C∈[50, 150] 

ν=0.31 
σ=0.013 
C=101.7 

Elongation  
at break (%) 

ν∈[0.3, 0.6] 
σ∈[0. 01, 0.1] 

C∈[1, 15] 

ν=0.54 
σ=0.06 
C=1.86 

 
 

Fig.4 Plots of the best and mean values of the fitness 
function at each generation in SVM Models: (a) EB and (b) 

(a) 

(b) 

Fig.3 3D surface plot (a) and contour map (b)  for the 
predictive risk of EB (ν=0.54) 

(a) 

(b) 
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TABLE2  
THE PREDICTIVE POWER OF THE SVM AND ANN MODELS 

 Predicted values 

Sample No 
ANN Model SVM Model 

BF EB BF EB 

W21 113.89  13.57  116.24  13.40 

W22 61.91  14.56  76.87  12.94 

W23 153.46  5.32  156.57  15.55 

W24 61.91  14.56  76.87  12.94 

W25 47.00  9.99  76.86  12.88 

W26 66.76  13.00  66.62  13.03 

Correlation coefficient (R) 0.96  0.58  0.99  0.87  

Mean squared error 165.91 18.91 42.12 2.70 

Mean error% 13.67  22.80 5.52  12.71 

Cases with over 10% error 3 4 1 2 
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