

Abstract—Graph isomorphism is an important problem in

graph theory. So far no polynomial time algorithms have been
found for undirected graph isomorphism. A popular class of
testing methods use necessary conditions to identify two
non-isomorphic graphs. Unfortunately, there often exist some
non-isomorphic graphs that satisfy these necessary conditions.
Based on a necessary condition we proposed previously, this
paper develops an O(n4) algorithm for undirected graph
isomorphism using vertex partition and refinement. Also, our
algorithm takes advantage of a recursive property that
isomorphism of supergraphs will result in the isomorphism of
subgraphs. Finally, the experiments on the Graph Database
validated the correctness of this algorithm for graph
isomorphism.

Index Terms—necessary condition, supergraph isomorphism,
subgraph isomorphism, algorithm, polynomial time complexity

I. INTRODUCTION
RAPH isomorphism is an important problem in graph
theory. So far no polynomial time algorithms [1] have

been found for undirected graph isomorphism. While there
exist a few linear average-case time complexity algorithms
(in the number of vertices of the graphs), the best algorithms
known for this problem have exponential worst-case time
complexity. In 1980, Babai et al. [2] used the degree results
for the random graph to develop a fast algorithm which
appeared to always work. Unfortunately, this canonical
labeling algorithm can not work for those graphs which
cannot be canonically labeled and has a rejection probability
bounded by n-1/7. Later some improved algorithms [3] were
found but all of them had a non-zero rejection probability. It
means that these improved algorithms can not work for all
kinds of graphs.

The vertex partition is a useful method for graph
isomorphism. For example, two popular methods of vertex
partition use the degrees of the vertices and the degree
sequence of the vertex neighborhood respectively. If the
vertex partition can be refined iteratively with heuristics, the

Manuscript received March 02, 2011; revised April 03, 2011. This work
was supported by the Natural Science Foundation of Guangdong Province,
P.R.C. (9251009001000005) and the Science and Technology Program of
Guangdong Province, P.R.C. (2008B080701005).

Aimin Hou was with the School of Computer Science and Engineering,
South China University of Technology, Guangzhou 510006, Guangzhou,
P.R.C. He is now with the School of Computer, Dongguan University of
Technology, Dongguan 523808, Guangdong, P.R.C. (phone:
86-13538377208; fax: 86-0769-22862362; e-mail: zhham@163.com).

Zhifeng Hao is with the School of Computer Science and Engineering,
South China University of Technology, Guangzhou 510006, Guangzhou,
P.R.C. (e-mail: mazfhao@scut.edu.cn).

size of candidate isomorphism space will be reduced
effectively. In fact, this idea is the basic strategy of some
isomorphism algorithms [4-8]. Unfortunately, these
algorithms may not refine sufficiently and need some
backtracking operations so as to construct a search tree for
testing and pruning. Therefore, they are not polynomial time
algorithms in the worst case.

In our previous work [9] for necessary conditions for
graph isomorphism, we introduced some new notions
including row code XOR (i.e. exclusive-OR) distance, row
code AOR (i.e. exclusive-NOR) distance, matrix with the
entry of row code XOR distance, matrix with the entry of row
code AOR distance, and row-row mapping between matrices.
Based on those notions, we proposed a simple necessary
condition: for two isomorphic graphs, there must exist an
identical row-row mapping between their adjacency matrices,
their row code XOR distance matrices, and their row code
AOR distance matrices.

The vertex partition and refinement can be applied using
this necessary condition. That is, the vertices belong to the
same vertex partition set if they are the elements of the match
set of a respective vertex. Besides, we observe a recursive
property in undirected graphs: the isomorphism of
supergraphs must result in the isomorphism of subgraphs.
Thus the refinement operations can be iterated based on this
recursive property. Also, the necessary condition we
proposed previously can be exploited recursively for a
sequence of subgraphs until the subgraphs of two vertices are
handled. Then we can determine if the two original graphs
are isomorphic or not according to the row-column
elementary operations on the adjacency matrices based on the
identical row-row mapping.

The rest of the paper is organized as follows. Section II
introduces the necessary preliminaries. Section III presents
the detailed algorithm with polynomial time complexity of
O(n4). Section IV reports the test results on the Graph
Database [10]. Finally, Section V concludes this paper.

II. PRELIMINARIES
We will present a necessary condition for undirected graph

isomorphism introduced in [9] firstly.
Definition 1. Suppose that G=(V, E) is an undirected

pseudograph with parallel edges and loops where |V|=n. The
vertices of G are listed arbitrarily as u1, u2, … , un. The
adjacency matrix of G is AG=(aij)n×n. Let aaij=1 if aij≠0,
otherwise aaij=0. Then the matrix AAG=(aaij)n×n is called the
zero-one matrix of adjacency matrix AG of G.

By Definition 1, we know that if the graph is an undirected

A Polynomial Time Algorithm for Undirected
Graph Isomorphism

Aimin Hou, Zhifeng Hao

G

Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

simple graph, then AAG=AG.
Definition 2. Given an undirected pseudograph G=(V, E)

and its adjacency matrix AG of G, a row code XOR distance
between row i and row j, denoted by xord(i, j), is defined by
the sum of entries which are exclusive of each other (i.e., one
entry being 0 and the other being 1 or k) in the same columns
of row i and row j of adjacency matrix AG.

Suppose that the adjacency matrix of G is AG=(aij)n×n and
the zero-one matrix of adjacency matrix of G is AAG=(aaij)n×n.
We have that

xord(i,j)=(ai1+aj1)×(aai1⊕aaj1)+(ai2+aj2)×(aai2⊕aaj2)
+…+(ain+ajn)×(aain⊕aajn) (1)

where + is add operation, × multiple operation, and ⊕
exclusive-OR operation (i.e., XOR).

We have that 0⊕0=0, 0⊕1=1, 1⊕0=1, 1⊕1=0.
Definition 3. Given an undirected pseudograph G=(V, E)

and its adjacency matrix AG of G, a row code AOR distance
between row i and row j, denoted by aord(i, j), is defined by
the sum of entries which are not exclusive of each other (i.e.,
both entries being 0 or both entries being 1 or k) in the same
columns of row i and row j of adjacency matrix AG.

Suppose that the adjacency matrix of G is AG=(aij)n×n and
the zero-one matrix of adjacency matrix of G is AAG=(aaij)n×n.
We have that

aord(i,j)=(ai1+aj1)×(aai1⊗aaj1)+(ai2+aj2)×(aai2⊗aaj2)
+…+(ain+ajn)×(aain⊗aajn) (2)

where + is add operation, × multiple operation, and ⊗
exclusive-NOR operation (i.e., AOR).

We have that 0⊗0=1, 0⊗1=0, 1⊗0=0, 1⊗1=1.
Definition 4. Suppose that G=(V, E) is an undirected

pseudograph where |V|=n and that the vertices of G are listed
arbitrarily as u1, u2, …, un. AG is the adjacency matrix of G.
The row code XOR distance matrix, denoted by BYG, of G is
BYG=(byij)n×n where byij=xord(i,j) if i ≠ j, otherwise
byij=aii∈AG.

Definition 5. Suppose that G=(V, E) is an undirected
pseudograph where |V|=n and that the vertices of G are listed
arbitrarily as u1, u2, …, un. The row code AOR distance
matrix, denoted by BTG, of G is BTG=(btij)n×n where
btij=aord(i, j) for all i and j.

Definition 6. The row-column elementary operation on an
n×n matrix is defined by the elementary operation of
interchanging simultaneously row i and row j as well as
column i and column j.

Theorem 1. Suppose that G=(V, E) is an undirected
pseudograph. It holds that the row-column elementary
operation on the adjacency matrix of G does not modify any
entry of both the row code XOR distance matrix and the row
code AOR distance matrix, and only performs the same
operation on these two matrices.

Theorem 2. Suppose that G=(VG, EG) and H=(VH, EH) are
two undirected pseudographs. If G≅H, then after performing
a sequence of row-column elementary operations, the
adjacency matrices of G and H are the same, so are the row
code XOR distance matrices of G and H and so are the row
code AOR distance matrices of G and H.

Definition 7. Suppose that A=(aij)n×n and B=(bij)n×n are
matrices and the labeling of the rows of A and B are listed as
u1, u2, …, un and v1, v2, …, vn respectively. If there exists a

correspondence [u1↔v1’, u2↔v2’,…, un↔vn’], where (v1’,
v2’,…, vn’) is one of the permutations of (v1, v2,…, vn), such
that all entries of row ui of A and all entries of row vi’ of B are
identical (without distinguishing the ordering list of entries),
then the correspondence [u1↔v1’, u2↔v2’,…, un↔vn’] is
called a row-row mapping between A and B.

Theorem 3. Suppose that G=(VG, EG) and H=(VH, EH) are
two undirected pseudographs. If G≅H, then there must exist
an identical row-row mapping between the adjacency matrix,
the row code XOR distance matrix, the row code AOR
distance matrix of G and the adjacency matrix, the row code
XOR distance matrix, the row code AOR distance matrix of
H, respectively.

Theorem 4. Suppose that G=(VG, EG) and H=(VH, EH) are
two undirected pseudographs. If G≅H, then there must exist a
subgraph Gi of G and a subgraph Hi of H such that the two
subgraphs Gi and Hi are isomorphic. For any two isomorphic
subgraphs Gi and Hi, there must exist an identical row-row
mapping between the adjacency matrix, the row code XOR
distance matrix, the row code AOR distance matrix of Gi and
the adjacency matrix, the row code XOR distance matrix, the
row code AOR distance matrix of Hi, respectively. This
relationship holds until the subgraphs have two vertices.

III. ISOMORPHIC ALGORITHM
In this section, we first describe the general strategy

employed for our algorithm. Next, we will present the three
detailed parts, which together make up an O(n4) algorithm for
graph isomorphism.

Since in undirected graphs the recursive property holds
that the isomorphism of supergraphs must result in the
isomorphism of subgraphs, the necessary condition we
proposed previously can be exploited recursively for a
sequence of subgraphs until the subgraphs of two vertices are
handled. For two graphs G and H, when this iterative process
fails in determining two subgraphs of two vertices being not
non-isomorphic, we will obtain an identical row-row
mapping between a pair of adjacency matrices, a pair of row
code XOR distance matrices, a pair of row code AOR
distance matrices of G and H as well as their all subgraphs.
We can determine if the two original graphs are isomorphic
or not according to the row-column elementary operations on
the adjacency matrices based on the identical row-row
mapping. If they are isomorphic, the identical row-row
mapping is an isomorphism. The following is the detailed
algorithm.

A. Row-row Mapping
Algorithm Ⅰ: ComputeRRM
Input: AG⎯ an adjacency matrix of graph G
 AH⎯ an adjacency matrix of graph H
 n⎯ the number of vertices of graph G
Output: BYG⎯a row code XOR distance matrix of graph

G
 BTG⎯a row code AOR distance matrix of graph G
 BYH⎯a row code XOR distance matrix of graph H
 BTH⎯a row code AOR distance matrix of graph H
 MS ⎯ a vertex match set
 M ⎯ a row-row mapping

Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

Step 1: By Definition 1, we can computer the zero-one
matrix AAG of adjacency matrix AG of G and the zero-one
matrix AAH of adjacency matrix AH of H, respectively.

Step 2: By formula (1) and (2), Definition 4 and 5, we
can obtain the row code XOR distance matrix BYG and the
row code AOR distance matrix BTG of graph G, respectively.

Step 3: By formula (1) and (2), Definition 4 and 5, we
can obtain the row code XOR distance matrix BYH and the
row code AOR distance matrix BTH of graph H, respectively.

Step 4: We compare every row, labeled by ui for 1≤i≤n, of
BYG with some rows of BYH to seek a possible match, that is,
all the entries of the row, labeled by ui, of BYG and all the
entries of some corresponding row of BYH are identical
(irrespective of the ordering list of the entries). A match set of
ui is the set consisting of all the labels of the corresponding
rows of BYH, denoted by S_ui.

Step 5: We examine whether these match sets S_ui for
1≤i≤n still hold between a pair of AG and AH, as well as
between a pair of BTG and BTH.

Step 6: If it is true, then the match set S_ui of ui is updated
by the intersection set of the S_ui obtained in this iteration
and the S_ui obtained in previous iteration for 1≤i≤n. The
vertex match set MS is the set consisting of all the S_ui for
1≤i≤n. If it is false, then let the row-row mapping M be an
empty set. Furthermore, if, after the intersection operation,
some S_ui is an empty set, then let the row-row mapping M
be an empty set, too. Otherwise, an one-to-one
correspondence between the vertex set of graph G and the
vertex set of graph H constitutes the row-row mapping
M=[u1↔v1’, u2↔v2’,…, un↔vn’], where vi’∈S_ui for 1≤i≤n.
If such an one-to-one correspondence does not exist, then the
graph G and H are non-isomorphic and let the row-row
mapping M be an empty set.

Space bound: O(n2).
Running time: O(n3).

B. Row-row Mapping of Subgraphs
 Algorithm Ⅱ: DetermineSubgraphRRM
Input: AG⎯ an adjacency matrix of graph G
 AH⎯ an adjacency matrix of graph H
 n⎯ the number of vertices of graph G
Output: BYG⎯a row code XOR distance matrix of graph

G
 BTG⎯a row code AOR distance matrix of graph G
 BYH⎯a row code XOR distance matrix of graph H
 BTH⎯a row code AOR distance matrix of graph H
 MS ⎯ a vertex match set
 M ⎯ a row-row mapping
Step 1: We make some initialization as follows. Let the

graph SG be the original graph G and the graph SH be the
original graph H. Let the matrix ASG be the adjacency matrix
AG and the matrix ASH be the adjacency matrix AH. Let
S_ui={v1, v2,…, vn} for 1≤i≤n.

Step 2: Then, we consider the original graphs G and H in
the first iteration. We run the algorithm ComputeRRM by
the adjacency matrix AG of G and the adjacency matrix AH of
H in order to obtain a vertex match set MS and a row-row
mapping M between AG and AH. If there does not exist such a
row-row mapping M (i.e., the row-row mapping M is an

empty set), we can determine that the original graphs G and
H are non-isomorphic and terminate the algorithm.
Otherwise, we save the BYG, BTG, BYH and BTH as the return
values.

Step 3: In this step, we do some auxiliary work before the
next iteration. Since if there exists one vertex ui of the
original graphs G such that G–ui and H–vj for 1≤j≤n are
non-isomorphic, we can determine that the original graphs G
and H are non-isomorphic. Therefore, we will consider the
isomorphism of the subgraphs G–ui and H–vj for 1≤i≤n and
1≤j≤n. In order to enhance the efficiency, we can only
consider the subgraphs G–ui and H–vj where vj is the element
of S_ui for 1≤i≤n. If the hypothesis is true, we can determine
that the original graphs G and H are non-isomorphic and
terminate the algorithm. Otherwise, we go to Step 4.

Step 4: From then on, we will consider a sequence of
subgraphs in the next iteration. For every element S_ui, in
which the vertex ui has not been signed by “visited”, of the
vertex match set MS, if there exists some element S_ui such
that |S_ui|=1, then we will consider the subgraphs SG=SG–ui
and SH=SH–vj firstly, where vj is the only element of S_ui.
Otherwise we will select arbitrarily one element S_ui, in
which the vertex ui has not been signed by “visited”, of MS
and any one element vj of S_ui so as to obtain the subgraphs
SG=SG–ui and SH=SH–vj. We update the ASG and the ASH
by deleting the row and the column, labeled by ui, of the old
ASG as well as the row and the column, labeled by vj, of the
old ASH, respectively.

Step 5: We consider the subgraphs SG and SH in the next
iteration. We run the algorithm ComputeRRM by the
adjacency matrix ASG of SG and the adjacency matrix ASH of
SH in order to obtain a vertex match set MS and a row-row
mapping M between ASG and ASH.

Step 6: If there exists such a row-row mapping M (i.e., the
row-row mapping M is not an empty set), we sign the vertex
ui by “visited”. Otherwise we consider another element vj of
S_ui in Step 4. If all the elements of S_ui are considered and
no a row-row mapping is obtained, we can determine that the
original graphs G and H are non-isomorphic and terminate
the algorithm.

Step 7: Repeat Step 4, 5 and 6 iteratively until the
subgraph SG has only two vertices. If there exists a row-row
mapping M, we save the MS and the M as the return values.
Otherwise, we can determine that the original graphs G and
H are non-isomorphic and terminate the algorithm.

Space bound: O(n2).
Running time: O(n4).

C. Isomorphism Function
Algorithm Ⅲ: DetermineIsomorphismFunction
Input: AG⎯ an adjacency matrix of graph G
 BYG⎯a row code XOR distance matrix of graph G
 BTG⎯a row code AOR distance matrix of graph G
 AH⎯an adjacency matrix of graph H
 BYH⎯a row code XOR distance matrix of graph H
 BTH⎯a row code AOR distance matrix of graph H
 M ⎯ a row-row mapping
 n⎯ the number of vertices of graph G
Output: F⎯ an isomorphism function

Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

Step 1: After the algorithm DetermineSubgraphRRM
has been executed successfully, we will run this algorithm
DetermineIsomorphismFunction in order to find the
isomorphism function by performing some row-column
elementary operations based on the row-row mapping M. We
interchange the corresponding row and column of AH
according to every element of M as follows. For every
element ui↔vj of M, we interchange the row labeled by vi and
the row labeled by vj of AH, as well as the column labeled by
vi and the column labeled by vj of AH.

Step 2: The same interchanging operations are performed
on BYH and BTH respectively.

Step 3: After performing these row-column elementary
operations, if AG=AH, BYG=BYH, and BTG=BTH, then the
original graphs G and H are isomorphic. All the
correspondences between ui and vj constitute the
isomorphism function. That is, the isomorphism function F is
the row-row mapping M. Otherwise the original graphs G
and H are non-isomorphic.

Space bound: O(n2).
Running time: O(n3).

IV. TESTING RESULTS
To test performance of our algorithm, a random graph

generating program was used. All randomly generated pairs
of graphs including regular graphs and irregular graphs were
rejected as non-isomorphic or proved as isomorphic.
Furthermore, our algorithm was tested on 11900 graphs from
the Graph Database [10].

TABLE I

TESTING RESULTS OF THE FIVE CATEGORIES BY THE GRAPH
ISOMORPHISM ALGORITHM

Graph Type Numbers of Sub
Categories

Graph
Size

Numbers of
Graph Pairs

Bounded-Valence 40 20～200 4000
Bi-Dim Mesh 38 16～196 3800

Random 20 20～200 2000
Tri-Dim Mesh 14 27～216 1400

Quad-Dim Mesh 7 16～81 700

The Graph Database consisted of five types of graphs. In
each category there are further sub-categories based on size
and other parameters of the main category. For each of these
tests we have validated the identical row-row mapping
returned by the isomorphism algorithm and have not found a
counterexample. The programs were written in the C
language and the experiments were carried out with a
computer with AMD Athlon(tm) 64×2 Dual Core Processor
3600Hz/1GB. The testing results are summarized in Table I.

V. CONCLUSION
As an NP-hard problem, so far no polynomial time (in the

number of vertices of the graphs) algorithms have been
known for undirected graph isomorphism. Although a few
linear average-case time complexity algorithms were found
to solve this problem, the best algorithms still have
exponential worst-case time complexity.

In this paper, based on a necessary condition we proposed
previously, we developed an O(n4) algorithm for undirected
graph isomorphism using vertex partition and refinement. In
particular, our algorithm takes advantage of a recursive
property that isomorphism of supergraphs will result in the
isomorphism of subgraphs. The extensive experimental
results on the Graph Database validated the correctness of
this algorithm for testing graph isomorphism. As for future
work, we plan to investigate more efficient implementation
for our algorithm.

ACKNOWLEDGMENT
This research was supported by the Natural Science

Foundation of Guangdong Province, P.R.C.
(9251009001000005) and the Science and Technology
Program of Guangdong Province, P.R.C.
(2008B080701005).

REFERENCES
[1] Douglas B. West, “Introduction to graph theory,” second edition,

Pearson Education Asia Ltd., 2004, pp.438-439.
[2] Babai L., P. Erdős, and S.M. Selkow, “Random graph isomorphism”,

SIAM Journal of Computing, vol. 9, pp.628-635, 1980.
[3] Tomek Czajka and Gopal Pandurangan, “Improved random graph

isomorphism”, Journal of Discrete Algorithm, vol. 6, pp.85-92, 2008.
[4] Ullmann J. R., “An algorithm for subgraph isomorphism”, Journal of

the Association for Computer Machinery, vol. 23(1), pp.31-42, 1976.
[5] Schmidt D. C., Druffel L. E., “A fast backtracking algorithm to test

directed graphs for isomorphism using distance matrices”, Journal of
the Association for Computer Machinery, vol. 23(3), pp.433-445,
1976.

[6] McKay B. D., “Practical graph isomorphism”, Congressus
Numberantium, vol. 30, pp.45-87, 1981.

[7] Cordella L. P., Foggia P., Sansone C., et al., “An improved algorithm
for matching large graphs”, International Workshop on Graph-based
Representation in Pattern Recognition, Ischia, Italy, pp.149-159, May
2001.

[8] Cordella L. P., Foggia P., Sansone C., et al., “Subgraph transformations
for the inexact matching of attributed relational graphs”, IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 26(10),
pp.1367-1372, 2004.

[9] Aimin Hou, “Elementary operations on a matrix to determine the
isomorphism of graphs”, Journal of Computer Engineering and
Applications, vol. 42(20), pp.51-54, 2006. (in Chinese).

[10] The Graph Data, collection of isomorphic graphs,
http://amalfi.dis.unina.it/graph/.

Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

