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Abstract—This paper is dedicated to optimization of so-
called first order differential (PC) inclusions in gradient form
on a square domain. As a supplementary problem, discrete-
approximation problem is considered. In the Euler-Lagrange
form, necessary and sufficient conditions are derived for partial
differential inclusions (PC). The results obtained are based on
a new concept of locally adjoint mappings.

Index Terms—Locally adjoint mappings, discrete and differ-
ential inclusions, discrete approximation, necessary and suffi-
cient conditions

I. INTRODUCTION

MULTIVALUED mappings with ordinary and partial
differential inclusions are important tools by which

some problems from extensively developing fields of optimal
control theory can be descibed [1], [2], [3], [4]. Conse-
quently, a lot of problems in economic dynamics, classical
optimal control theory, especially in hydrodynamical engi-
neering, vibrations, chemical, heat, diffusion, i.e. processes
can be reduced to such researches. Some duality relations
regarding a variety of this kind of optimization problems
with partial differential inclusions are given in papers of
Mahmudov [1], [2], [3], [4], [5].

In this study feasible solutions of the considered dif-
ferential inclusions are taken from the space of absolutely
continuous functions with summable first partial derivatives.
Obviously, different classes of solutions for partial differen-
tial inclusions like classical, generalized, almost everywhere
can also be used for this purpose.

This paper is divided into three parts.
In Section II, optimization problems for discrete and then

corresponding partial differential inclusions including the
gradient vector of searched functions are posed. In terms
of Hamiltonian function to multivalued mapping the locally
adjoint mapping (LAM) is introduced and necessary and
sufficient conditions of optimality are formulated for non-
convex discrete inclusions. Moreover, as is shown in the
paper, the use of convex upper approximation (CUA) [6]
and local tents are very suitable to obtain the optimality
conditions for stated problems. Further such concept of LAM
and construction of convex and non-smooth analysis facilitate
to have a new necessary and sufficient conditions in the
Euler-Lagrange form.

In Section 3 the sufficient conditions, that are in the
Euler-Lagrange form, for optimality of partial differential
inclusions are formulated separately. As is seen from the
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considered examples, this form implies the Weierstrass-
Pontryagin maximum condition. Note that the adjoint partial
differential inclusion for continuous problem which involves
gradient function is expressed in terms of div (divergent)
operation.

Finally in the conclusion section, the work done in the
paper is summarized.

II. SUPPLEMENTARY DEFINITIONS AND THE STATEMENT
OF THE PROBLEM

The basic definitions and concepts used in this section
can be found in [3]. Let Rn be the n-dimensional Euclidean
space, (u1, u2) is a pair of elements u1, u2 ∈ Rn and
〈u1, u2〉 is their inner product. We say that a multivalued
mapping F : Rn → 2R

2n

is convex if its graph gphF =
{(u, υ1, υ2) : (υ1, υ2) ∈ F (u)} is a convex subset of
R3n. It is convex valued if F (u) is a convex set for each
u ∈ domF = {u : F (u) 6= ∅} . F is closed if gphF is a
closed set in R3n.

Let us introduce notations:

M(u, υ∗1 , υ
∗
2) = sup

v1,v2

{〈υ1, υ
∗
1〉+ 〈υ2, υ

∗
2〉 :

(υ1, υ2) ∈ F (u)}, υ∗1 , υ
∗
2 ∈ Rn,

F (u, υ∗1 , υ
∗
2) = {(υ1, υ2) ∈ F (u) :〈υ1, υ

∗
1〉+ 〈υ2, υ

∗
2〉 =

M(u, υ∗1 , υ
∗
2)}.

These function and set are called Hamiltonian function and
argmaximum set respectively. Assume that riA is relative
interior of a set A ⊂ Rn , i.e., is a set of interior points of
A with respect to its carrier subspace LinA.

Definition 1: A multivalued mapping F ∗ from R2n into
Rn that is defined by

F ∗(υ∗1 , υ
∗
2 ,(u

0, υ0
1 , υ

0
2)) ={

u∗ : (u∗,−υ∗1 ,−υ∗2) ∈ K∗F (u0, υ0
1 , υ

0
2)
}

is called locally adjoint mapping (LAM) to the convex
mapping F at the point (u0, υ0

1 , υ
0
2), where K∗F (u0, υ0

1 , υ
0
2)

is the cone dual to the cone KF (u0, υ0
1 , υ

0
2).

Definition 2: A multivalued mapping F ∗ defined by

F ∗(υ∗1 , υ
∗
2 , (ũ, υ̃1, υ̃2)) = {u∗ :

M(u, υ∗1 , υ
∗
2)−M(ũ, υ∗1 , υ

∗
2) ≤ 〈u∗, u− ũ〉,

∀(u, υ1, υ2) ∈ R3n
}
, (υ̃1, υ̃2) ∈ F (ũ, υ∗1 , υ

∗
2)

is called the LAM to non-convex mapping F at a point
(ũ, υ̃1, υ̃2) ∈ gphF .

A function g is said to be proper if it does not take the
value −∞ and is not identically equal to +∞.
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Lemma 1: Let F : Rn → R2n be a convex multivalued
mapping. Then

F ∗(υ∗1 , υ
∗
2 , (u, υ1, υ2)) ={

∂uM(u, υ∗1 , υ
∗
2), (υ1, υ2) ∈ F (u, υ∗1 , υ

∗
2),

∅, (υ1, υ2) /∈ F (u, υ∗1 , υ
∗
2).

At first we consider the following optimization problem (PD)
for discrete inclusions with distributed parameters:

minimize
∑

t=1,...,T
x=0,...,L−1

gt,x(ut,x) (1)

subject to (ut+1,x, ut,x+1) ∈ Ft,x(ut,x), (2)
and ut,L = αtL, t ∈ H1, u0,x = β0x, x ∈ L0 (3)

(α0L = β0L)

where H1 = 0, . . . , T − 1, L0 = 0, . . . , L, gt,x : Rn →
R1∪{±∞} are functions taking values on the extended line,
Ft,x is multivalued mapping Ft,x : Rn → 2R

2n

, and αtL, β0x

are fixed vectors. A set of points {ut,x}(t,x)∈H×L0
= {ut,x :

(t, x) ∈ H×L0, (t, x) 6= (T, L)}, H = {0, . . . , T} is called
a feasible solution for the problem (1) - (3) if it satisfies the
inclusion (2) and boundary conditions (3). It is easy to see
that, for fixed natural numbers T and L, the conditions (3)
enable us to choose some feasible solution, and the number
of points to be determined coincides with the number of
discrete inclusions (2). The following condition is assumed
below for the functions gt,x, t = 1, . . . , T, x ∈ L1, L1 =
{0, . . . , L− 1} and the mapping Ft,x.

Hypothesis 1: (H1) Suppose that in the problem (PD), the
mapping Ft,x is such that the cone KFt,x

(ũt,x, ũt+1,x,
ũt,x+1) of tangent directions is a local tent [3], [4], [5], where
ũt,x are the points of the optimal solution
{ũt,x}(t,x)∈H×L0

. Suppose, moreover, that the functions gt,x
admit a CUA [1], [2], [3], [4], ht,x(ū, ũt,x), at the points ũt,x
that is continuous with respect to ū. The latter means that
the subdifferentials ∂gt,x(ũt,x) = ∂ht,x(0, ũt,x) are defined.

The problem (PD) is said to be convex if the mapping
Ft,x is convex and the gt,x are convex proper functions.

Hypothesis 2: (H2) Assume that in convex problem (PD),
for some feasible solution {u0

t,x}(t,x)∈H×L0
one of the

following conditions is fulfilled:
(a) (u0

t,x, u
0
t+1,x, u

0
t,x+1) ∈ ri gphFt,x, (t, x) ∈ H1 ×

L1, u
0
t,x ∈ ri dom gt,x,

(t, x) ∈ H1 × L0

(b) (u0
t,x, u

0
t,x+1, u

0
t+1,x) ∈ int gphFt,x, (t, x) ∈ H1 ×

L1, (t, x) 6= (t0, x0) ((t0, x0) is the fixed pair) and gt,x
are continuous at the points u0

t,x.
In the Section 3 we study the convex problem for differ-

ential inclusions with distributed parameters:

minimize J(u(·, ·)) =

∫∫
R

g(u(t, x), t, x) dt dx

+

1∫
0

g0(u(1, x), x)dx (4)

subject to ∇u(t, x) ∈ F (u(t, x), t, x),

0 < t ≤ 1, 0 ≤ x < 1, (5)
and u(t, 1) =α(t), u(0, x) = β(x), α(0) = β(1),

R = [0, 1]× [0, 1], (6)

where ∇u = gradu =

(
∂u

∂t
,
∂u

∂x

)
.

Here F (·, t, x) : Rn → 2R
2n

is a convex multivalued
mapping, g(·, t, x) and g0(·, x) are continuous functions;
g : Rn×R→ R1, g0 : Rn× [0, 1]→ R1 and α(t) and β(x)
are absolutely continuous functions, α : [0, 1] → Rn, β :
[0, 1] → Rn. We label this continuous problem as (PC).
The problem is to find a solution ũ(t, x) of the boundary
value problem (5), (6) that minimizes (4). Here an admissible
solution is understood to be an absolutely continuous func-
tion satisfying almost everywhere (a.e) (5) with summable
first partial derivatives. Note that if u(·, ·) ∈ L1(R) has
generalized derivatives belonging to L1(R), then u(·, x) and
u(t, ·) are absolutely continuous functions for almost every
x and t, respectively.

At first we consider the convex problem (PD).
Theorem 1: Assume that Ft,x is a convex multivalued

mapping and gt,x are convex proper functions that are
continuous at the points of some feasible solution{
u0
t,x

}
(t,x)∈H×L0

. Then for the solution {ũt,x}(t,x)∈H×L0
to be an optimal solution of the problem (PD), it is necessary
that there exist a number λ = 0 or 1 and vectors {ut,x

∗} and
{ϕ∗t,x}, simultaneously not all zero such that:
(1) u∗t,x+ϕ∗t,x ∈ F ∗t,x

(
u∗t+1,xϕ

∗
t,x+1, (ũt,x, ũt+1,x, ũt,x+1)

)
−

λ∂gt,x(ũt,x), ∂g0,x (ũ0,x) ≡ 0, (t, x) ∈ H1 × L1,
(2) −u∗T,x ∈ λ∂gT,x(ũT,x), ϕ∗t,0 = 0.
Under the Hypothesis 2 (H2) the conditions (1) and (2) are
also sufficient for the optimality of

{
ũt,x

}
(t,x)∈H×L0

Theorem 2: Assume the Hypothesis 1 (H1) for the prob-
lem (PD). Then for {ũt,x}(t,x)∈H×L to be a solution of this
non-convex problem it is necessary that there exist a number
λ = 0 or 1 and vectors

{
u∗t,x

}
,
{
ϕ∗t,x

}
simultaneously not

all zero, satisfying the conditions (1) and (2) of Theorem 1.

III. SUFFICIENT CONDITIONS IN THE CONTINUOUS
PROBLEM (PC)

In this section, we formulate a sufficient condition for
optimality for the continuous problem (PC).

Theorem 3: Assume that the functions g(u, t, x) and
g0(u, x) are continuous and convex with respect to u, and
F (·, (t, x)) is a convex mapping for all fixed (t, x). Then for
the optimality of the solution ũ(t, x) it is sufficient that there
exist a solution ϕ∗(t, x), u∗(t, x) such that the conditions (i)-
(iii) hold:

(i)

− divψ(t, x) ∈F ∗ (ψ(t, x), ũ(t, x),∇ũ(t, x), t, x)

− ∂g(ũ(t, x), t, x), a.e.
ψ(t, x) = (u∗(t, x), ϕ∗(t, x)),

divψ(t, x) =
∂u∗(t, x)

∂t
+
∂ϕ∗(t, x)

∂x

(ii) ϕ∗(t, 0) = 0, −u∗(1, x) ∈ ∂g0(ũ(1, x), x). Let us
formulate the condition ensuring that the LAM F ∗ is
nonempty (see Lemma 1):

(iii) ∇ũ (t, x) ∈ F (ũ(t, x), ψ(t, x), t, x) a.e.
Theorem 4: Let ũ(·, ·) be some feasible solutions of a

non-convex problem (PC) and {u∗(·, ·), ϕ∗(·, ·)} be a pair
of a feasible solutions satisfying the conditions (i)-(iii):
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(i)

−divψ(t, x) + u∗(t, x) ∈
F ∗(ψ(t, x), (ũ(t, x),∇ũ(t, x)), t, x) a.e.

(ii)

g(u, t, x)− g(ũ(t, x), t, x) ≥ 〈u∗(t, x), u− ũ(t, x)〉,
∀u,

g0(u, x)− g0(ũ(1, x) ≥ 〈−u∗(1, x), u− ũ(1, x)〉,
ϕ∗(t, 0) = 0, ∀u

(iii) 〈ψ(t, x),∇ũ(t, x)〉 = M(ũ(t, x), ψ(t, x), t, x)

Then the solution ũ(t, x) is optimal.
In the conclusion of this section, we consider an example:

minimize J(u(t, x)),

subject to
∂u(t, x)

∂t
= A1u(t, x) +B1w(t, x)

∂u(t, x)

∂x
= A2u(t, x) +B2w(t, x),

w(t, x) ∈ V
u(t, 1) = α(t), u(0, x) = β(x)

(7)

where A1 and A2 are n×n matrices, B1, B2 are rectangular
n×r matrices, V ⊂ Rr is a convex closed set, and g and g0

are continuously differentiable functions on u. It is required
to find a controlling parameter w̃(t, x) ∈ V such that the
solution ũ(·, ·) corresponding to it minimizes J(u(·, ·)). In
this case

F (u) = {A1u+B1V,A2u+B2V }

By elementary computations we find that

F ∗(υ∗1 ,υ
∗
2 , (u, υ1, υ2)) ={

(A∗1υ
∗
1 +A∗2υ

∗
2), −B∗1υ∗1 −B∗2υ∗2 ∈ K∗V (w),
∅, −B∗1υ∗1 −B∗2υ∗2 /∈ K∗V (w)

where υ1 = A1u + B1w, υ2 = A2u + B2w. Then, using
Theorem 3, we get the relations

−divψ(t, x) =A∗1u
∗(t, x) +A∗2ϕ

∗(t, x)

−g′(ũ(t, x), t, x), (8)

〈w − w̃(t, x),−B∗1u∗(t, x)−B∗2ϕ∗(t, x)〉 ≥ 0, w ∈ V (9)

−u∗(1, x) = g′0(ũ(1, x), x), ϕ∗(t, 0) = 0 (10)

Obviously (9) can be written in the form

〈Bw̃(t, x), ψ(t, x)〉 = sup
w∈V
〈Bw,ψ(t, x)〉, (11)

where B =

(
B1

B2

)
Thus, we have obtained the following result.

Theorem 5: The solution ũ(t, x) corresponding to the
control w̃(t, x) minimizes J(u(·, ·)) in the Problem (7), if
there exists a solution, satisfying the conditions (8), (10),
(11).

Now, let us consider the following example:

minimize J(u(t, x))

subject to
∂u(t, x)

∂t
∈ Ω, Ω ⊂ Rn,

∂u(t, x)

∂x
= Cu(t, x) + w0(t, x),

w0(t, x) ∈ P ∈ Rn,

u(t, 1) = α0(t),

u(0, x) = β0(x),

(12)

where Ω and P are convex closed sets, C is n × n matrix,
g and g0 are continuously differentiable functions on u. Our
aim is to find a controlling parameter w̃0(t, x) ∈ P such that
the associated solution minimizes J(u(t, x)).

In this case according to the Problem (4)-(6) F = F1 ×
F2, where F1(u) = {Ω : u ∈ Rn} is a constant map and,
F2(u) = Cu+ P, P ⊂ Rn. It is easy to calculate that

M(u, v∗) = MF1
(u, v∗1) +MF2

(u, v∗2), v∗ = (v∗1 , v
∗
2) (13)

Here by MFi
(i = 1, 2) we denote the support functions of

the sets Fi. Now, on the Lemma 1 and Moreau-Rockafellar
theorem [6], it follows from (13) that

F ∗(v∗, (u,v)) = F ∗1 (v∗1 , (u, v1)) + F ∗2 (v∗2 , (u, v2)),

v = (v1, v2)

i.e. the LAM to the Cartesian product of multifunctions is a
sum of the corresponding locally adjoint mappings. But

F ∗1 (v∗1 , (u, v1)) =

{
0, −v∗1 ∈ K∗Ω(v1),
∅, −v∗1 /∈ K∗Ω(v1)

F ∗2 (v∗2 , (u, v2)) =

{
C∗v∗2 , −v∗2 ∈ K∗P (w0),
∅, −v∗2 /∈ K∗P (w0)

Consequently, we have

F ∗(v∗, (u, v)) = C∗v∗2 ; v∗1 ∈ K∗Ω(v1), −v∗2 ∈ K∗P (w0)

Then the conditions (i)-(iii) of Theorem 3 that suffices for
optimality give us the following conditions for this example.

−divψ(t, x) = C∗ϕ∗(t, x)− g′(ũ(t, x), t, x),

〈w̃0(t, x), ψ(t, x)〉 = sup
w0∈P

〈w0, ψ(t, x)〉,

−u∗(1, x) = g′0(ũ(1, x), x), ϕ∗(t, 0) = 0.

IV. CONCLUSION

At first the basic definitions and concepts, i.e. Hamilto-
nian function, argmaximum set, LAM to both convex and
nonconvex multivalued mappings, and the Lemma (1) which
can be considered as the core lemma for this paper are
given. Then the optimal control problem for discrete inclu-
sions with distributed parameters, and hypothesis required to
establish the sufficient conditions are given. The continous
problem of the same type is also expressed in gradent form.
Then the theorem which states the necessary conditions
for discrete problem in terms of some adjoint functions
and inclusions containing the LAM and states under some
hypothesis these necessary conditions are also sufficient are
formulated. Then the analogous conditions for the continous
problem is formulated in terms of an divergant operator.
These conditions are given in two theorems one for convex
the other for nonconvex problem. Finally two examples of
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continous problems one of which is a linear type and the
other of which is a constant convex type are stated and the
necessary and sufficient conditions to the respective problems
are formulated in order to have a better understanding of the
conditions.

As a future work the duality relations about this problem
can ben considered. It is expected that the dual problem
exhibits similar properties with other dual problems, i.e. they
should have strong relations with the optimality conditions.
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