

Abstract—With the advance of semiconductor technology,

microprocessors become highly integrated and therefore
multi-processor servers are widely used. On the other hand,
only limited application programs can use such
multi-processors efficiently. In this paper, we show a method to
improve utilization of multi-processor servers based on server
virtualization technology, including the measured results of
performance improvements in example systems. In some
examples it was possible to multiply system performance of a
physical server.

Index Terms— concurrency, multicore, multiprocessor,
server virtualization, performance

I. INTRODUCTION
 ervers based on the x86 architecture are now widely
used , not only for simple servers but also for mission

critical systems in enterprises or government, because
microprocessor performance has increased significantly.
They are called IA-server, Intel Architecture server, and
often Microsoft Windows OS or open source Linux OS is
used on them.

Every year, microprocessor chips become more integrated
due to advances in semiconductor technology. This results
not only in increased single processor performance but also in
increased performance of shared memory type multiple
processor systems, SMP: Symmetric Multiple Processor,
where multiple CPU cores are integrated on a processor chip.
One factor of the direction of technology is the heat problem,
high frequency clocks cause increased heat on the
microprocessor chip. For this reason chip vendors don't
develop higher performance single processors, but multiply
the CPU cores on a chip.

Meanwhile, not all application programs have efficient
characteristics to utilize a single OS environment on multiple
processors. There are many information systems which don’t
benefit from multiple processor environments. Software
resource contentions prevent concurrency of processes, if
application programs create many processes or threads.

A virtualization feature may allow improved concurrency
for applications with limited scalability by executing
multiple OS environments on a multi-processor server.
However, it is known that server virtualization features have
some performance overhead. It is therefore recommended to

Manuscript received February 17, 2011; revised March 28, 2011.
H. Ueno is with Enterprise Server Division, Hitachi, Ltd., Hadano,

Kanagawa, Japan (e-mail: hitoshi.ueno.uv@hitachi.com).
T. Hasegawa is with Enterprise Server Division, Hitachi, Ltd., Hadano,

Kanagawa, Japan (e-mail: tomohide.hasegawa.tv@hitachi.com).
K. Yoshihama is with Information Technology Division, Hitachi, Ltd.,

Tokyo, Japan (e-mail: yoshihama_k@itg.hitachi.co.jp).

evaluate the effect of concurrency with using virtualization
by studying its advantages and disadvantages.

In this paper, we discuss about improvements of system
performance by dividing physical servers which have a large
number of physical CPU cores, into a number of LPARs
which have a smaller number of logical CPU cores, in our
example using the server virtualization feature "Virtage"
implemented on Hitachi BladeSymphony servers. We show
that it is possible to improve system performance by using
virtualization even for tough application programs with
limited concurrency in multi-processor environments.

II. EFFICIENT MULTI-PROCESSOR SERVER USE CASE USING
SERVER VIRTUALIZATION FEATURE

Traditional use of IA server systems in a business
environment uses a simple design approach where one
subsystem is built using one OS environment of one physical
server. For example, if you want to build two subsystems,
like a CRM subsystem and a Sales Management subsystem,
you deploy two physical servers, one physical server with the
CRM application and another server with the Sales
Management application.

However there are many inefficient applications for
multi-processor servers because not all CPU cores on the
servers can be used. In that situation, a strange phenomenon
can be observed, where most server resources such as CPU,
storage, network, are idle, but system throughput can’t be
increased.

In this paper, we call physical processor chip as
"processor" and we call each instruction execution unit in the

System Performance Improvement
By Server Virtualization

Hitoshi Ueno, Tomohide Hasegawa, and Keiichi Yoshihama

S

Fig. 1. An example of multiprocessing behavior.

a b c d

data

four physical CPU cores

four
processes

#0 #1 #2 #3

time
execution time
idle time

t

t

t

t
data

Start of the
transaction

End of the
transaction

t

data

data

data

waiting
processes
[b][c][d]

CPU core usage count = 5t/4t = 1.25
CPU core busy ratio = 5t/(4t*4) = 0.31

physical server

behavior
of software

Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

processor as "core" or "CPU core." It means that there are
multiple cores in one processor.

Here we think about characteristic application programs
which have only a single process concurrency, even if the
program runs on a four core multi-processor server. If no
other resources except the processors are bottle neck for the
performance, 100% busy of one core means reaching the
upper limitation of performance. In this case, the processor
usage ratio is,

1 (core)/ 4(core) = 0.25.
In general, we assume that N is number of cores and c(P) is
the average number of cores which the application programs
use, the processor usage ratio is c(P)/N. Values of c(P) are
different and depend on characteristics of the OS and/or the
application programs. The maximum value is N for high
concurrency programs, and lowest value is 1 for low
concurrency ones. It is not easy to develop application
programs which can use multi-processor servers
efficiently[1][2]. Most application programs use
multi-processing or multi-threading for better efficiency, but
it is rare for processes to be able to run completely
independent each other. The reason of the phenomenon is
exclusive control like lock mechanisms for common
resources in the application program. Dependency between
processes can also the reason of it, where a process has to
wait to receive data from another processes for
synchronization. Fig. 1. shows an example, a transaction
processing system which has four processes. The process "a"
receives transactions from other systems, it makes some
computations and sends the processed data to two other
processes, "b" and "c" for other data processing. After that
the process "d" waits for receiving data from processes, "b"
and "c". In such a situation, the system has physically four
cores, but average processing ability is 1.25 cores, because
each process consumes t seconds with using one core, and
this transaction totally consumes 5t seconds but elapsed time
is just 4t seconds. In this case, core use ratio in whole
physical server is 0.31 that is 1.25/4.

In case of low concurrency application programs, in other
words very small c(P)/N case, usually the systems manager
wants to use high speed single processor server to keep good
systems performance, he does not want to use relatively slow
multi-processor servers. As we described before, the
development of high performance single processor servers is
difficult, and the availability of such servers is limited. So as
a matter of fact many users have to achieve the required
performance using multi-processor servers.

You have to divide the target system as well as the data
into multiple small system instances, and then run these
systems in parallel, if you have to achieve the required
performance using servers with a slower clock. Each divided
system works independently, and it becomes a kind of load
balancing system configuration. However it is difficult for
some applications to run multiple instances on a single OS of
the same server, because there are many programs which
can’t run multiple instances on one OS, as they may collide to
get the same resources from the OS. Generally it is better to
use server virtualization technology for multiple OS
environment on a physical server, because different physical
servers for application programs increase low CPU core
usage rate servers which is not efficient.

It is known that virtualization technology has some loss of
processor performance by control overhead like emulations.
Accordingly the total performance improvement ratio
depends on the virtualization overhead and the efficiency of
program concurrency, on whole physical server by dividing
OS instances. In the following section, we describe an
evaluation method for finding relations of one physical server
system's performance and total performance of multiple
logical servers.

III. EVALUATION OF MULTIPLE LOGICAL SERVER
The comparison is made by comparing the performance of

one OS instance on a physical server and total performance
of “n” OS instances on “n” logical servers. Here, we define
physical server system performance as "Sph," and logical
server performance as "Svt(1)…Svt(n)," and then we
understand relations among physical server and logical server
as follows, and assume that the number of logical cores
assigned to logical servers are sufficient for the evaluation of
target application concurrency. (Fig. 2.)

(a) The difference of performance on one server case,
ሺSph െ Svtሺ1ሻሻ is simply affected by the virtualization
overhead.

(b) The difference between performance of i logical
servers and ideal performance which is i times of the one
logical server performance,

i ൈ Svtሺ1ሻ െ Svtሺiሻ,
is the overhead against logical server's scalability.

(c) Define “iovc” as the number that satisfy the condition
of logical servers that total logical CPU core count
exceeds physical core count, and that condition is called
"CPU over commitment" condition. On this condition
area, we can consider that the difference between the ideal
scalability and the performance of iovc logical servers is
from physical CPU core access overhead caused by
sharing core for logical cores of LPARs.

We define performance improvement ratio as
 max ቀௌ௩௧ሺ௜ሻ

ௌ௣௛
ቁ ሺ݅ ൌ 1, ܰሻ.

If it is less than 1, it means no performance improvement.
However, even in the best case, it never exceeds the number
of physical cores N, this best case being an application that
does not have idle time. When the application has no
concurrency and can use one core only, we can divide the

Fig. 2. Model of performance characteristic.

(a) virtualization overhead
(b) scalability overhead by hypervisor control
(c) limitation by CPU over-commitment

total
system

performance

number of servers
1 2 3 4

physical server
logical server

(a)

(b)

(b)
(c)

ideal
scalability

Sph
Svt(1)

Svt(2)

Svt(3)

physical server performance

Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

process of the application program into N processes, and the
performance is N times that of a physical server with one
core.

IV. EXAMPLES OF SYSTEMS EVALUATION
In this chapter we study three cases for performance

improvement ratio evaluation.

A. Simple Load Case
At first we study simple application program behavior, in

this case only CPUs are used by the program, I/Os are not,
and CPUs execute only user mode instructions, but don't
execute supervisor mode instructions, as these might
generate virtualization overhead. If an application program
uses only C cores on a physical server, the maximum
performance ratio to M logical servers which has C logical
cores is expected to be C: ሺM ൈ Cሻ. In this section, we show
the measurement result of a simple application program to
verify above theory.

The simple application program runs two cores (C=2) with
using two threads, and it uses user mode instructions only to
exclude the effects of hypervisor intervention. From one to

40 logical servers ሺM ൌ 1 ڮ 40ሻ are used for this experiment.
(Fig. 3.)

Fig. 4. shows the result of the experiments. This program
executes a certain instruction routine many times, and
measures performance by counting number of loops per a
second. Because not even an OS is not used for this program,
little virtualization overhead is monitored therefore physical
single server performance is about the same as single logical
server performance. We clearly see the scalability of it,
because the total performance of 32 logical servers is 31.7
times that of a physical server. The total logical server
performance is in proportion to increases of the number of the
logical servers M. The performance reaches a ceiling above
M=33, because of the CPU over commitment condition. This
physical server has 64 cores and in the M=32 case, all logical
servers with two logical cores each use the total of 64 cores.

B. Virus Scan System Case
A practical example of systems performance improvement

using server virtualization is a virus scan system. This is a
network file system and virtualized virus protect servers

Fig. 3. Configurations of the simple workload case.

physical server

load program
with two threads

64
CPU
cores

physical server

hypervisor

logical
server

logical
server

logical
server

(a) configuration of physical
server evaluation

(b) configuration of virtualization
scalability evaluation

The physical server has eight Intel X7560 processors and 64 CPU cores
(The server is configured by four server blades integrated into one SMP. It is

implemented in Hitachi BladeSymphony BS2000 and "Virtage“ logical partitioning
hypervisor)
Each logical server is assigned two logical cores by the hypervisor.

Fig. 5. Configuration of virus scan system case.

physical server

hypervisor

logical
server

logical
server

logical
server

(a) configuration of physical
server evaluation

(b) configuration of
virtualization scalability
evaluation

The physical server has two Intel X5460 processors, 8 CPU cores.
(Hitachi BladeSymphony BS1000 with “Virtage” hypervisor)
Each logical server is assigned one or two logical cores by the hypervisor.
The hypervisor supports up to 16 logical servers on a physical server.

physical server

Virus scan
software

storage

remote file
server

1.9GB 1.9GB 1.9GB

1.9GB 1.9GB 1.9GB

1.9GB

Fig. 4. Measured scalability for the simple workload case.

Physical server has 64 cores.
For up to 32 LPARs ideal scalability can be seen,
because physical resources are sufficient.
Over 32 LPARs the scalability is limited.

total
system

performance

number of servers
8 16 4032

physical server
(only 2 cores used)
logical server
(2 logical cores for
each LPAR)

1 4

physical server performance

N of sv.
(M)

N of CPU cores
(C) total perf .*1

physical server 1 2 3.58

logical server

1 2 3.58
2 ２ for each 7.13
4 ２ for each 14.3
8 ２ for each 28.5

16 ２ for each 57.0
32 ２ for each 113.6
33 ２ for each 113.5
34 ２ for each 113.4
40 ２ for each 112.7

*1 loop count (*104/sec)

Fig. 6. Measured scalability on the virus scan system case.

performance
ratio

number of servers
2 4 6

physical server
logical server

1

5.0

0.0

10.0

3 5

(a)

Virtualization overhead(a) exists for single server case, but total
throughput is extremely high in case of 6 logical servers.
Scalability overhead(b) is relatively small.

(b)

physical server performance

N of sv. N of CPU cores exec time f ile (GB) perf ratio
phy. sv. 1 8 11’17” 1.9 2.8

log. sv.

1 1 16’40” 1.9 1.9
2 1 for each 16’40” 3.8 3.8
3 1 for each 16’40” 5.7 5.7
4 1 for each 16’40” 7.6 7.6
5 1(4 sv), 2(1 sv) 17’10” 9.5 9.2
6 1(4 sv), 2(2 sv) 17’32” 11.4 10.8

exec time is the average of all server time.
perf . ratio = f ile size(MB)/exec time(sec)

Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

scanning the whole storage. It is a kind of network file
systems, and here we study the scanning throughput of whole
storage by virtualized virus protection servers.
In a file sharing system of an enterprise, the system managers
check all files once a week to maintain security , but this is
not easy because the total file size is very large and it takes
much time to complete scanning. Scanning time has to be as
short as possible, because the check has to be completed in
limited time during the weekend. When performing a virus
scan with a physical server, its processors are not so busy
because they wait for storage access time or resources
exclusive control by the application program. Multiple virus
protection programs can't be active on a server, so we can't
increase the processor usage rate.

For this system, we can shorten scan execution time by
using concurrent virus protection program on a server
divided into multiple logical servers and OSs by server
virtualization.

In this evaluation case, we made a configuration which has
a physical server, 1.9GB shared disk (Fig. 5.(a)), and we
made another configuration which has maximum six logical
servers on a physical server, six 1.9GB shared disks for each
logical server for scan target (Fig. 5.(b)), and we measured
their time to scan.

Fig. 6. shows results of the measurements. In one server
case, scan performance by a physical server is 47% better
than it by a logical server. However once two logical servers
are used the performance is 36% more than for the physical
server, for six logical servers, the performance is 3.9 times
higher. From a view point of the scalability, it is good
performance for six logical servers to have 5.7 times the
performance of a single logical server.

In this case, number of logical servers is six, total logical
CPU cores are eight, therefore we see it does not reach to the
performance upper limit of CPU over commitment condition.

C. Mixed Application Program Case
In this section, we show results of measurements when

four kinds of applications are run on a physical server
virtualized into four logical servers.

We chose web, DB, Java applications and mail server
systems as four kinds of application programs because these
are the applications used widely around enterprises. These
systems are implemented each on a separate logical servers.
Obviously, we can’t compare the performance of different
applications with each other, but we have to evaluate total
performance scalability when we increase the number of

logical servers. Therefore, four logical servers corresponding
four systems are defined as a workload set, and four, eight
and twelve logical servers cases are being evaluated (Fig. 7.).

Fig. 8. shows the results. Those performance values are
normalized by physical server performance for each
application. In case of four logical servers, the total
performance is 15% lower than for physical servers, but it is
60% higher for eight logical servers and 84% higher for
twelve logical servers. In the case of twelve logical servers
there is CPU over commitment condition which uses total 12
logical cores on 8 physical cores. Physical resources are not
sufficient, but the performance is still increasing because
each system does not consume cores at 100%, due to idle
time.

V. ANALYSIS OF PERFORMANCE IMPROVEMENT

A. Performance Scalability of Virtualization
Here we analyze the performance improvement ratio of the

three systems described in the previous chapter. Table I
shows performance data and the conditions under which
those systems are not in a CPU over commitment state.

Column (a) shows the ratio of physical and logical servers
for a single server or single workload set environment.
Although it depends on kinds of application or processor
types used in the server, we see virtualization overheads
between 0% and a maximum of around 30%.

The value in column (c) shows the performance increase
for multiple logical servers or workload sets against a
physical server. In all cases, the performance achieved by a

Fig. 8. Measured scalability on the mixed server systems case.

performance
ratio

number of servers
4 8 12

physical server
logical server

1.0

0.0

2.0

1

physical server performance
(a)

(b)

• Virtualization overhead(a) exists in 4 servers case.
• Scalability overhead(b) is small on 8 servers case.
• Limitation by CPU over commitment (c)

(Sum of logical CPU cores exceeds physical cores.)

(c)

N of
sv.

core
*1

four servers workload set Geo.
meanweb

server
Java

server
DB

server
mail

server
phy. sv. 4 8 1 1 1 1 1

log.
sv.

4 1 1.094 0.938 0.675 0.757 0.851

8
1 0.973 0.802 0.712 0.751 -1 0.978 0.811 0.727 0.750
- 1.951 1.613 1.439 1.501 1.615

12

1 0.823 0.664 0.382 0.830
-1 0.816 0.672 0.398 0.661

1 0.789 0.665 0.355 0.629
- 2.428 2.001 1.135 2.120 1.849

Values are normalized by physical server performance.
One workload set is configured by four servers.
Total performance is calculated by geometrical mean.

*1 N of cores for each physical/logical server

Fig. 7. Configuration of the mixed server systems case.

physical server

hypervisor

web

logical
server

configuration of virtualization scalability evaluation
The physical server has two Intel X5570 processors and 8 CPU cores.
(Hitachi BladeSymphony BS2000 and "Virtage“ hypervisor)
Each logical server is assigned one logical core in shared mode.

DB

logical
server

Java

logical
server

mail

logical
server

8 cores

workload set

1 logical
core for

each server

application
program

for workload

Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

number of logical servers is better than a single physical
server which indicates a performance improvement by
virtualization.

Column (g) indicates the scalability, how systems
performance increases in proportion to the number of logical
servers or workload sets (f) when some logical servers are
added. It is calculated by

column(d) / column(f).
Under optimal circumstances, the value is 1. Intuitively it
means "the performance is close to n when we prepare n units
of logical servers" and we define it as the scalability indicator
in a virtualization environment. In all cases, it is over 0.95,
therefore we understand the scalability is almost optimal.

With the above study, we verified that, in an environment
with sufficient physical resources, multiple logical servers
can achieve increased system performance compared with a
physical server running a single OS. We understand also we
are able to satisfy required performance by preparing enough
number of logical servers for our systems.

B. Evaluation Method for General Use Case
Generally, we can estimate the performance improvement

ratio by following calculation steps that are based on
characteristics of the performance as described before.

step 1. Run the target systems and measure Sph as the
performance of application programs on a physical
server. Measure processor usage ratio "P" on the
physical server also with performance monitor
functions of the OS. Here we calculate the substantial
number "C" of cores. We assume "N" as the number of
physical cores.

 C ൌ N ൈ P
step 2. Run the target systems on a logical server by using

the same OS and software, and measure the
performance of application programs as Svt(1). Here
the logical server must be assigned more than C logical
cores calculated above. The number of logical cores
assigned here, we assume "Cvt".

 step 3. Calculate the maximum system performance at
CPU non over commitment condition area, because in
the area virtualization scalability is good as we
discussed before. The maximum number of logical
servers under this condition is calculated as

Lvt ൌ ۂN/Cvtہ
and that the maximum performance can be estimated as
 Estimation of SvtሺLvtሻ ൌ Svtሺ1ሻ ൈ Lvt ൈ R.

Here "R" is the coefficient determined by kinds of
application programs and it indicates the characteristics of

scalability, as in column (g) of TABLE I.
After the calculations as above steps, if the number of

logical server Lvt is larger than 1, and estimated system
performance Svt(Lvt) is large enough compare with Sph, we
can assume that the virtualized system will show
improvement from the physical server.
In practical business systems, finding P is relatively easy, and
as a result of that determining Lvt is also easy. Measuring
Svt(1) is not so easy when using a software based
virtualization environment, but it is relatively easy in case of
a logical partitioning type virtualization feature like Virtage.
You can make survey the virtualized server after simply
change the server mode from physical to virtual, because the
logical partition's disk format is same with physical server's
format. The R value is expected to be in the range from 0.9 to
0.99 as we measured at three example systems, but if your
application program's R is unknown you may estimate it
smaller.

Confirmation of performance improvement using
virtualization is possible by the calculations we showed here.

VI. CONCLUSION
In this paper, we have described that one physical server's

performance will be increased by improving concurrency
using virtualization technology, because there are a many
applications which can’t use multi-processors efficiently.
Essentially, it means that virtualization assists improvement
of efficient resource utilization, but we can also say that the
virtualization technology can improve physical server's
performance.

How the performance will improve depends on
characteristics of application programs. Virtualization
overhead may be striking, if the target programs already have
high concurrency on a physical server. When you apply
virtualization to your systems, you should evaluate their
characteristics carefully, but this method to improve
multi-processor's performance is very important in future,
because microprocessor technologies advance in the
direction of multi-processor and multi-core.

We will continue to study methods of performance
evaluations as well as methods to improve systems
performance for server virtualization environments.

REFERENCES
[1] Angela C. Sodan, et.al., “Parallelism via Multithreaded and Multicore

CPUs,” IEEE Computer, Vol.43,No.3: pp.24-32 (2010).
[2] Wu-chun Feng, et.al. “Tools and Environments for Multicore and

Many-Core Architectures,” IEEE Computer, Vol.42,No.12: pp.26-27
(2009).

[3] H. Ueno, et al.; Virtage: Hitachi’s Virtualization Technology. In: GPC
2009 Workshop Proceedings of Conference, pp. 121-127. IEEE-CS,
Los Alamitos (2009)

[4] H. Ueno, et al.; Virtage: Server Virtualization with Hardware
Transparency. In: Euro-Par 2009 Workshops, LNCS 6403, pp.
404-413, Springer-Verlag Berlin Heidelberg (2010)

[5] P. Apparao, et al.: Architectural Characterization of VM Scaling on an
SMP Machine: ISPA 2006 Workshops, LNCS 4331, pp.464--473,
Springer, Heidelberg (2006)

[6] H. Umeno, et al.: Development of a High Performance Virtual
Machine System and Performance Measurements for it: IPSJ J.
Information Processing, Vol.4 pp. 68--78 (1981)

[7] J.E. Smith, R. Nair: The Architecture of Virtual Machines: IEEE
Computer, pp. 32--38 (2005)

[8] R. Uhlig, et al.: Intel Virtualization Technology: IEEE Computer, pp.
48--56 (2005)

TABLE I

PERFORMANCE ANALYSIS OF THREE EXAMPLE SYSTEMS

item

case

1 workload set workload set at maximum core
scalability
in virtuali-

zationV:P
perf . ratio

N of
cores

total perf . ratio
N of

cores
N of

workload
setfor phy.

sv.
for virt.

sv.

(a) (b) (c) (d) (e) (f) (g)

Simple 1.00 2 31.7 31.7 64 32 0.99

Virus scan 0.68 1 3.85 5.68 8 6 0.95

4-applications 0.85 4 1.615 1.9 8 2 0.95

N of workload set : the number of LPARs or workload sets

Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

[9] J.E. Smith, R. Nair: Virtual Machines, Versatile Platforms for Systems
and Processes, Elsevier Inc. (2005)

[10] A. Barham, et al.: Xen and the Art of Virtualization: Proc. The 19th
ACM Symposium on Operating Systems Principles, pp. 164--177
(2003)

[11] H. Umeno and S. Tanaka: New Methods for Realizing Plural
Near-Native Performance Virtual Machines: IEEE Transactions on
Computers, Vol. C-36, No.9, pp. 1076--1087 (1987)

[12] N. Gil, et al.: Intel® Virtualization Technology: Hardware support for
efficient processor virtualization: Intel® Virtualization Technology,
Vol 10, Issue 03 (2006)

Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

