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Abstract --- In this paper we present some of the most practical 
problems of convective heat transport to or from a rigid 
surface, the flow in the vicinity of the body is in turbulent 
motion. On the hand, at the solid-fluid interface itself, the no-
slip boundary condition ensures that turbulent velocity 
fluctuations vanish. But, at the wall, the diffusive transport of 
heat and momentum in the fluid is precisely expressible by the 
laws of applicable to laminar flow. Because, the turbulent 
shear stress, and often the turbulent heat flux, can, by 
continuity, increase only as the cube of the distance from the 
wall, there is a thin but very important sublayer immediately 
adjacent to the solid surface where the transport of heat and 
momentum is predominantly by molecular diffusion. Further 
from the wall, again by virtue of the cubic variation, there is a 
very rapid changeover to the state where turbulent transport 
dominates, a condition that normally prevails over the 
remainder of the flow. This thin sublayer and the adjacent 
transition region extending to the fully turbulent regime  
collectively we shall term the viscosity affected-sublayer 
(VSL); is the subject of the present paper. Furthermore, we 
are concerned with how one can accurately model the flow in 
this region in a form suitable for use in CFD software.  
However, the accuracy is not only criterion.   

 
Index Terms---Viscosity affected-sublayer, Nonlinear eddy 
viscosity models, Eddy-viscosity model, Unified methodology 
for integrated sublayer transport-analytical UMIST-A, 
Turbulent Elliptic Axisymmteric Manchester (TEAM) Power 
law differencing scheme (PLDS).    
 

 
I. INTRODUCTION 

 
all-function strategies are certainly the approach of 
preferred by CFD code and their clients. However, 
the accuracy returned by many schemes when 

applied to new types of problems can be quite poor. Fig.(1) 
shows the computed heat transfer coefficients produced by a 
range of different computers for the problem of convective 
heat transfer downstream from an abrupt pipe enlargement (X 
represents the distance downstream of the enlargement). 
Evidently, there are vastly different predicted variations of 
Nusselt number among the entries. Despite the inevitably 
high computational cost, there has been a large effort in 
academic circles over the past forty years to develop models 
of turbulence that are applicable in both the fully turbulent 
regime and the viscous sublayerso called low-Reynolds-
number models. Models of this type range from the simple 
mixing-length schemes from the 1960s and two-equation 
eddyviscosity models (EVMs) from the 1970s to more 
intricate connections between the turbulent fluxes and the  
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mean-field gradients, exemplified by nonlinear eddy-
viscosity models (NLEVMs) and second-moment closure. 
While such low-Reynolds number models have enabled 
accurate CFD computations to be made of a range of difficult 
flows, they are not the subject of this review (although results 
obtained with some are included in later comparisons). 
Instead attention is directed at much simpler approaches to 
handling the sublayer region known as wall functions 
[Patankar S. V and Spalding D. B Heat]. 
 
 
  

II. ESSENTIAL FEATURES OF THE VSL AND 
SIMPLE APPROACHES TO ITS MODELING 

 
We have considered that a wall whose surface lies in 

the x-z plane with the mean velocity, U (y), in the x 
direction. At the wall itself, the no-slip condition requires 
that the fluctuating velocity components should vanish. 
Moreover, if the density may locally be assumed uniform, 
from continuity the fluctuating velocity gradient in the 
direction normal to the wall, y must also vanish.  On the 
other hand, if the velocity components are expanded in a 
Taylor series in terms of the wall-normal distance, we 

deduce that while the normal stresses 2u  and  2w  initially 

increase as y2, 2v  increases as y4  (kinematics stresses are 
employed with typical dimensions (m/s)2. Now, equally 

important, the turbulent shear stress uv  increases only as y3. 

These different exponents of dependency on y have been 
well confirmed both by experiment and direct numerical 
simulation in Fig.(2). The thinness of the sublayer across 
which the changeover from molecular to turbulent transport 
occurs, in simple flows the shear stress parallel to the wall 
within the fluid is often essentially uniform and equal to the 

wall kinematics shear stress,  /w . As one moves away 

from the wall there is a progressive switchover from 
molecular to turbulent stress as exemplified by the y3 
variation. As Reynold’s [Reynolds O] pioneering work first 
investigated, the rate of conversion of mean kinetic energy 
into turbulent kinetic energy by mean shear is equal 
to yUuv  / . In a constant stress layer this leads 

directly to the conclusion [Rotta J. C,] that the maximum 
rate of turbulence energy generation occurs where the 
turbulent and viscous stresses are equal; where 

./5.0/  wuvyUv   In this case in simple wall 

shear flows the most intense turbulent velocity fluctuations 
normally appear within the VSL. If the region adjacent to 
the wall is at constant shear stress then dimensional analysis 
readily suggests that within that region  
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Where U  represents friction velocity ./  w  If the 

region of validity of Eq.(1) extends into the fully turbulent 
regime,  then various arguments, ranging from the mixing-
length hypothesis to Millikan’s [Millikan, C. B] overlap 
concept, may be employed to infer that there Eq.(1) may be 
particularized to  

   2ln
1   EyU


        

Where Eand represents the von Karman constant, 

reflects the structure of turbulence in this fully turbulent 
region and E is the coefficient dependent on the flow 
structure over the VSL. Eq. (2) has been used directly for 
applying effective wall boundary conditions in CFD 
methods to avoid having to resolve the viscous sublayer 
[Bradshaw, P, Ferris D. Hand Attell, N. P]. Eq.(1) and 
Eq.(2) is applicable only if the shear stress remains very 
nearly constant across the region to which it is applied. 
Furthermore, a decrease in shear stress across the sublayer 
of just 5% causes a marked increase in the constant E in 
Eq.(2). On the other hand, physically this amounts to a 
thickening, in terms of y +, of the VSL due, ultimately, to 
the decline of turbulence energy generation relative to 
viscous dissipation in the sublayer. Such a decrease in shear 
stress may arise interalia from flow acceleration [Jones, W. 
P and Launder B. E ; Perkins, K. R and M. Eligot; Kays, W. 
M and Moffat, R. J], suction through the wall [Kays, W. M 
and Moffat, R. J], net buoyant force on fluid moving along 
vertical walls [Jackson, J. D and Hall W. B], or, even in 
fully developed pipe flow at bulk Reynolds numbers below 
104 [Kudva, A. A and Sesonske A ; Patel, V. C and Head 
M. R]. Likewise, a shear stress that increases strongly with 
distance from the wall can lead to thinning-of the sublayer 
[Simpson, R. L Kays W. M and Moffat R. J ; Spalart P and 
Leonard A; Launder, B. E]. On the other hand, the picture is 
complicated by flow impingement where turbulence energy 
is generated by the interaction of normal stresses and 
normal strains rather than by shear. The thermal equivalent 
to Eq. (2) is  

   3ln
1   yE


 

 

where   represents the dimensionless temperature 

difference   EandkandqCU wpw

~~
/     are 

the thermal counterparts of  Eandk  . By introducing the 

Eq. (2), Eq. (3) may be rewritten as  
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t and the result may be recast as  
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The quantity P, Jayatilleke pee-function can be determined 
[Jayatilleke, C. L. V] and from analysis a distribution of 
turbulent viscosity and turbulent Prandtl number over the 
viscous region [Patankar S. V and Spalding D. B;  Spalding, 
D. B]. And simple form [Spalding, D. B] is  
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In Eq. (6) P represents a measure of the different resistances 
of the sublayer to heat and momentum transport when 

t  , P is negative. The presumption that the viscous 

sublayer is of universal thickness renders and limited 
applicability even in simple shear flow, but more serious 
weaknesses appear in situations where the near-wall flow 
ceases to be shear dominated;   at separation or stagnation 

points. The friction velocity U  as the normalizing velocity 

scale leads to absurd results such as a zero heat transfer 
coefficient at a stagnation point the weakness was removed 
[Spalding, D. B; Gosman, A. D Pun, W. M, Runchal A. K, 

Spalding D. B and Wolfshtein, M] by replacing U  in Eq. 

(2) by 2/14/1
rkc  where  rk  represents the turbulent kinetic 

energy at some reference near-wall point in the fully 

turbulent region, and c  is a constant (as 0.09). Eq.(2) and 

Eq.(3) can be generalized to  
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and  PcPEcEck 4/14/14/1 ;;      

Wall functions also need to be provided for any turbulence 
variables computed during the course of the computations, 
for the turbulence energy, k its dissipation rate,  . For the 
simple shear  
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On the other hand, Eq. (9) is used to fix the value of  at 

the near-wall node in boundary –layer (marching) solvers 
where the flow next to the wall is, indeed, often close to 
local equilibrium. The turbulent kinetic energy is likewise 
demonstrated in terms of the wall shear surface as  
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The most complete statement of this approach Chieng and 
Launder [Cheing, C. C and Launder B. E]. A crucial 
element in the procedure lies in deciding the average 
generation and dissipation rates of k over the near-wall cell, 
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the average generation rate of the turbulence energy, 
presuming the generation arises simply from shearing, is  
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 The problem with the above is that – within the truly 
viscous sublayer, the shear stress is transmitted by 
molecular interactions not by turbulence and there is no 
creation of turbulence linked with the intense velocity 
gradient there as  
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Which is based on the simple idealized notion that there is 
an abrupt changeover from molecular to turbulent transport 

at a distance vy  from the wall.  In addition, a corresponding 

strategy is applied to obtain the mean energy dissipation 

rate,  . The first attempt to incorporate dissipation in the 
viscous sublayer into a wall-function treatment appeared in 
[Cheing, C. C and Launder B. E]. However, it was found 
that the level of Nu in separated flows underestimated by 
20-30%. Reasonable accord with experiment was achieved, 
however, by allowing the sublayer to become thinner when 
there was substantial diffusion of turbulent kinetic energy 
toward the wall, which is broadly in line with [Johnson, R. 
W and Launder, B. E]. Amano [Amano R] demonstrated a 
more elaborate the wall-function treatment by decomposing 
the viscosity-affected zone into a laminar sublayer and a 
buffer region where turbulent transport was increasingly 
important as one proceeded away from the wall. 
Furthermore, another significant difference was his practice 

of determining the near- wall value of   from its transport 
equation rather than by prescribing the length scale. It was 
investigated also similar-pipe expansion test flows to those 
of [Johnson and Launder]  but concluded that that this two-
layer viscous/b model gave satisfactory agreement with 
experiment, whereas [Chieng Launder] single-layer version 
produced too high value of Nu even though, in representing 
the velocity field, he adhered to a constant dimensionless 
sublayer thickness. The reason for his strikingly different 
behaviour from that reported in [Johnson and Launder ] was 
probably linked with the necessarily crude, coarse-grid 
approximation of the source terms in the   equation over 
the near wall cell. [Ciofalo and Collins] confirmed the 
conclusion of [Johnson and Launder] that the variation of 
the sublayer thickness was, indeed, a vital element of any 
wall treatment for impinging or separated flows.  However, 
they related the sublayer thickness not to be diffusive inflow 
(or outflow) of turbulence energy but to the local turbulence 

intensity,  Uk /2/1  at the near wall node, a practice that 
from a numerical point of view was certainly more stable.  
 
 

III. TWO CURRENT WALL-FUNCTION 
APPROACHES 

 
All the computations have been performed with suitably 
adapted versions of the TEAM (Turbulence Elliptic 
Axisymmetric Manchester) computer code [Huang, P. G 
and Leschzinger], which is a finite-volume based solver, 
employing a Cartesian grid with fully staggered storage 
arrangement and the SIMPLE pressure correction scheme of  
[Patankar, S. V]. Furthermore, the most of the calculation 
the QUICK scheme of [Leonard, B. P] has been used to 
convection of the mean variables, with the power law 
differencing scheme (PLDS) of [Patankar. S] applied for the 
turbulence quantities. In all cases, grid-refinement studies 
have shown that the results presented are free from 
numerical discretization errors.   
 
 The Unified methodology for integrated sublayer 

transport – analytical it provides a clear, albeit simple, 
physical model based on an analytical solution of the 
streamwise momentum and energy equations in the 
near-wall region. Henceforth  the approach has been  
designed to be able to cope with  

(a) forced, mixed, or natural convection flow on 
near vertical surfaces 

(b) strong variations of molecular transport 
properties across the VSL 

(c) laminarization, i.e. a marked thickening of the 
VSL in buoyancy-aided mixed convection and 
comprehensive description.  

 
In this paper we have investigated the main elements that 
especially relates to the above capabilities. On the other 
hand, the starting point is a prescribed ramp distribution of 
turbulent viscosity in Fig. 3(a).      
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The coefficients lcandc  represents the conventional 

ones adopted in one equation turbulence models (0.09, 2.55) 

where now vPv yky  /2/1*   and the subscript denotes 

where the quantity is evaluated:  v, at the edge of the 
viscous layer; P at the near wall node.  The simple viscosity 
profile is essential to retain a form of the near-wall 
differential equations that can be analytically integrated to 
give velocity and temperature profiles. Furthermore, one 
important aspect of this integration is that source terms in 
the stream wise momentum equation representing pressure 
gradients or buoyancy can be retained.  One important 
aspects of this integration is that source terms in the stream 
wise momentum equation representing pressure gradients or 
buoyancy can be retained. Now, the subsequent profiles are 
then used to obtain quantities such as wall shear stress and 
cell-averaged source terms, which are required for wall 
function treatment.   
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IV. CONCLUSION AND FURTHER RESEARCH 
 
In this work two new wall-function approaches have been 
demonstrated. The first one is based on the analytical 
solution of simplified near-wall momentum and temperature 
equations accounting for pressure gradients and other force 
fields as buoyancy, while the second is based on a local 
one-dimensional solution of the governing equations. 
Furthermore, both approached have been applied to a range 
of flows in which standard log-law based wall functions are 
known to perform badly. In each case the present methods 
have been shown to mimic the result obtainable with full 
low Reynolds number solutions- but a fraction of the 
computational cost. As a final observation on both the wall-
function approaches all the applications so far considered 
are relatively straightforward compared with their types of 
flows the industrial user needs to compute. However, we 
observe no evident impediment to their use in these more 
complex flows. Indeed, we have observed that the turbulent 
flow CFD community will contribute to this wider testing 
and where necessary the improvement of this prototype 
forms. 
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