
 

 
Abstract— Reduced differential transform method (RDTM) 

is implemented for solving the linear and nonlinear Klein 
Gordon equations. The approximate analytical solution of the 
equation is calculated in the form of a series with easily 
computable components. Comparing the methodology with 
some other known techniques shows that the present approach 
is effective and powerful. Three test modeling problems from 
mathematical physics are discussed to illustrate the 
effectiveness and the performance of the proposed method. 

 
Index Terms— Reduced differential transform method, 

Variational iteration method, Klein Gordon equations. 

I. INTRODUCTION 

One of the most important of all partial differential 
equations occurring in applied mathematics is that 
associated with the name of Klein–Gordon. The Klein–
Gordon equation plays an important role in mathematical 
physics such as plasma physics, solid state physics, fluid 
dynamics and chemical kinetics [1-3].  

We consider the Klein–Gordon equation  
( , ) ( , )tt xxu u u Nu x t f x t         (1.1)  

subject to initial conditions  
( ,0) ( ), ( ,0) ( )tu x g x u x h x        (1.2)  

where u is a function of x and t, ( , )Nu x t is a nonlinear 

function, and ( , )f x t is a known analytic function. Many 

numerical methods were developed for this type of 
nonlinear partial differential equations such as the Adomian 
Decomposition Method (ADM) [4-7], the EXP function 
method [8], the Homotopy Perturbation Method (HPM) [9], 
the Homotopy Analysis Method (HAM) [10] and 
Variational Iteration Method (VIM) [11-14]. 

In this paper, we solve some Klein–Gordon equations by 
the reduced differential transform method [15-18] which is 
presented to overcome the demerit of complex calculation 
of differential transform method (DTM) [19]. The main 
advantage of the method is the fact that it provides its user 
with an analytical approximation, in many cases an exact 
solution, in a rapidly convergent sequence with elegantly 
computed terms.  

The structure of this paper is organized as follows. In 
section 2, we begin with some basic definitions and the use 
of the proposed method. In section 3, we apply the reduced 
differential transform method to solve three test examples in 
order to show its ability and efficiency. 
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II. TRADITIONAL DIFFERENTIAL TRANSFORM METHOD 

A. One Dimensional Differential Transform Method 

The differential transform of the function  w x  is 

defined as follows: 
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where  w x  is the original function and   W k  is the 

transformed function. Here 
k

k

d

dx
 means the k  the derivative 

with respect to x . 

The differential inverse transform of  W k  is defined as 
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Combining (2.1) and (2.2) we obtain 
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From above definitions it is easy to see that the concept 
of differential transform is derived from Taylor series 
expansion. With the aid of (2.1) and (2.2) the basic 
mathematical operations are readily be obtained and given 
in Table 1. 

 
Table 1 One-dimensional differential transformation 

Functional Form Transformed Form 

   u x v x     U k V k                  

 cu x   cU k                            

 m

m

d u x

dx
 

   
!

!

k m
U k m

k


         

   u x v x     
0

k

r

U r V k r


           

B. Two Dimensional Differential Transform Method 

Similarly, the two dimensional differential transform of 
the function  ,w x t  can be defined as follows: 
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where  ,w x t  is the original function and  ,W k h  is the 

transformed function. The differential inverse transform of 

 ,W k h  is 
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Then combining equation (2.4) and (2.5) we write 
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Therefore we can obtain basic mathematical operations of 
two-dimensional differential transform as follows in Table 
2. 

 
Table 2. Two dimensional differential transformation 

Functional Form Transformed Form 
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Now we can state our main results in the next section. 

III. REDUCED DIFFERENTIAL TRANSFORM FOR KLEIN–
GORDON EQUATIONS 

The basic definitions and operations of reduced 
differential transform method [15-17] are introduced as 
follows: 

Definition 1 
If function  ,u x t  is analytic and differentiated 

continuously with respect to time t and space x in the 
domain of interest, then let 
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where the t-dimensional spectrum function  kU x  is the 

transformed function. In this paper, the lowercase  ,u x t  

represent the original function while the uppercase 

 kU x stand for the transformed function. 

Definition 2 
The reduced differential transform of a sequence  

  
0k k

U x



 is defined as follows: 
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Then combining equation (3.1) and (3.2) we write 
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Some basic properties of the reduced differential 
transformation obtained from definitions (3.1) and (3.2) are 
summarized in Table 3. 

The proofs of Table 3 and the basic definitions of reduced 
differential transform method are available in [18]. 

To illustrate, Consider the following Klein–Gordon 
equations (1.1): 

( , ) ( , ) ( , ) ( , ) ( , )t xL u x t L u x t u x t Nu x t f x t       (3.4) 

with initial conditions 
( ,0) ( ), ( ,0) ( )tu x g x u x h x        (3.5) 

where 
2 2

2 2
,t xL L

t x

 
 
 

, ( , )Nu x t  is a nonlinear term. 

Assume that we can write   ,
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Table 3.  Basic operations of RDTM 

Functional Form Transformed Form 
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( , )Nu x t  

Maple code 
 
NF:=Nu(x,t):#Nonlinear function 
odr:=3:# Order 
u[t]:=sum(u[b]*t^b,b=0..odr): 
NF:=subs({Nu(x,t)=u[t]},NF): 
s:=expand(NF,t): 
dt:=unapply(s,t): 
for i from 0  to odr do  
n[i]:=((D@@i)(dt)(0)/i!): 
print(N[i],n[i]); # Transform 
Function 
od: 
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   so that the double series turns to 

a single series. 
Let the nonlinear term ( , )Nu x t ,write 
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Calculation of ( )nN x  was given in the Table 3. The 

approximate solution using the t  partial solution is given 
by: 

1 1 1 1( , ) ( , ) ( , ) ( , ) ( , )t t x t tu x t L f x t L L u x t L Nu x t L u x t        
 (3.6) 
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We now carry out the above integrations to write 
2

0 0

2 2 2

2
0 0

2

0

( ) ( ) ( ) ( )
( 1)( 2)

( ) ( )
( 1)( 2) ( 1)( 2)

( )
( 1)( 2)

n
n

n n
n n

n n

n n
n n

n

n
n

t
U x t g x th x F x

n n

t t
U x N x

n n n nx

t
U x

n n

 

 

  

 





  
 


 

   


 

 

 



  

Let 2n n   on the right side. Then 

2
0 2

2

2 22
2 2

2
2

( ) ( ) ( ) ( )
( 1)

( ) ( )
( 1) ( 1)

( )
( 1)

n
n

n n
n n

n n

n n
n n

n

n
n

t
U x t g x th x F x

n n

t t
U x N x

n n n nx

t
U x

n n

 


 

 

 
 






  



 

 




 

 



 (3.7) 

Finally, equation coefficients of like powers of t , we 
derive the recursion formula for the coefficients (according 
to the RDTM and Table 3) 

0 1( ) ( ), ( ) ( )U x g x U x h x      (3.8) 
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 (3.9) 

where ( ), ( )n nU x F x  and ( )nN x  are the transformations of 

the functions ( , ), ( , )u x t f x t   and ( , )Nu x t  respectively.  

Substituting (3.8) into (3.9) and by a straight forward 
iterative calculations, we get the following ( )nU x  values. 

Then the inverse transformation of the set of values 
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where p is order of approximation solution. 
Therefore, the exact solution of problem is given by 

( , ) lim ( , )pp
u x t u x t


  . 

IV. APPLICATIONS 

To show the efficiency of the new method described in 
the previous part, we present some examples. 

A. Example 1 

We first consider the homogeneous Klein–Gordon 
equation [11] 

0tt xxu u u         (4.1) 

with initial conditions: 
( ,0) 1 sin( ), ( ,0) 0tu x x u x       (4.2) 

where  ,u u x t  is a function of the variables x  and t . 

Then, by using the basic properties of the reduced 
differential transformation, we can find the transformed 
form of equation (4.1) as 
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Using the initial conditions (4.2), we have 

0 1( ) 1 sin( ), ( ) 0U x x U x         (4.4) 

Now, substituting (4.4) into (4.3), we obtain the 
following ( )kU x  values successively 
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Finally the differential inverse transform of ( )kU x  gives  
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Hence the closed form of (3.5) is 

 , sin( ) cosh( )u x t x t        

which is the exact solutions of (4.1)–(4.2). 

B. Example 2 

We next consider the inhomogeneous nonlinear Klein-
Gordon equation [21] 

2 2 2cos( ) cos ( )tt xxu u u x t x t         (4.6) 

with the initial conditions: 
( ,0) , ( ,0) 0tu x x u x     (4.7) 

Taking differential transform of (4.6) and the initial 
conditions (4.7) respectively, we obtain  

2

2 2

( 2)!
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! k k k k

k
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 (4.8) 
where   kN x  and  kF x  are transformed form of  2 ,u x t  

and 2 2cos( ) cos ( )x t x t  . 
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For the easy to follow of the reader, we can give the first 
few nonlinear term are 
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The transformed initial conditions 

0 1( ) , ( ) 0U x x U x          (4.9) 

Then substituting (4.9) into (4.8) we have 

2 3 4

5 6

( ) , ( ) 0, ( ) ,
2 24

( ) 0, ( )
720

x x
U x U x U x

x
U x U x

   

  
 

and 

/ 2

0, for k is odd

( ) ( 1)
, for k is even

!

k
kU x x

k


  


. 

Finally the differential inverse transform of ( )kU x  gives  

 
/ 2

0 0

( 1)
, ( ) cos( )

!

k
k k

k
k k

u x t U x t x t x t
k

 

 


     

which is the exact solution [20]. 

C. Example 3 

We now consider the nonlinear Klein-Gordon equation 
[22] 

33 3
0

4 2tt xxu u u u           (4.10) 

with initial conditions 
1

( ,0) sech( ), ( ,0) sech( )tanh( )
2tu x x u x x x    (4.11) 

The exact solution of this problem is 

( , ) sech
2

t
u x t x

    
 

. If we want to solve this equation by 

means of RDTM, using Table 3, we can find the 
transformed form of equation (4.10) as 
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where  kN x  is transformed form of  23
,

2
u x t  and the 

transformed initial conditions 

0 1

1
( ) sech( ), ( ) sech( )tanh( )

2
U x x U x x x     (4.13) 

Substituting (4.13) into (4.12), we obtain the following 
( )kU x  values successively. 

Then, the inverse transformation of the set of values 
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0
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 gives six-term approximation solution as 

Therefore, the exact solution of problem is given by 
( , ) lim ( , )nn

u x y u x y


  . 

This solution is convergent to the exact solution [22] and 
the same as approximate solution of the variational iteration 
method [11]. (see Figure 1) 
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Figure 1. The comparison of the RDTM approximation 

and  the exact solution. 
 
Figure 1 shows the comparison of the RDTM 

approximation solution of order six and the exact solution 

( , ) sech
2

t
u x t x

    
 

, the solid line represents the solution 

by the reduced differential transform method, while the 
circle represents the exact solution. From the figure 1, it is 
clearly seen that the RDTM approximation and the exact 
solution are in good agreement. 

V. CONCLUSIONS  

Analytical solutions enable researchers to study the effect 
of different variables or parameters on the function under 
study easily. Its small size of computation in comparison 
with the computational size required in other numerical 
methods, and its rapid convergence show that the method is 
reliable and introduces a significant improvement in solving 
Klein-Gordon equations over existing methods. From this 
study concluded that, it can be the reduced differential 
transform method outlined in the previous section finds 
quite practical approximate analytical results with less 
computational work. 
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