
Towards Component-Based System Integration
Testing Framework

Sajjad Mahmood

Abstract—The success of a Component Based System (CBS)
relies on integrating individual components. CBS integration
testing encounters challenges similar to traditional testing; and
aims to prioritize test cases with a potential benefit of improving
the rate of fault detection. In this paper, we present a CBS in-
tegration testing framework to identify integration test criteria
and prioritize test cases. We also present an application of CBS
integration testing framework to the Information Management
System (IMS).

Index Terms—Component Based Systems, Software Compo-
nents, Integration Testing

I. INTRODUCTION

COMPONENT -based software development is integra-
tion centric [15] with a focus on assembling compo-

nents to build a software system. A CBS can be developed us-
ing components written in different programming languages
(e.g. Java, .Net technologies); and they interact with different
types of external entities. Similar to web applications [2],
[3], the heterogeneous nature of components and deploy-
ment architectures introduce complexities in the integration
process that must be analyzed and validated during a testing
process. A component goes through a traditional software
testing process at the developer’s site [11]. However, due
to the integration-centric nature of CBS and heterogeneity
of involved components, integration testing [21] plays an
important role in detecting faults during a CBS development
process.

Software testing can be an expensive process to execute in
full, due to the large number of possible test cases derived
from a system specification. The large numbers of input
fields, input choices and the ability to enter values in any
order combine to create a state space explosion problem
[2]. To reduce the cost of testing, software testers aim
to prioritize test cases based on some measure, with the
potential benefit of improving the rate of fault detection
[6]. CBS integration testing encounters challenges similar
to those found in tradition testing; for example, how to
minimize risk associated with selecting testing criteria or
prioritize test cases to meet budget and schedule constraints.

Munson et al. [18] have indicated that there is a correlation
between the number of faults found in a software component
and its complexity. Similarly, Fenton et al. [8] and Emam et
al. [7] show that quantitative factors, such as complexity and
coupling, have a major impact on the fault proneness of a
software application.

Recently, Goseva-Popstojanova et al. [13] have used cy-
clomatic complexity [16] to estimate the probability of
failure of individual components for an architectural-level

Sajjad Mahmood is with the Information and Computer Science Depart-
ment, King Fahd University of Petroleum and Minerals, Dhahran 31261,
Saudi Arabia (e-mail: smahmood@kfupm.edu.sa).

risk assessment which can be used in the early phases of
the software life cycle. We believe that the CBS complexity
measures can enable a system analyst to identify fault-prone
components; and can be used as a measure to prioritize test
suites and improve the rate of fault detection.

In this paper, we present a process to identify CBS
integration test criteria and prioritize test suites based on
the complexity metrics. The framework uses the structural
control flow coverage criteria as adequacy criteria for CBS
integration testing. Next, we use complexity measures [14]
to select adequate test criteria for interactions in a CBS.
The complexity measures enable a system analyst to identify
fault-prone components and associated interactions; and are
used as a measure to improve the rate of fault detection.
Finally, suitable test cases are identified for a chosen test
criteria. To demonstrate the usefulness of this method, it has
been applied to the Information Management System (IMS)
application.

The rest of the paper is organized as follows. Section
II reviews related literature. In Section III, we present the
framework. Section IV describes the application of the
method, while Section V presents results of the case study.
We conclude the paper and discuss future work in Section
VI.

II. RELATED WORK

CBS testing techniques mainly focus on validating indi-
vidual component using black box testing techniques [12],
[17], [20]. For example, Build In Tests (BIT) models consists
of built-in testing-enabled components which implement
mandatory interfaces. Testers access the built-in testing capa-
bilities of BIT components through the corresponding inter-
faces and which contain the test cases. The Self-testing COTS
components [4] strategy proposes to augment a component
with functionality of analysis and testing tools thus enabling
it to be capable of conducting some or all activities of the
component user’s testing processes.

Gao et al. [4] have proposed a component test model to
analyze API-based component validation and testing. The
test model uses the concepts of the component function
access graph to represent components access patterns. Fur-
ther, a set of API-based test criteria is also proposed to
evaluate the models. They have also proposed a component
regression test approach [10] to identify component changes
and their impact on CBS. They have also developed a tool
called COMPTest which supports automatic identification
analysis of API-based component changes and black box test
selection.

A test model using an interaction graph is presented in
[21] that depicts a generic infrastructure of a component
based system and suggests key test elements. This model

Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

puts emphasis on the interaction among components in
component base systems and is targeted at revealing inter-
component and interpretability faults.

III. CBS INTEGRATION TESTING FRAMEWORK

Component integration is a complex and risk-prone pro-
cess because it is rarely the case that two components are
perfectly matched. We believe that successful CBS integra-
tion testing needs to address two key issues: (1) specify
CBS interactions and (2) identify test criteria that give the
optimal coverage. Figure 1 shows the CBS integration testing
framework.

Collaboration
Diagrams

Component
Interaction Graph

Component
Interaction MetricsTest Suites

Component
Interfaces

Component
Architecture

Test Adequacy
Criteria

Component
Interaction Complexity

Fig. 1. Integration Testing Framwork

A. Test Adequacy Criteria

A test adequacy criterion is a predicate [9] which is used
to determine when software has been adequately tested for
a given testing criterion. It acts as means of organizing
the testing activity and is a measure of progress toward a
testing goal [19]. In this paper, we use the structural control
flow coverage criteria [1] for integration testing of a CBS.
Control flow coverage criteria define Test Requirements
(TR) in terms of properties of test paths in a graph G.
A typical test requirements is met by visiting a particular
node, edge or path. We discuss these criteria as follows:

• Category A - Node Coverage: TR contains each
reachable node in G.

Ci

Cj

Cn

Ck

message mi

Start

Fig. 2. A Component Interaction Graph

• Category B - Edge Coverage: TR contains each
reachable path of length up to 1, inclusive, in G.

• Category C - Prime Path Coverage: TR contains each
prime path in G.

B. Component Interaction Model

Interaction between components is characterized by a
component’s interface or through using other component’s
event. The interaction occurs when a component provides
an interface and other component uses it. In UML CBSS
[5], collaboration diagrams specify the interactions between
components. Each collaboration diagram shows one or more
interactions, where each interaction shows one possible exe-
cution flow.

1) Component Interaction Graph: For each collaboration
diagram, we construct a directed graph called Component
Interaction Graph (CIG), to represent the interactions
between components, as shown in Figure 2. The CIG is
defined as follows:

Definition 1: A CIT is defined as a tuple [N, E, Start],
where [N,E] is a directed graph, and Start is the root node.
N is a set of nodes in a graph, where N = [ni], i = 1
|N|; and E is a set of edges in the graph, where E = [ei], i
= 1 |E|.
Definition 2: Node ‘n’: n ∈ N represents a component C.
Definition 3: Directed Edge ‘e’: e ∈ E represents the control
flow transfer from a component Ci to another component
Cj. Each edge is annotated by interaction complexity (CIij).
Definition 4: Path ‘p’: A path p is a sequence [N1,N2,
. Nm] of nodes, where each pair of adjacent nodes,
(ni, ni+1), 1 < i < M, is in the set E of edges.

The steps to convert collaboration diagrams into a CIG
are defined as follows:

1) The CIG construction process starts with selecting a
collaboration diagram.

Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

2) Every component Ci in a collaboration diagram will
correspond to a node Ni ∈ N of CIG where name of
Ni is same as that of the component Ci.

3) For every message mi and mj between two components
in a collaboration diagram, a direct edge will be created
from Ni ∈ N to Nj ∈ N in CIG.

4) A weight w is assigned to every directed edge Ei
between Ni and Nj in a CIG, as

w =
max∑
ij=1

IFij ×
n∑

k=1

CMk (1)

where IFij is the total interaction frequency and
CMk is the content complexity of the data types
involved in the information exchange between two
nodes ni and nj .

5) Select the next collaboration diagram to be merged
into the CIG and repeat step 2 - 3 for all new nodes
and edges.

6) Identify the common edges Ecommon between the
collaboration diagram and the CIG.

7) Update weight w assigned to the common edge Ei
between Ni and Nj in a CIG, as

w = wold +
max∑
ij=1

IFij ×
n∑

k=1

CMk (2)

where wold is the previous weight of the edge.

C. Test Criteria Selection

The test criteria selection phase starts with investigating
a component’s interactions in a CBS. We propose to use
complexity metrics to estimate the fault proneness of inter-
actions among components in a CBS. Complexity measure
is chosen as a quantitative factor because it has a proven
impact on fault proneness [13], [7]. We perform a complexity
measure for a component specification with a focus on
identifying competent attributes that affect its complexity at
both component and intra-component levels. We use interface
and interaction complexity measures [14] to rank component
interactions and subsequently select suitable test criteria. For
an example showing the approach to measure the complexity
of a component, please refer to our previous work [14].

TABLE I
COMPONENT INTERACTION METRICS

C1 C2 C3 C4
C1 X <ITc> <ITc> -
C2 <ITc> X - <ITc>
C3 <ITc> - X <ITc>
C4 - <ITc> <ITc> X

1) Component Interaction Metrics: We introduce the
notation of a Component Interaction Metrics (CIM) to
represent the interface and interaction complexities between
components in a CBS. Table I shows a CIM where each
interaction is expressed as a relation between pairs of
components. Each element CIM(i) is represented as <ITc>
where ITc represents the sum of the interface complexity
measures of the involved components. A ‘-’ at an element
CIM (i) indicates that the corresponding components do
not directly interact with each other. Further, each element
CIM (i,j) where i = j is denoted by ’X’. We propose the
following set of rules to select a suitable testing adequacy
category based on interface complexities of components.

Rule 1: Select test adequacy criteria A for each element
(i,j) in the CIM

IF (ITc[i, j] < (Average(ITc)− StandardDeviation)
(3)

Rule 2: Select test adequacy criteria B for element (i,j)
in the CIM

IF ((Average(ITc) + StandardDeviation) > ITc[i, j])
(4)

Rule 3: Select test adequacy criteria C for element (i,j)
in the CIM

IF (ITc[i, j] > (Average(ITc) + StandardDeviation)
(5)

Finally, test cases are generated based on the selected
test adequacy criteria using the notion of appropriate path
coverage of the CIG.

IV. AN APPLICATION

In this section, we describe an application of the CBS
integration testing process to the Nomad IMS1 application.
Nomad IMS is an open source system developed using
Eclipse2 development framework and uses both specialized
and third-party components (plug-ins). Furthermore, Nomad
IMS has well documented list of faults identified during
different versions of the application. Nomad IMS allows the
tracking of personal data, notes, diary, money and contact
details. It also provides support for scheduling and time
tracking. Figure 3 shows Nomad IMS components and the
interactions between them.

TABLE II
FAULTS IDENTIFIED IN NOMAD PIM VERSION 7

Faults Description
1 Double clicking on the time interval opens entity.
2 Can not open activity with return in current activities

view.
3 Spend time view not updated.
4 Week overview not updated correctly when linked to

calendar.
5 Week formatter returns wrong year.
6 Calendar not updated when using navigation buttons.
7 Week overview view not updated correctly.

1http://nomadpim.sourceforge.net/
2http://www.eclipse.org/

Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

Contact

Schedule

TimeTracking Core

Money

Note

Fig. 3. Nomad IMS Component Specification Architecture

To analyze the proposed testing process, we use Nomad
IMS version 7. There are 15 faults reported by the users
of Nomad IMS which can be classified into two groups:
unit level faults and integration level faults. Out of these
15 faults, 8 are unit level faults and the remaining 7 faults
involve interaction between Nomad IMS components. In this
analysis, we only consider the integration level faults and
present a brief description of these faults in Table II.

Figure 3 shows that there are seven interactions between
IMS components. The ‘Core’ component directly interacts
with all the remaining five components. The ‘Schedule’
component also interacts with ‘Contact’ and ‘TimeTracking’
components. We start the adequate test criteria selection for
each interaction by developing the CIM, as shown in Table
III. Furthermore, based on the rules defined in section III-A,
we classify each interaction as either ’Category A’, ‘Category
B’ or ‘Category C’.

TABLE III
IMS COMPONENT INTERACTION METRICS

Interactions Complexity
Measures

Testing
Adequacy
Criteria

Core-Schedule <252> C
Core-Contact <189> B

Core-TimeTracking <245> B
Core-Note <217> B

Core-Money <224> B
Schedule-Contact <161> A

Schedule-TimeTracking <217> B
Average Complexity Measure <215>

Lastly, based on rules defined in section III-C, we identify
the suitable test suites for each component interaction, as
shown in Table IV. Furthermore, each test case was executed

against IMS version 7 and outcomes were examined against
the known faults.

TABLE IV
IMS TEST CASES

Interactions No. of Test Cases
Core - Schedule 31
Core - Contact 21
Core - Time Tracking 24
Core - Note 17
Core - Money 25
Schedule - Contact 7
Schedule - Time-Tracking 22

V. RESULT ANALYSIS

Table V shows the faults found in IMS. The results indicate
that CBS complexity measures can be used as a guideline to
prioritize CBS testing. However, the testing process failed in
detecting the two faults, namely, fault no. 2 and fault no. 4.

It is important to note that the IMS application only had
seven integration faults and there is a need for studies on
more complicated programs.

TABLE V
FAULTS FOUND IN IMS

Fault No. Status
1 Found.
2 No test suite generated that could cover it.
3 Found.
4 No test suite generated that could cover it.
5 Found.
6 Found.
7 Found.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we present an initial outline of CBS integra-
tion testing framework which shows the potential of using
software complexity measures in adequate test criteria and
test case selection. The primary strength of the integration
testing framework is the notion that complexity measures can
be used to identify testing adequacy criteria. The framework
uses software complexity measures to help prioritize CBS
integration testing with the potential benefit of improving
rate of fault detection. Furthermore, complexity metrics help
address the challenge of selecting suitable test suites that will
increase the probability of detecting faults. For future work,
we plan to empirically validate the benefits of the framework
on medium to large applications.

ACKNOWLEDGEMENT

The author would like to acknowledge the support pro-
vided by the Deanship of Scientific Research at King Fahd
University of Petroleum and Minerals (KFUPM), Dhahran,
Saudi Arabia under Research Grant JF090010.

REFERENCES

[1] Paul Ammann and Jeff Offutt. Introduction to Software Testing.
Cambridge University Press, 2009.

[2] Anneliese A. Andrews, Jeff Offutt, and Roger T. Alexander. Testing
web applications by modeling with fsms. Software and Systems
Modeling, 4(1):326 – 345, 2004.

Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

[3] Anneliese A. Andrews, Jeff Offutt, Curtis Dyreson, Christopher J.
Mallery, Kshamta Jerath, and Roger T. Alexander. Scalability issues
with using fsmweb to test web applicaitons. Information and Software
Technology, 52(1):52 – 66, 2010.

[4] S. Beydeda and V. Gruhn. Merging components and testing tools: the
self-testing cots components (stecc) strategy. In Proceedings of 29th
Euromicro Conference, pages 107–114, 2003.

[5] John Cheesman and John Daniels. UML Components A Simple Process
for Specifying Component Based Software. Addison-Wesley, 2001.

[6] Sebastian Elbaum, Alexey G. Malishevsky, and Gregg Rothermel. Test
case prioritization:a family of empirical studies. IEEE Transactions
on Software Engineering, 28(2):159 – 182, 2002.

[7] Khaled El Emam, Walcelio Melo, and Javam C. Machado. The
prediction of faulty classes using object oriented design metrics.
Journal of Systems and Software, 56(1):63 – 75, 2001.

[8] N.E. Fenton and N. Ohlsson. Quantitative analysis of faults and
failures in a complex software system. IEEE Transactions on Software
Engineering, 26(8):797–814, 2000.

[9] Phyllis G. Frankl and Elaine J. Weyuker. An applicable family of data
flow testing criteria. IEEE Transactions on Software Engineering,
14(10):1483 – 1498, 1988.

[10] J Gao, D Gopinathan, Quan Mai, and Jingsha He. A systematic
regression testing method and tool for software components. In 30th
Annual International Computer Software and Application Conference
(COMPSAC ’06), pages 455 – 466, Chicago, USA, 2006.

[11] Jerry Zeyu Gao, H.-S. Jacob Tsao, and Ye Wu. Testing and Quality
Assurance for Component Based Software. Artech House, 2003.

[12] Jerry Goa, K. Gupta, and S. Gupta. On building testable software
components. In Proceeding of the First International Conference on
COTS Based Software Systems, pages 108–121. Springer-Verlag, 2002.

[13] Katerina Goseva-Popstojanova, Ahmed Hassan, Ajith Guedem, Walid
Abdelmoez, Diaa Eldin M. Nassar, Hany Ammar, and Ali Mili.
Architectural-level risk analysis using uml. IEEE Transactions on
Software Engineering, 29(10):946–960, 2003.

[14] Sajjad Mahmood and Richard Lai. A complexity measure for uml
component system specification. Software-Practice and Experience,
38(2):117–134, 2008.

[15] Sajjad Mahmood, Richard Lai, Yong Soo Kim, Ji Hong Kim,
Seok Cheon Park, and Hae Suk Oh. A survey of component based
system quality assurance and assessment. Information and Software
Technology, 47(10):693 – 707, 2005.

[16] T.J. McCabe. A complexity measure. IEEE Transaction on Software
Engineering, 2(4):308–320, 1976.

[17] C. Mueller and B. Korel. Automated black-box evaluation of cots
components with multiple-interfaces. In Proceedings of the 2nd
International Workshop on Automated Program Analysis, Testing and
Verification, ICSE 2001, 2001.

[18] J. Munson and T. Khoshgoftaar. Software metrics for reliability
assessment. Handbook of Software Reliability Engineering, pages 493
– 529, 1996.

[19] Matthew J. Rutherford, Antonio Carzaniga, and Alexander L. Wolf.
Simulation-based test adequacy criteria for distributed systems. In
Proceedings of the 14th ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ACM Press, 2006.

[20] L. Tahat. Requirement based automated black-box test generation. In
Proceedings of the 25th Annual International Computer Software and
Application Conference, pages 489 – 495. IEEE Computer Society
Press, 2001.

[21] Ye Wu, Dai Pan, and Mei-Hwa Chen. Techniques for testing
component-based software. In Proceedings of Seventh IEEE Inter-
national Conference on Engineering of Complex Computer Systems,
pages 222–232, 2001.

Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

