
 

 
Abstract— Reduced differential transform method (RDTM), 

which does not need small parameter in the equation is 
implemented for solving the sine-Gordon equation. The 
approximate analytical solution of the equation is calculated in 
the form of a series with easily computable components. 
Comparing the methodology with some other known 
techniques shows that the present approach is effective and 
powerful. Three test modeling problems from mathematical 
physics, both nonlinear and coupled are discussed to illustrate 
the effectiveness and the performance of the proposed method. 

 
Index Terms— Reduced differential transform method, sine-

Gordon equations Variational iteration method. 
 

I. INTRODUCTION 

One of the most important of all partial differential 
equations occurring in applied mathematics is that 
associated with the name of sine-Gordon. The sine-Gordon 
equation plays an important role in the propagation of 
fluxons in Josephson junctions [1-3] between two 
superconductors, then in many scientific fields such as the 
motion of a rigid pendula attached to a stretched wire [4], 
solid state physics, nonlinear optics, stability of fluid 
motions. 

We consider the sine-Gordon equation  
sin( ) 0tt xxu u u           (1)  

subject to initial conditions  
( ,0) ( ), ( ,0) ( )tu x f x u x g x         (2)  

where u is a function of x and t,  f(x) and g(x) are a known 
analytic function. Many numerical methods were developed 
for this type of nonlinear partial differential equations such 
as the Adomian Decomposition Method (ADM) [5-9], the 
EXP function method [10], the Homotopy Perturbation 
Method (HPM) [11-13], the Homotopy Analysis Method 
(HAM) [14], the variable separated ODE method [4,15] and 
Variational Iteration Method (VIM) [16-17]. 

In this paper, we solve some sine-Gordon equations by 
the reduced differential transform method [18-20] which is 
presented to overcome the demerit of complex calculation 
of differential transform method (DTM) [21]. The main 
advantage of the method is the fact that it provides its user 
with an analytical approximation, in many cases an exact 
solution, in a rapidly convergent sequence with elegantly 
computed terms.  
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The structure of this paper is organized as follows. In 
section 2, we begin with some basic definitions and the use 
of the proposed method. In section 3, we apply the reduced 
differential transform method to solve three test examples in 
order to show its ability and efficiency. 

II. TRADITIONAL DIFFERENTIAL TRANSFORM METHOD 

A. One Dimensional Differential Transform Method 

The differential transform of the function  w x  is defined 

as follows: 

   
0

1

!

k

k

x

W k w x
k x



 
   

                         (3) 

where  w x  is the original function and   W k  is the 

transformed function. Here 
k

k

d

dx
 means the k  the derivative 

with respect to x . 
The differential inverse transform of  W k  is defined as 
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Combining (3) and (4) we obtain 
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From above definitions it is easy to see that the concept 
of differential transform is derived from Taylor series 
expansion. With the aid of (3) and (4) the basic 
mathematical operations are readily be obtained and given 
in Table 1. 

Table 1 One-dimensional differential transformation 
Functional Form Transformed Form 
   u x v x     U k V k                      

 cu x   cU k                             

 m

m

d u x

dx
    !

!

k m
U k m

k


              

     w x u x v x       
0

k

r

W k U r V k r


      

B. Two Dimensional Differential Transform Method 

Similarly, the two dimensional differential transform of 
the function  ,w x t  can be defined as follows: 

   
(0,0)
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, ,

! !

k h

k h
W k h w x t

k h x t

 
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                    (6) 

where  ,w x t  is the original function and  ,W k h  is the 

transformed function. The differential inverse transform of 
 ,W k h  is 

   
0 0

, , k h

k h

w x t W k h x t
 

 

 .                     (7) 

Then combining equation (6) and (7) we write 
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Therefore we can obtain basic mathematical operations of 
two-dimensional differential transform as follows in Table 
2. 

Table 2. Two dimensional differential transformation 
Functional 

Form 
Transformed Form 

   , ,u x t v x t     , ,U k h V k h   

 ,cu x t   ,cU k h  

 ,u x t

x




    1 1,k U k h   

 ,u x t

t




    1 , 1h U k h    

 ,r s

r s

u x t

x t


 

      ! !
,

! !

k r h s
U k r h s

k s

 
   

   , ,u x t v x t  
0 0

( , ) ( , )
k h

r s

U r h s V k r s
 

   

 
Now we can state our main results in the next section. 

III. ANALYSIS OF THE REDUCED DIFFERENTIAL 

TRANSFORM METHOD 

The basic definitions of reduced differential transform 
method are introduced as follows: 

Definition 1.  
If function  ,u x t  is analytic and differentiated 

continuously with respect to time t and space x in the 
domain of interest, then let 
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       (9) 

where the t-dimensional spectrum function  kU x  is the 

transformed function. In this paper, the lowercase  ,u x t  

represent the original function while the uppercase  kU x  

stand for the transformed function. 
The differential inverse transform of  kU x  is defined as 

follows: 

   
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, k
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k
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



  .        (10) 

Then combining equation (9) and (10) we write 
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From the above definitions, it can be found that the 
concept of the reduced differential transform is derived from 
the power series expansion. 

For the purpose of illustration of the methodology to the 
proposed method, we write the gas dynamic equation in the 
standard operator form 

     ( , ) ( , ) ( , ) 0L u x t R u x t N u x t         (12) 

with initial condition 
( ,0) ( )u x f x           (13) 

where ( ( , )) ( , )ttL u x t u x t  is a linear operator which has partial 

derivatives, ( ( , )) ( , )xxR u x t u x t ,    ( , ) sin ( , )N u x t u x t  is a 

nonlinear term. 
According to the RDTM and Table 3, we can construct 

the following iteration formula: 

 
2

2 2

( 2)!
( ) ( ) ( )

! k k k

k
U x U x N U x

k x
 

 


     (14) 

where  ( )kN U x  is the transformations of the functions 

 ( , )N u x t  respectively. 

Table 3. Reduced differential transformation [18-20] 

Functional Form Transformed Form 
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   , ,u x t v x t  ( ) ( )k kU x V x  

 ,u x t  ( )kU x  (  is a constant) 

m nx t  ( )mx k n   

( , )m nx t u x t  ( )mx U k n  
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( , )Nu x t  

Maple Code for Nonlinear 
Function 
restart; 
NF:=Nu(x,t):#Nonlinear Function 
m:=5:       # Order 
u[t]:=sum(u[b]*t^b,b=0..m): 
NF[t]:=subs(Nu(x,t)=u[t],NF): 
s:=expand(NF[t],t): 
dt:=unapply(s,t): 
for i from 0  to m do  
n[i]:=((D@@i)(dt)(0)/i!): 
print(N[i],n[i]); #Transform 
Function 
od: 

 
For the easy to follow of the reader, we can give the first 

few nonlinear term are 
 

 

   

0 0

1 0 1

2
2 0 2 0 1

sin ( )

cos ( ) ( )

1
cos ( ) ( ) sin ( ) ( )

2

N U x

N U x U x

N U x U x U x U x





 

 

From initial condition (2), we write 
0 ( ) ( )U x f x           (15) 

Substituting (15) into (14) and by a straight forward 
iterative calculations, we get the following ( )kU x  values. 

Then the inverse transformation of the set of values 
  0

( )
n

k k
U x


 gives approximation solution as, 

0

( , ) ( )
n

k
n k

k

u x t U x t


          (16) 

where n is order of approximation solution. 
Therefore, the exact solution of problem is given by 

( , ) lim ( , )n
n

u x t u x t


  .         (17) 

IV. APPLICATIONS 

To show the efficiency of the new method described in 
the previous part, we present some examples. 
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A. Example 1 

We first consider the homogeneous sine-Gordon equation 
[4,6,10,17] 

sin( ) 0tt xxu u u           (18) 

with initial conditions: 
( ,0) 0, ( ,0) 4sech( )tu x u x x        (19) 

where  ,u u x t  is a function of the variables x  and t . 

Now if we use the VIM, based on the correction 
functional given [17,22] 

2 2

1 2 2
0

( ) sin( )
t

n n
n n n

u u
u u t u d

x
 



  
       

  

then we will find it too difficult to evaluate the solution 
components because we should evaluate the integral 

0

( ) sin( )
t

nt u d  , which is not easily computed. So, the 

RDTM will be more efficient for this example. 
Then, by using the basic properties of the reduced 

differential transformation, we can find the transformed 
form of equation (18) as 

2

2 2

( 2)!
( ) ( ) ( )

! k k k

k
U x U x N x

k x
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 


.     (20) 

Using the initial conditions (19), we have 
0 1( ) 0, ( ) 4sech( )U x U x x         (21) 

Now, substituting (21) into (20), we obtain the following 
( )kU x  values successively 

3 43

5 6 75 7

4 1
( ) 0, ( ) , ( ) 0,

3 cosh ( )

4 1 4 1
( ) , ( ) 0, ( )

5 cosh ( ) 5 cosh ( )

kU x U x U x
x

U x U x U x
x x

   
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1
2

4 1
( 1) , for k is odd

cosh ( )( )

0, for k is even

k

k
k k xU x

  
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Finally the differential inverse transform of ( )U x
k

 gives  

 
1

2

1,3,... 1,3,...

( 1)
, ( ) 4

cosh ( )

k

k k
k k

k k

u x t U x t t
k x


 
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
     (22) 

Hence the closed form of (22) is 
   , 4arctan sec( )u x t t x          

which is the exact solutions of (18)–(19) (see Figure 1 and 
2). 

Figure 1. The numerical results for 7 ( , )u x y : (a) in 

comparison with the analytical solutions 
 ( , ) 4arctan sec( )u x t t x , (b) for the solitary wave solution with 

the initial condition of Example 1. 

 
Figure 2. The numerical results for 7 ( , )u x y (show in +) (a) 

in comparison with the analytical solutions 
 ( , ) 4arctan sec( )u x t x t (show in □) and VIM solution (show in 

--) for 10x  , (b) 20x  . 

 
 

B. Example 2 

Now, we will find the approximate analytical solution of 
the sine-Gordon equation 

sin( ) 0tt xxu u u           (23) 

with the initial conditions 
( ,0) cos( ), ( ,0) 0tu x x u x            (24) 

where 2

2
   and   is a constant. 

Taking differential transform of (23) and the initial 
conditions (24) respectively, we obtain  

2

2 2

( 2)!
( ) ( ) ( )

! k k k

k
U x U x N x

k x
 

 


    (25) 

where  kN x  is transformed form of   sin ,u x t . 

The transformed initial conditions 
0 1( ) cos( ), ( ) 0U x x U x            (26) 

Substituting (26) into (25), we obtain the following  kU x  

values successively 

 2
2 3

1 1
( ) cos( ) sin cos( ) , ( ) 0

2 2
U x x x U x        

 

   

   

4 2 2
4

2 2 2 2

5

1 1
( ) cos( ) sin cos( )

24 24
1 1

cos ( )sin cos( ) cos( )cos cos( )
24 12
1

sin cos( ) cos cos( )
24
( ) 0

U x x x

x x x x

x x

U x

     

        
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 
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T

Then, the inverse transformation of the set of values 
 5

0
( )k k

U x


 gives five-term approximation solution as 

 

   
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2 2
5

4 2 2 2 2 2

2 4

1 1
( , ) cos( ) sin cos( ) cos( )

2 2

1 1 1
cos( ) sin cos( ) cos ( )sin cos( )

24 24 24

1 1
cos( )cos cos( ) sin cos( ) cos cos( )

12 24

u x y x x x t

x x x x

x x x x t

      

          

       

     
 

  


  




 (27) 
To demonstrate the numerical stability of the RDTM, we 

take four γ values (γ=0.001, γ=0.05, γ=0.1 and γ=1.0), these 
values have previously been used by Kaya [6], and some of 
γ values (γ=0.05, 0.1) have been used by Ablowitz et al. [1]. 
In the present numerical experiment, (3.10) has been used to 
draw the graphs as shown in Figure 3-4. The numerical 
solutions of example 2 have been shown in Figure 3-4 using 
VIM. In the present numerical computation we have 
assumed γ=0.001, γ=0.05, γ=0.1 and γ=1 respectively. 

Figure 3. The comparison of the RDTM (line) 
approximation and the VIM solution (circle) for (a) 
γ=0.001, (b) γ=0.05 

Proceedings of the World Congress on Engineering 2011 Vol I 
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-18210-6-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011



 

 
Figure 4. The comparison of the RDTM (line) 

approximation and the VIM solution (circle) for (a) γ=0.1 
and (b) γ=1 

 

C. Example 3 

We now consider a system of coupled sine-Gordon 
equations [8,13,16] 

2

2

( , ) ( , ) sin( ( , ) ( , ))

( , ) ( , ) sin( ( , ) ( , ))

tt xx

tt xx

u x t u x t u x t v x t

v x t c v x t u x t v x t

   

  
     (28) 

with initial conditions 
( ,0) cos( ), ( ,0) 0

( ,0) 0, ( ,0) 0
t

t

u x A kx u x

v x v x

 
 

      (29) 

Taking the differential transform of (28), it can be 
obtained that 

2
2

2 2

2
2

2 2

( 2)!
( ) ( ) ( )

!
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k k k

k k k
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where the t -dimensional spectrum function 
   andk kU x V x  are the transformed function and  kN x  is 

transformed form of     sin , ,u x t v x t . 

From the initial condition (4.12) we write 
0 1

0 1

( ) cos( ), ( ) 0

( ) 0, ( ) 0

U x A kx U x

V x V x

 
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       (31) 

Substituting (31) into (30), we obtain the following 
   andU x V x

k k
 values successively. Then, the inverse 

transformation of the set of values  5

0
( )k k
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

 and  5

0
( )k k

V x


 

gives five term approximation solution as 
2 2
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12 24
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 
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 
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This solution is convergent to the adomian decomposition 
method solution [8,13] and the same as approximate 
solution of the variational iteration method [16]. (see Figure 
5) 

Figure 5. The comparison of the RDTM (line) 
approximation and the VIM solution (point). 

 
Figure 5 (a-b) shows the comparison of the RDTM 

approximation solution of order five and the VIM solution 
( , )u x t (Figure a) and ( , )v x t  (Figure b), the solid line 

represents the solution by the RDTM (shown in red), while 
the circle represents the VIM (shown in blue). 

V. CONCLUSIONS  

The sine-Gordon equations have been analyzed using the 
reduced differential transform method. All the examples 
show that   the reduced differential transform method is a 
powerful mathematical tool to solving sine-Gordon 
equation. It is also a promising method to solve other 
nonlinear equations. This method solves the problem 
without any need to discretization of the variables, 
therefore, it is not affected by computation round off errors 
and one does not  face the need of large computer memory 
and time. In our work, we made use of the Maple  Package 
to calculate the series obtained from the reduced differential 
transform method. 
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