
 

  
Abstract—Graph isomorphism is an important problem in 

graph theory. So far no polynomial time algorithms have been 
found for undirected graph isomorphism. A popular class of 
testing methods use necessary conditions to identify two 
non-isomorphic graphs. Unfortunately, there often exist some 
non-isomorphic graphs that satisfy these necessary conditions. 
Based on a necessary condition we proposed previously, this 
paper develops an O(n4) algorithm for undirected graph 
isomorphism using vertex partition and refinement. Also, our 
algorithm takes advantage of a recursive property that 
isomorphism of supergraphs will result in the isomorphism of 
subgraphs. Finally, the experiments on the Graph Database 
validated the correctness of this algorithm for graph 
isomorphism. 
 

Index Terms—necessary condition, supergraph isomorphism, 
subgraph isomorphism, algorithm, polynomial time complexity 
 

I. INTRODUCTION 
RAPH isomorphism is an important problem in graph 
theory. So far no polynomial time algorithms [1] have 

been found for undirected graph isomorphism. While there 
exist a few linear average-case time complexity algorithms 
(in the number of vertices of the graphs), the best algorithms 
known for this problem have exponential worst-case time 
complexity. In 1980, Babai et al. [2] used the degree results 
for the random graph to develop a fast algorithm which 
appeared to always work. Unfortunately, this canonical 
labeling algorithm can not work for those graphs which 
cannot be canonically labeled and has a rejection probability 
bounded by n-1/7. Later some improved algorithms [3] were 
found but all of them had a non-zero rejection probability. It 
means that these improved algorithms can not work for all 
kinds of graphs. 

The vertex partition is a useful method for graph 
isomorphism. For example, two popular methods of vertex 
partition use the  degrees  of  the  vertices  and  the  degree 
sequence of the vertex neighborhood respectively. If the 
vertex partition can be refined iteratively with heuristics, the 
 

Manuscript received March 02, 2011; revised April 03, 2011. This work 
was supported by the Natural Science Foundation of Guangdong Province, 
P.R.C. (9251009001000005) and the Science and Technology Program of 
Guangdong Province, P.R.C. (2008B080701005).  

Aimin Hou was with the School of Computer Science and Engineering, 
South China University of Technology, Guangzhou 510006, Guangzhou, 
P.R.C. He is now with the School of Computer, Dongguan University of 
Technology, Dongguan 523808, Guangdong, P.R.C. (phone: 
86-13538377208;  fax: 86-0769-22862362;  e-mail: zhham@163.com).  

Zhifeng Hao  is with the School of Computer Science and Engineering, 
South China University of Technology, Guangzhou 510006, Guangzhou, 
P.R.C. (e-mail: mazfhao@scut.edu.cn). 

 

 
size of candidate isomorphism space will be reduced 
effectively. In fact, this idea is the basic strategy of some 
isomorphism algorithms [4-8]. Unfortunately, these 
algorithms may not refine sufficiently and need some 
backtracking operations so as to construct a search tree for 
testing and pruning. Therefore, they are not polynomial time 
algorithms in the worst case. 

In our previous work [9] for necessary conditions for 
graph isomorphism, we introduced some new notions 
including row code XOR (i.e. exclusive-OR) distance, row 
code AOR (i.e. exclusive-NOR) distance, matrix with the 
entry of row code XOR distance, matrix with the entry of row 
code AOR distance, and row-row mapping between matrices. 
Based on those notions, we proposed a simple necessary 
condition: for two isomorphic graphs, there must exist an 
identical row-row mapping between their adjacency matrices, 
their row code XOR distance matrices, and their row code 
AOR distance matrices. 

The vertex partition and refinement can be applied using 
this necessary condition. That is, the vertices belong to the 
same vertex partition set if they are the elements of the match 
set of a respective vertex. Besides, we observe a recursive 
property in undirected graphs: the isomorphism of 
supergraphs must result in the isomorphism of subgraphs. 
Thus the refinement operations can be iterated based on this 
recursive property. Also, the necessary condition we 
proposed previously can be exploited recursively for a 
sequence of subgraphs until the subgraphs of two vertices are 
handled. Then we can determine if the two original graphs 
are isomorphic or not according to the row-column 
elementary operations on the adjacency matrices based on the 
identical row-row mapping. 

The rest of the paper is organized as follows. Section II 
introduces the necessary preliminaries. Section III presents 
the detailed algorithm with polynomial time complexity of 
O(n4). Section IV reports the test results on the Graph 
Database [10]. Finally, Section V concludes this paper.  

II. PRELIMINARIES 
We will present a necessary condition for undirected graph 

isomorphism introduced in [9] firstly. 
Definition 1.  Suppose that G=(V, E) is an undirected 

pseudograph with parallel edges and loops where |V|=n. The 
vertices of G are listed arbitrarily as u1, u2, … , un. The 
adjacency matrix of G is AG=(aij)n×n. Let aaij=1 if aij≠0, 
otherwise aaij=0. Then the matrix AAG=(aaij)n×n is called the 
zero-one matrix of adjacency matrix AG of G. 

By Definition 1, we know that if the graph is an undirected 
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simple graph, then AAG=AG. 
Definition 2.  Given an undirected pseudograph G=(V, E) 

and its adjacency matrix AG of G, a row code XOR distance 
between row i and row j, denoted by xord(i, j), is defined by 
the sum of entries which are exclusive of each other (i.e., one 
entry being 0 and the other being 1 or k) in the same columns 
of row i and row j of adjacency matrix AG. 

Suppose that the adjacency matrix of G is AG=(aij)n×n and 
the zero-one matrix of adjacency matrix of G is AAG=(aaij)n×n. 
We have that 

xord(i,j)=(ai1+aj1)×(aai1⊕aaj1)+(ai2+aj2)×(aai2⊕aaj2) 
+…+(ain+ajn)×(aain⊕aajn)                                             (1) 

where + is add operation, × multiple operation, and ⊕ 
exclusive-OR operation (i.e., XOR). 

We have that 0⊕0=0, 0⊕1=1, 1⊕0=1, 1⊕1=0. 
Definition 3.  Given an undirected pseudograph G=(V, E) 

and its adjacency matrix AG of G, a row code AOR distance 
between row i and row j, denoted by aord(i, j), is defined by 
the sum of entries which are not exclusive of each other (i.e., 
both entries being 0 or both entries being 1 or k) in the same 
columns of row i and row j of adjacency matrix AG. 

Suppose that the adjacency matrix of G is AG=(aij)n×n and 
the zero-one matrix of adjacency matrix of G is AAG=(aaij)n×n. 
We have that 

aord(i,j)=(ai1+aj1)×(aai1⊗aaj1)+(ai2+aj2)×(aai2⊗aaj2) 
+…+(ain+ajn)×(aain⊗aajn)                                             (2) 

where + is add operation, × multiple operation, and ⊗ 
exclusive-NOR operation (i.e., AOR). 

We have that 0⊗0=1, 0⊗1=0, 1⊗0=0, 1⊗1=1. 
Definition 4.  Suppose that G=(V, E) is an undirected 

pseudograph where |V|=n and that the vertices of G are listed 
arbitrarily as u1, u2, …, un. AG is the adjacency matrix of G. 
The row code XOR distance matrix, denoted by BYG, of G is 
BYG=(byij)n×n where byij=xord(i,j) if i ≠ j, otherwise 
byij=aii∈AG. 

Definition 5.  Suppose that G=(V, E) is an undirected 
pseudograph where |V|=n and that the vertices of G are listed 
arbitrarily as u1, u2, …, un. The row code AOR distance 
matrix, denoted by BTG, of G is BTG=(btij)n×n where 
btij=aord(i, j) for all i and j. 

Definition 6.  The row-column elementary operation on an 
n×n matrix is defined by the elementary operation of 
interchanging simultaneously row i and row j as well as 
column i and column j. 

Theorem 1.  Suppose that G=(V, E) is an undirected 
pseudograph. It holds that the row-column elementary 
operation on the adjacency matrix of G does not modify any 
entry of both the row code XOR distance matrix and the row 
code AOR distance matrix, and only performs the same 
operation on these two matrices. 

Theorem 2.  Suppose that G=(VG, EG) and H=(VH, EH) are 
two undirected pseudographs. If G≅H, then after performing 
a sequence of row-column elementary operations, the 
adjacency matrices of G and H are the same, so are the row 
code XOR distance matrices of G and H and so are the row 
code AOR distance matrices of G and H. 

Definition 7.  Suppose that A=(aij)n×n and B=(bij)n×n are 
matrices and the labeling of the rows of A and B are listed as 
u1, u2, …, un and v1, v2, …, vn respectively. If there exists a 

correspondence [u1↔v1’, u2↔v2’,…, un↔vn’], where (v1’, 
v2’,…, vn’) is one of the permutations of (v1, v2,…, vn), such 
that all entries of row ui of A and all entries of row vi’ of B are 
identical (without distinguishing the ordering list of entries), 
then the correspondence [u1↔v1’, u2↔v2’,…, un↔vn’] is 
called a row-row mapping between A and B. 

Theorem 3.  Suppose that G=(VG, EG) and H=(VH, EH) are 
two undirected pseudographs. If G≅H, then there must exist 
an identical row-row mapping between the adjacency matrix, 
the row code XOR distance matrix, the row code AOR 
distance matrix of G and the adjacency matrix, the row code 
XOR distance matrix, the row code AOR distance matrix of 
H, respectively. 

Theorem 4.  Suppose that G=(VG, EG) and H=(VH, EH) are 
two undirected pseudographs. If G≅H, then there must exist a 
subgraph Gi of G and a subgraph Hi of H such that the two 
subgraphs Gi and Hi are isomorphic. For any two isomorphic 
subgraphs Gi and Hi, there must exist an identical row-row 
mapping between the adjacency matrix, the row code XOR 
distance matrix, the row code AOR distance matrix of Gi and 
the adjacency matrix, the row code XOR distance matrix, the 
row code AOR distance matrix of Hi, respectively. This 
relationship holds until the subgraphs have two vertices. 

III. ISOMORPHIC ALGORITHM 
In this section, we first describe the general strategy 

employed for our algorithm. Next, we will present the three 
detailed parts, which together make up an O(n4) algorithm for 
graph isomorphism. 

Since in undirected graphs the recursive property holds 
that the isomorphism of supergraphs must result in the 
isomorphism of subgraphs, the necessary condition we 
proposed previously can be exploited recursively for a 
sequence of subgraphs until the subgraphs of two vertices are 
handled. For two graphs G and H, when this iterative process 
fails in determining two subgraphs of two vertices being not 
non-isomorphic, we will obtain an identical row-row 
mapping between a pair of adjacency matrices, a pair of row 
code XOR distance matrices, a pair of row code AOR 
distance matrices of G and H as well as their all subgraphs. 
We can determine if the two original graphs are isomorphic 
or not according to the row-column elementary operations on 
the adjacency matrices based on the identical row-row 
mapping. If they are isomorphic, the identical row-row 
mapping is an isomorphism. The following is the detailed 
algorithm. 

A. Row-row Mapping 
Algorithm Ⅰ: ComputeRRM 
Input: AG⎯ an adjacency matrix of graph G 
           AH⎯ an adjacency matrix of graph H 
             n⎯ the number of vertices of graph G 
Output: BYG⎯a row code XOR distance matrix of graph 

G 
        BTG⎯a row code AOR distance matrix of graph G 
       BYH⎯a row code XOR distance matrix of graph H 
       BTH⎯a row code AOR distance matrix of graph H 
       MS ⎯ a vertex match set 
        M ⎯ a row-row mapping 
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Step 1: By Definition 1, we can computer the zero-one 
matrix AAG of adjacency matrix AG of G and the zero-one 
matrix AAH of adjacency matrix AH of H, respectively. 

Step 2: By formula (1) and (2), Definition 4 and 5, we 
can obtain the row code XOR distance matrix BYG and the 
row code AOR distance matrix BTG of graph G, respectively. 

Step 3: By formula (1) and (2), Definition 4 and 5, we 
can obtain the row code XOR distance matrix BYH and the 
row code AOR distance matrix BTH of graph H, respectively. 

Step 4: We compare every row, labeled by ui for 1≤i≤n, of 
BYG with some rows of BYH to seek a possible match, that is, 
all the entries of the row, labeled by ui, of BYG and all the 
entries of some corresponding row of BYH are identical 
(irrespective of the ordering list of the entries). A match set of 
ui is the set consisting of all the labels of the corresponding 
rows of BYH, denoted by S_ui. 

Step 5: We examine whether these match sets S_ui for 
1≤i≤n still hold between a pair of AG and AH, as well as 
between a pair of BTG and BTH. 

Step 6: If it is true, then the match set S_ui of ui is updated 
by the intersection set of the S_ui obtained in this iteration 
and the S_ui obtained in previous iteration for 1≤i≤n. The 
vertex match set MS is the set consisting of all the S_ui for 
1≤i≤n. If it is false, then let the row-row mapping M be an 
empty set. Furthermore, if, after the intersection operation, 
some S_ui is an empty set, then let the row-row mapping M 
be an empty set, too. Otherwise, an one-to-one 
correspondence between the vertex set of graph G and the 
vertex set of graph H constitutes the row-row mapping 
M=[ u1↔v1’, u2↔v2’,…, un↔vn’], where vi’∈S_ui for 1≤i≤n. 
If such an one-to-one correspondence does not exist, then the 
graph G and H are non-isomorphic and let the row-row 
mapping M be an empty set. 

Space bound: O(n2). 
Running time: O(n3). 

B. Row-row Mapping of Subgraphs 
 Algorithm Ⅱ: DetermineSubgraphRRM 
Input: AG⎯ an adjacency matrix of graph G 
           AH⎯ an adjacency matrix of graph H 
              n⎯ the number of vertices of graph G 
Output: BYG⎯a row code XOR distance matrix of graph 

G 
        BTG⎯a row code AOR distance matrix of graph G 
       BYH⎯a row code XOR distance matrix of graph H 
       BTH⎯a row code AOR distance matrix of graph H 
       MS ⎯ a vertex match set 
        M ⎯ a row-row mapping 
Step 1: We make some initialization as follows. Let the 

graph SG be the original graph G and the graph SH be the 
original graph H. Let the matrix ASG be the adjacency matrix 
AG and the matrix ASH be the adjacency matrix AH. Let 
S_ui={v1, v2,…, vn} for 1≤i≤n. 

Step 2: Then, we consider the original graphs G and H in 
the first iteration. We run the algorithm ComputeRRM by 
the adjacency matrix AG of G and the adjacency matrix AH of 
H in order to obtain a vertex match set MS and a row-row 
mapping M between AG and AH. If there does not exist such a 
row-row mapping M (i.e., the row-row mapping M is an 

empty set), we can determine that the original graphs G and 
H are non-isomorphic and terminate the algorithm. 
Otherwise, we save the BYG, BTG, BYH and BTH as the return 
values. 

Step 3: In this step, we do some auxiliary work before the 
next iteration. Since if there exists one vertex ui of the 
original graphs G such that G–ui and H–vj for 1≤j≤n are 
non-isomorphic, we can determine that the original graphs G 
and H are non-isomorphic. Therefore, we will consider the 
isomorphism of the subgraphs G–ui and H–vj for 1≤i≤n and 
1≤j≤n. In order to enhance the efficiency, we can only 
consider the subgraphs G–ui and H–vj where vj is the element 
of S_ui for 1≤i≤n. If the hypothesis is true, we can determine 
that the original graphs G and H are non-isomorphic and 
terminate the algorithm. Otherwise, we go to Step 4. 

Step 4: From then on, we will consider a sequence of 
subgraphs in the next iteration. For every element S_ui, in 
which the vertex ui has not been signed by “visited”, of the 
vertex match set MS, if there exists some element S_ui such 
that |S_ui|=1, then we will consider the subgraphs SG=SG–ui 
and SH=SH–vj firstly, where vj is the only element of S_ui. 
Otherwise we will select arbitrarily one element S_ui, in 
which the vertex ui has not been signed by “visited”, of MS 
and any one element vj of S_ui so as to obtain the subgraphs 
SG=SG–ui and SH=SH–vj. We update the ASG and the ASH 
by deleting the row and the column, labeled by ui, of the old 
ASG as well as the row and the column, labeled by vj, of the 
old ASH, respectively. 

Step 5: We consider the subgraphs SG and SH in the next 
iteration. We run the algorithm ComputeRRM by the 
adjacency matrix ASG of SG and the adjacency matrix ASH of 
SH in order to obtain a vertex match set MS and a row-row 
mapping M between ASG and ASH. 

Step 6: If there exists such a row-row mapping M (i.e., the 
row-row mapping M is not an empty set), we sign the vertex 
ui by “visited”. Otherwise we consider another element vj of 
S_ui in Step 4. If all the elements of S_ui are considered and 
no a row-row mapping is obtained, we can determine that the 
original graphs G and H are non-isomorphic and terminate 
the algorithm. 

Step 7: Repeat Step 4, 5 and 6 iteratively until the 
subgraph SG has only two vertices. If there exists a row-row 
mapping M, we save the MS and the M as the return values. 
Otherwise, we can determine that the original graphs G and 
H are non-isomorphic and terminate the algorithm. 

Space bound: O(n2). 
Running time: O(n4). 

C. Isomorphism Function 
Algorithm Ⅲ: DetermineIsomorphismFunction 
Input: AG⎯ an adjacency matrix of graph G 
       BYG⎯a row code XOR distance matrix of graph G 
       BTG⎯a row code AOR distance matrix of graph G 
        AH⎯an adjacency matrix of graph H 
       BYH⎯a row code XOR distance matrix of graph H 
       BTH⎯a row code AOR distance matrix of graph H 
        M ⎯ a row-row mapping 
        n⎯ the number of vertices of graph G 
Output: F⎯ an isomorphism function 
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Step 1: After the algorithm DetermineSubgraphRRM 
has been executed successfully, we will run this algorithm 
DetermineIsomorphismFunction in order to find the 
isomorphism function by performing some row-column 
elementary operations based on the row-row mapping M. We 
interchange the corresponding row and column of AH 
according to every element of M as follows. For every 
element ui↔vj of M, we interchange the row labeled by vi and 
the row labeled by vj of AH, as well as the column labeled by 
vi and the column labeled by vj of AH. 

Step 2: The same interchanging operations are performed 
on BYH and BTH respectively.  

Step 3: After performing these row-column elementary 
operations, if AG=AH, BYG=BYH, and BTG=BTH, then the 
original graphs G and H are isomorphic. All the 
correspondences between ui and vj constitute the 
isomorphism function. That is, the isomorphism function F is 
the row-row mapping M. Otherwise the original graphs G 
and H are non-isomorphic. 

Space bound: O(n2). 
Running time: O(n3). 

IV. TESTING RESULTS 
To test performance of our algorithm, a random graph 

generating program was used. All randomly generated pairs 
of graphs including regular graphs and irregular graphs were 
rejected as non-isomorphic or proved as isomorphic. 
Furthermore, our algorithm was tested on 11900 graphs from 
the Graph Database [10].  

 
TABLE I 

TESTING RESULTS OF THE FIVE CATEGORIES BY THE GRAPH 
ISOMORPHISM ALGORITHM 

Graph Type Numbers of Sub 
Categories 

Graph 
Size 

Numbers of 
Graph Pairs 

Bounded-Valence 40 20～200 4000 
Bi-Dim Mesh 38 16～196 3800 

Random 20 20～200 2000 
Tri-Dim Mesh 14 27～216 1400 

Quad-Dim Mesh 7 16～81 700 
 

The Graph Database consisted of five types of graphs. In 
each category there are further sub-categories based on size 
and other parameters of the main category. For each of these 
tests we have validated the identical row-row mapping 
returned by the isomorphism algorithm and have not found a 
counterexample. The programs were written in the C 
language and the experiments were carried out with a 
computer with AMD Athlon(tm) 64×2 Dual Core Processor 
3600Hz/1GB. The testing results are summarized in Table I. 

V. CONCLUSION 
As an NP-hard problem, so far no polynomial time (in the 

number of vertices of the graphs) algorithms have been 
known for undirected graph isomorphism. Although a few 
linear average-case time complexity algorithms were found 
to solve this problem, the best algorithms still have 
exponential worst-case time complexity. 

In this paper, based on a necessary condition we proposed 
previously, we developed an O(n4) algorithm for undirected 
graph isomorphism using vertex partition and refinement. In 
particular, our algorithm takes advantage of a recursive 
property that isomorphism of supergraphs will result in the 
isomorphism of subgraphs. The extensive experimental 
results on the Graph Database validated the correctness of 
this algorithm for testing graph isomorphism. As for future 
work, we plan to investigate more efficient implementation 
for our algorithm. 
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