
 

 

Abstract— We describe a method using statistical hypothesis 

test for handling the unsuccessful results of partial exploration 

of the state space of marked graphs PN systems. The first 

contribution of our method is the estimation of the probability 

distribution function of the state space of PN systems. The 

second one is to give completeness to the unsuccessful results by 

determining reachability with a level of confidence through the 

test. In this paper we focus in PN systems with the form of 

structurally bounded marked graphs with probability 

distribution of their set of reachable markings believed to be 

normal. 

 
Index Terms—Petri nets, Hypothesis test, Reachability 

Problems, State space 

 

I. INTRODUCTION 

UR work focuses on determining the existence of 

undesired states without having to explore the entire 

state space generated from large and bounded Petri net (PN) 

systems. With a heuristically guided partial exploration of the 

state space we visit and register a number of states believed to 

be smaller than the complete state space and search for the 

target state. 

Works related to determining reachability in the state space 

generated from PN systems usually utilize reachability graphs 

exploring the entire state space but limited due to the state 

space explosion problem [1]. On the other hand, the list of 

works exploring only a portion of the state space is large but 

many of them face convex termination, lack of conclusiveness 

and their efficiency is ignored [1-4], although good results 

exist in the confines of specific practicability. 

Lack of conclusiveness represents a wasted cost, therefore 

upon unsuccessful search, we will treat the results with a 

statistical hypothesis tests to decide with a level of confidence 

if the undesired state exists or not. This novel approach 

integrates certainty to the incompleteness of the heuristically 

guided partial exploration of the state space using a test for 

proportions. 

First, from the unsuccessful results of the partial 

exploration, we will utilize the explored states as a sample for 

statistical inference. We will estimate the probability 

distribution function (PDF) of the state space, the proportion 

of states with the same cardinality as the undesired state and 
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define a hypothesis test to determine if the undesired state 

exists or not in the state space. We believe we can accurately 

estimate the proportion of states in the state space with same 

cardinality as the undesired state and obtain a reliable result 

with the hypothesis test. With this, our partial exploration can 

have either a conclusive outcome if the undesired state was 

found or provide a level of confidence indicating if such state 

is likely to exist in the state space. 

Second, in this paper we will analyze how appropriate is 

treating the results of the partial exploration of the state space 

with a hypothesis test for proportions in PN systems with the 

structure of bounded marked graphs. For this, two small 

examples will demonstrate that for this subclass of PN the test 

can give correct results. 

This paper is self-contained and arranged in the following 

order: section two contains a small theoretical background 

about hypothesis test and PN systems. Section three presents 

the fundaments of our method regarding the probability 

distribution of the state space of a PN system (a distribution 

which belongs to the state space of the PN without tokens), 

the reachability analysis with partial exploration and the form 

of our hypothesis test. Section four describes the algorithm for 

partial exploration of the state space and three sorting routines 

for making it heuristically guided. Section five describes the 

estimated normal probability distribution function of the state 

space. Section six contains the two theoretical examples and 

at the end are some conclusions. 

II. HYPOTHESIS TEST AND PN SYSTEMS 

A statistical hypothesis test uses observed data from an 

experiment for making decisions about the acceptance or not 

of specific characteristics in the entire population. In our 

research we will use them to provide a level of certainty and 

closure to the unsuccessful search of the partial exploration in 

reachability problems of PN systems for determining the 

existence or not of undesired states. 

Assuming the size of the state space of the PN system is 

large and unknown, we have to calculate the number n of 

states we need to explore (the number of samples). The 

number of states we need to explore has to be enough in order 

not to compromise the veracity of the hypothesis test. 

Then, we transform the reachability problem of the 

undesired state in terms of deciding with a hypothesis test for 

proportions if there is enough evidence indicating that the 

state being searched exists or not in the state space. 

Let us start our treatment with a brief introduction of the 

PN theory. For reference and proofs on boundedness in PN 

systems and the theorems in the section three we address the 

reader to [3, 5-6]. 
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A. Petri Nets 

A Petri net is a tuple N = (P, T, I, O, Q), where P is a finite 

non-empty set of i places, T is a finite non-empty set of j 

transitions, I is the set of directed arcs connecting places to 

transitions, O the set of directed arcs connecting transitions to 

places and Q is a capacity function for the places mapping P 

 Z+. Places are graphically represented by circles, 

transitions by rectangles and all directed arcs by arrows. The 

pre-conditions of a transition t are in the set of input places •t 

and the post-conditions in t•. The pre-events of a place p are in 

the set •p and the post-events in the set p•. 

A PN is called pure when there are no self-loops. A state 

machine is a PN such that |•t|=|t•|=1. A marked graph is a PN 

such that |•p|=|p•|=1. 

The way to represent a state of the system is by putting 

tokens in the corresponding places. Tokens are black dots that 

exist only in the places. The function m called marking maps 

P  Z+, and m0 is the initial marking. A PN with initial 

marking is called a PN system and will be denoted by (N, m0). 

We say that a place p is marked when m(p) > 0. The finite set 

of all possible markings (i.e. the reachability space) of (N, m0) 

is denoted by R. The sum of all tokens in a marking m is 

defined with the function card(m). 

The number of states that a PN system can generate 

depends on the input and output arcs, the initial marking and 

the way how the occurrence of transitions is specified. 

Occurrence of single transition is carried out for the 

generation of the complete state space of a PN system and 

mainly used for analysis purposes. Occurrence of concurrent 

transitions is implemented for generating possibly 

not-complete state spaces and it is assumed in the rest of this 

paper except if specified differently. 

The sets of arcs I and O can be represented with the 

pre-incident matrix and the post-incident matrix 


I and 


O 

respectively having both i rows and j columns, with values of 

[I(pi, tj)] and [O(pi, tj)] respectively, and a marking m as a 

vector 


m  Z
i
 defining the state of the system. 

The token game refers to the way how the dynamic 

behavior of the system is described with the markings 

evolution (the removal of existing tokens and the creation of 

new tokens), according with the firing of enable transitions. 

The enabling rule is defined as: a transition t*  T is said to be 

enabled at a given marking m if every of its input places has at 

least as many tokens as the weight of the arcs joining it and 

every of its output places has a number of tokens smaller than 

the sum of their current marking plus the weight of the arc 

connecting them. The set of all enabled transitions at a 

marking m is denoted with T(m)*. 

A transition is called fireable if it is enabled. A fireable 

transition may fire, eliminating the marking m and creating 

the new marking m‟. 

Using the initial marking vector 


m0, the next marking 

vector 


m is mathematically calculated with the state 

transition function 


m = 


m0+(


O−


I)×


σ. In this formula, 


σ is a firing count vector representing the number of times 

every transition has fired. 

The maximal number γ of tokens that could exist in any PN 

system (N, m0), with qα as the finite tokens capacity of the α
th

 

place, is given by  

 





i

q
1

)1(


 .        (1) 

 

A PN system (N, m0) is bounded if all places have finite 

tokens capacity; it is bounded at a number β ≤ γ of tokens in 

every marking of its state space. 

III. REACHABILITY IN PN SYSTEMS 

State spaces are derived from a model of system behavior, 

like PN systems. Verification of specific properties of the 

complete state space is in general necessary to guarantee the 

correct functionality of the system and verify the compliance 

of design specifications. Unfortunately the usage of 

verification techniques of the state space is limited due to its 

possibly exponential growth of size, especially when 

concurrent occurrences of events exist in the system. 

A PN N‟ (without tokens) with all places having finite 

tokens capacity has a number of markings given by 
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Let us denote U as the set of all markings that could exist in 

a PN N‟ without tokens, with size of Ω. For every mU let us 

define the variable X (number of tokens in m) as follows: 

 

)()( mcardmX  .        (3) 

 

Independently of the number of places and tokens capacity 

in N‟, if mU we create a histogram of X(m), we get a 

distribution of frequencies of X as seen in the fig.1, with the 

appearance of a normal probability distribution function, i.e. 

X~N(μ, 
2
) where μ=γ/2. 

A. Complete Exploration 

In a PN system (N‟, m0) and its set of reachable markings R, 

for every mR the following two theorems belong by now to 

folk knowledge. 

Theorem 1. A PN system (N‟, m0) with m0  U generates a 

state space R with markings belonging to U.        □ 

Theorem 2. A PN system (N‟, m0) generates zero markings 

 
Fig. 1.  Histogram of X(m).  
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when the initial marking has no tokens, i.e. card(m0)=0, or 

when card(m0)=γ.                  □ 

Let us define the variable Y as follows for a PN system (N‟, 

m0) and every mR 

 

).()( mcardmY          (4) 

 

We can create a histogram of Y(m) and identify the 

distribution of frequencies of Y if we explore the complete set 

of reachable markings R. 

Let us assume the PN system (N„, m0) is the marked graph 

from the fig.2. After complete exploration of its set R, the 

distribution of frequencies of Y is seen in the fig.3, with the 

appearance of a normal probability distribution function, i.e. 

Y~N( x , s
2
).  

The probability distribution function turns out to be normal 

for the PN system in the fig.2 and the parameter easily 

calculated because the number ω of states in R is small, but in 

very large PN systems where the complete exploration of the 

reachability space is not feasible, this information is not 

available to the analyst. 

B. Partial Exploration 

For the reachability problem of finding a target marking mt 

 R with cardinality of c without exploring the complete set R, 

we can conduct a partial exploration with a heuristic 

algorithm targeting to visit markings with cardinality of c and 

to stop the search upon finding the target marking or visiting 

ω  pY(mt) markings with cardinality c, i.e. the number of 

states in R multiplied by the probability of the marking mt 

with cardinality c [7-8]. The disadvantage of this approach is 

that knowledge of the PDF is ignored. Since we ignore the 

number of states we should stop the exploration, complete 

exploration of the reachability space R is possible to happen. 

For the case when we ignore the information about the set R, 

we can use the information from the set U. We ignore how the 

markings in R are distributed in U, but since we know R  U, 

the maximal number of markings with cardinality of c that 

could exist in R is Ω  pX(mt). 

For the reachability problem of finding a target marking mt 

 R with cardinality of c without exploring the complete set R,  

we can conduct a partial exploration with a heuristic 

algorithm targeting to visit markings with cardinality of c and 

to stop the search upon finding the target marking or visiting 

Ω  pX(mt) markings with cardinality c. The disadvantage of 

this alternative approach is that a full exploration of the 

complete reachability space R is also possible to happen. 

C. Probabilistic Termination 

The two approaches described before seem correct in 

theory, but with ignored efficiency and possible convex 

termination, leading to a possible complete exploration. 

Targeting to visit specified markings is not a guarantee of 

reaching those markings; therefore a sample size is calculated 

for termination and completeness. 

The heuristic algorithms could also stop the search after 

visiting a number of markings determined by the formula in 

(5) to calculate the number of samples n in a large population 

for a proportion [9-10] 

 
22 /))(1)(( empmpZn tt  .    (5) 

 

The value of n is adequate whenever we know size ω of the 

set of reachable markings R and the proportion pY(mt). For the 

case when we ignore those values and use pX(mt), the number 

n is just as reference to determine an approximate value. 

D. Standard Hypothesis Test 

The results of the unsuccessful search of the target marking 

mt with partial exploration can be treated with a hypothesis 

test to provide certainty and completeness. 

We define the pseudo-random variable Q as follows for 

each marking m registered in the exploration 
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From the probability mass function (PMF) pQ(mt), we 

obtain q as the proportion of markings with the same 

cardinality as mt and state the following test: 
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Fig. 2.  Structurally bounded marked graph PN system. 

 
Fig. 3.  Histogram of Y(m).  
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The test statistic computed for the hypothesis test of 

proportions is 

 

npp

pq

/)ˆ1(ˆ

ˆ




 .         (7) 

 

We will use a 95% level of significance in our hypothesis 

test. The standard normal z-table gives a value of 1.645. 

The decision obtained with this hypothesis test will be: if 

we accept H0 as true it means there might not be other 

markings with the same cardinality as the target marking, then 

the target marking is not in the set of reachable markings R of 

the PN system. On the other hand, if we cannot reject H1 then 

it is probable that the target marking mt exists. 

The appropriateness of the hypothesis test relies on the 

sampling method, the states registered (samples) and the 

proportion of markings pY in the set of reachable markings 

with the same cardinality as the target marking. For this, in the 

next section we describe the former heuristic sampling 

method and describe two alternative methods. Later in the 

section five we will present how to utilize the samples for 

constructing the probability distribution function of R, how to 

estimate pY and will describe the statistical hypothesis test. 

IV. HEURISTIC ALGORITHM OF PARTIAL EXPLORATION 

The breadth-first based heuristic algorithm originally 

presented for the partial exploration of the state space for 

reaching a target marking mt is described as follows: 

 

1: REG = m0             put m0 in register of markings 

2: VIS = REG           set of visited markings 

3: repeat 

4:   mc = Top(VIS)      get current marking 

5:   T(mc)*        set of sorted enabled transitions at mc 

6:   if T(mc)* =  then  

        VIS = VIS – mc and goto 12  

7:    = Top(T(mc)*) 

8:   mn = mc + (O – I)       get next marking 

9:   if mn = mt then goto 13 

10:   if mn  REG then 

         REG = REG + mn and VIS = VIS + mn  

11:   T(mc)* = T(mc)* –  

12: until VIS =  

13: end. 

 

For the previous algorithm to be heuristically guided 

towards the target marking, the set T(mc)* is sorted with the 

routine discussed next. 

A. Rectilinear Distance Sorting 

The sorting routine to obtain the set T(mc)* is described as, 

for every firing vector   T(mc)* enabling a transition t and 

creating one next marking mn, the rectilinear distance RD() 

is the sum of absolute values of the difference mn(p) – mt(p) 

p  P. A firing vector with zero rectilinear distance will be 

put at the top of the stack. 

 

1: T1 = T(mc)*  

2: repeat 

3:    read  from T1 

4:    RD() = Sum(Abs(mn(p) – mt(p))) p  P 

5:    put RD() in ET 

6:    delete  from T1 

7: until T1 =  

8: T(mc)* = sorted T(mc)* by ET1 in ascending order 

 

Although with a rectilinear distance sorting routine we still 

obtain a convex exploration, successfully cases are registered 

with analogous methods in [11-13]. 

On the other hand, in this paper we present two additional 

methods taking in consideration past and future marking 

results. Upon accomplishing to fill the tokens quota in places 

of the target marking, those partial findings are discarded with 

the rectilinear distance sorting routine because the metric is a 

total scalar measurement. Our proposals consider a more 

specific metric based on individual scalar measurements of 

tokens in each place for the reached markings. 

B. Forward Sorting 

One proposed routine to obtain the set T(mc)* is described 

as, for every firing vector   T(mc)* enabling a transition t 

and creating one next marking mn,  if p  t• such that mn(p) = 

mt(p), then the corresponding firing vector will be put at the 

top of the stack. The firing vector  enabling transitions all 

together having the largest number of pos-places fulfilling the 

condition will be at the top of the stack. 

 

1: T2 = T(mc)*  

2: repeat 

3:    read  from T2 

4:    FW() = {p  t• | t is enabled at  and mn(p) = mt(p)}  

5:    s() = card(FW()) 

6:    put s() in ET2 

7:    delete  from T2 

8: until T2 =  

9: T(mc)* = sorted T(mc)* by ET2 in descending order 

 

In order to fulfill the tokens quota in the places, the 

previous algorithm was specifically designed to foreseeing 

the marking in the places. 

C. Backward Sorting 

In our second proposal, for every firing vector   T(mc)* 

enabling a transition t and creating one next marking mn,  if p 

 •t such that mc(p) = mt(p), then such firing vector will not be 

put at the top of the stack. The firing vector  enabling 

transitions all together having the largest number of 

pre-places fulfilling the previous condition will be at the 

bottom of the stack. 

 

1: T3 = T(mc)* 

2: repeat 

3:    read  from T3 

4:    BW() = {p  •t | t is enabled at  and mc(p) = mt(p)}  

5:    s() = card(BW()) 

6:    put s() in ET3 

7:    delete  from T3 
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8: until T3 =  

9: T(mc)* = sorted T(mc)* by ET3 in ascending order 

 

Upon fulfilling the tokens quota in some places, the 

previous algorithm was designed to avoid those places to lose 

their token quota immediately. And a more sophisticated 

algorithm could include a second sorting using the index ET2 

from the previous algorithm. 

V. ASSUMED PDF OF THE SET OF REACHABLE MARKINGS 

Progressions of the markings in a PN system are dependent 

of the previous marking and the inherent non-determinism in 

the network. Statistical methods use random samples of 

independent observations all having the same probability of 

being selected. Since we ignore the set of reachable markings 

R, it is impossible to conduct a proper random sampling and 

any exploration-based samplings seems inadequate in 

principle. 

Probability samples can only be used to create 

mathematically sound statistical inferences about a larger 

target population. Non-probability sampling has no way of 

measuring their bias or sampling error. 

Works in [14-20] discuss the estimation of state space 

parameters using different sampling techniques, but none of 

them alert about this inadequacy. Although any state space 

exploration algorithm, saying depth-first, breath-first, random 

walks, etc., might seem inadequate because they are 

dependent on the system‟s progression, in fact the algorithms 

provide a systematic sampling, a type of probability sampling, 

however no details on the sampling procedure are given.  

Our exploration algorithms and the three sorting routines 

give non-probability samplings and their samples will be 

biased towards the target marking. The empirical probability 

mass function (PMF) constructed with the results of the 

sampling will be fitted to a normal PDF since it is believed the 

state space has such distribution. 

The results in [8] fitted the empirical PMF to a normal 

distribution with mean x̂  equal to the cardinality of the target 

marking and standard deviation ŝ  equal to the absolute value 

of resting the cardinality of the initial marking to the 

cardinality of the target marking. The empirical PMF fitted to 

a normal PDF can be seen in the fig.4. Although good results 

were obtained for some PN systems, the method lacks of 

generalization. 

In this paper we focus on bounded marked graph PN 

systems which could produce normality in the set R, like the 

PN system in the Fig.2. They have mean x̂  and variance 
2ŝ  

calculated from the sampled markings. The mean is near the 

cardinality of the target marking and the maximal sampling 

error for the mean equal to | x  – x̂ |. 

Our proposed fitted normal PDF for the set R is defined as 

 








sx

sx

Y yfsxYsxP

ˆ3ˆ

ˆ3ˆ

)(]ˆ3ˆˆ3ˆ[ .   (8) 

 

The function f(x) corresponds to the normal distribution 

and the 3 ŝ  assumption is adopted from the “68-95-99.7” 

statistical rule of the normal distribution. 

A. Hypothesis Test with the Fitted Normal PDF 

The form of the hypothesis test presented in the section 3-D 

does not change. The only difference is that the proportion of 

markings pY used in the test corresponds to the probability 

PY[Y=card(mt)], i.e. the probability of the cardinality of the 

target marking with the fitted normal PDF of the set R.  

VI. THEORETICAL EXAMPLE 

Let us utilize the PN systems in the figure 5 and 6. In this 

paper the PN systems under study are restricted to be a 

bounded marked graph. The nets are believed to have 

normality in their set of reachable markings R, similar to the 

one of the PN system in the fig.2. 

The PN systems are rather small but the usability of the 

hypothesis test in larger nets is straightforward. 

We conducted partial exploration of different markings 

using the three sorting routines: rectilinear distance (RD), 

forward distance (FD) and backward distance (BD). Sample 

size was fixed at 20 based on all sample size results. All 

explorations were unsuccessful, but only one sample was used 

in the hypothesis test. 

To determine the appropriateness of the test for these 

examples, by first comparing the mean and variance of the set 

of reachable markings R with the ones from the sample (Table 

I) we observe a significant difference exists only in one 

parameter. 

Our second comparison is on the value of the proportion of 

markings with same cardinality as the target marking of the set 

 
Fig. 4.  Empirical PDF of the set R. 

  

 
 

Fig. 5.  Example 1 - Marked graph PN system. 
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of reachable markings R and the ones from the sample (Table 

II). Two target markings were selected in each example for 

evaluation. A correct correlation is observable and a 

significant difference exists in only one result. 

Finally, from the results in the hypothesis test, Table III 

shows the value of the test statistic, the decision with the test 

and the evaluation of the decision based on the actual 

existence of the target marking in the complete state space. 

Just one decision was taken incorrectly. 

VII. CONCLUSION 

Using a hypothesis test on the unsucceeded results of the 

heuristically guided partial exploration seems appropriate to 

determine if a target marking exists or not in the probably 

normal state space of a structurally bounded marked graph PN 

system. Comparison of the estimated values presents good 

result and the evaluation of the decision shows only one 

incorrect decision. We conclude this kind of test might be 

appropriate to use on larger PN systems just upon further 

research. 

Although it is not guaranteed yet that the target marking 

would be found with our heuristically guided partial 

exploration algorithm without complete exploration of the set 

of reachable markings R, the idea of using a complementary 

hypothesis test to analyze reachability problems have certain 

level of effectiveness in this specific subclass of PN systems. 

Criterions about determining normality based on the PN 

model are in the next steps. 
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TABLE I 

COMPARISON OF PARAMETERS 

Example 1 Mean Var 

True Value 3.05357 0.524351 

Estimation 3.05000 0.786842 

Example 2 Mean Var 

True Value 4.00000 1.609760 

Estimation 3.50000 0.789474 

 

 

 
 

Fig. 6.  Example 2 - Marked graph PN system. 

TABLE II 

COMPARISON OF PROPORTIONS – EXAMPLES 1 & 2 

card(mt) )(ˆ
tY mp  pY(mt) 

2 0.21135 0.19117 

3 0.44903 0.54943 

2 0.10799 0.09077 

3 0.38325 0.23048 

 

 

TABLE III 

EVALUATION OF DECISIONS 

card(mt) 
TEST 

STATISTIC 
DECISION EVAL 

2 0.12433 Accept H0 Correct 

3 0.44083 Reject H0 Correct 

2 0.60532 Accept H0 Incorrect 

3 0.76578 Reject H0 Correct 
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