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Abstract—Pre-execution is a new technique used in conjunc-
tion with simultaneous multithreading or multi-core CPUs to
reduce memory latency. Executing a slice of a program in a soft-
ware or hardware thread ahead of the normal execution resolves
memory addresses and prefetches data into the caches. By doing
so the latency of memory reads is reduced in the main thread.
Data intensive applications can benefit from pre-execution even
if thread level parallelism is not available because of shared
(software) resources. Despite the simplicity of the idea several
factors have to be considered when putting this principle into
practice. This paper applies and customizes pre-execution to a
particular problem of hash table based data transformation and
through this example provides a parameterized software pre-
execution algorithm which can be applied to arbitrary programs
and executed on everyday hardware. The most important factor
to be considered is to continuously keep an optimal temporal
distance between the pre-worker and the main thread, which
should be implemented with introducing minimal amount of
control and communication dependencies between them. This
paper presents a mechanism for attaining this goal.

Index Terms—data prefetch, pre-execution, performance,
multi-threading

I. INTRODUCTION

DATA intensive applications have long been suffering
from the relatively slow speed of main memories

compared to the performance of current CPUs. Over the
years there has been many techniques integrated into CPUs
that directly or indirectly try to address this problem. These
techniques include cache memories integrated into the CPU
and onto the same die; speculative execution and branch
prediction; and hardware data prefetch methods. They are
all available in current CPUs and try to mask the effect of
memory latency without any additional effort required on
behalf of the programmer.

With the appearance of simultaneous multithreading and
multi-core CPUs there has been a vast number of soft-
ware and hardware techniques proposed in the literature;
all built around the same idea called pre-execution [1]–[8]
(terminology also includes assisted execution, prefetching
helper threads, microthreading, speculative precomputation).
While the proposed techniques differ in some aspects they
are all based on the same idea: hiding memory latency by
prefetching the data with the help of threading. The helper
thread, responsible for the prefetching, must “anticipate”
what memory address will be referenced in the future by
the main thread. This helper thread could be for example
a microthread automatically started by hardware [1]; could
be a software thread extract of the original program started
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automatically or manually [3], or speculative extract (slice)
of the original algorithm [9], [10].

Having a simultaneous multithreading (SMT) or a true
multi-core CPU at our disposal we can execute multiple
threads on a single CPU without (significant) performance
penalty. Although in both types of CPUs the (logical -
in case of SMT) cores compete for some of the system
resources (including the main memory and the last level of
shared cache, and even execution units in SMT), the level
of instruction level parallelism increases: while one of the
executing threads stalls on a memory read operation the other
thread can still execute, making better use of the CPU and
reducing the overall execution time.

In this paper we focus on data intensive applications.
The main characteristics of such problems is that they
access and process data residing on disc or memory, and
the performance bottleneck is the access time to this data.
Data intensive applications are quite frequent. A simple web
search involves gigabytes if not terrabytes of data [11];
other related ares include medical imaging, astronomical
data analysis, weather simulation, or analyzing data collected
during physical experiments [12].

Consider the following data intensive task. A set of
items (billions of records) are pushed through a pipeline
of transformation steps, one of which is encoding with the
use of a dictionary. This problem (data transformation) is
clearly data intensive: the transformation is a series of simple
computations and a lookup/insert in the dictionary. The
dictionary is not static (it is expanded with a new record when
a previously unknown item emerges) the accesses to the
dictionary must be synchronized which makes parallelization
harder and causes overhead. Instead of true parallelization we
use pre-execution to increase its performance.

In more general terms we focus our attention to data
intensive applications bounded by one constraint: there is
a central resource which makes it unfeasible to efficiently
parallelize the algorithm. The main contribution of this paper
is providing a general template for software pre-execution.
The template we propose is a simple yet powerful algorithm
with two tunable parameters having a performance gain of 5-
15% even on a standard desktop computer. Through manual
optimization steps we aim at reaching the full potential of
pre-execution.

The rest of this paper is organized as follows. Section II
gives a short survey of related literature. Section III explains
how pre-execution techniques can be used to fight cache
misses, a central issue in data intensive applications; Sec-
tion IV details the idea and implementation considerations of
pre-execution. The empirical evaluation of these techniques
is given in Section V. We conclude in Section VI with a
brief discussion about the future of this technique.
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II. RELATED LITERATURE

Luk in [4] argues that irregular memory access patterns
(responsible for increased memory latencies and inefficient
hardware prefetch) cannot be predicted only through execut-
ing the code. This is the basic idea of pre-execution.

The works under the umbrella of pre-execution (assisted
execution, subordinate microthreading, etc.) can be catego-
rized as hardware and software solutions. Hardware solutions
require the modification of the CPU or the entire computer
architecture while software solutions can be used on any
currently available CPU.

Hardware solutions [1], [2], [4], [6], [8], [13], [14] require
minor or major modifications to current CPU architectures;
usually along with compiler support. Some of these ideas,
such as the one discussed in [13] propose compiler support to
automatically find the code segments which can be optimized
and sped up by a second thread dedicated to speculative
prefetching.

Zilles et al. in [8] also proposed speculative execution.
Speculation in this context means that the original algorithm
is modified (manually or automatically) and certain instruc-
tions are removed. The goal is to speed up the execution at
the cost of potentially arriving at a wrong result; which is
discovered no later then the main execution thread complet-
ing the calculations. This idea is the data flow analogue of
branch prediction used in control flow.

Chapell et al. in [1] presented another hardware-based
solution. They proposed microthreads implemented in the
CPU. These microthreads (series of micro-operations) are
responsible for, when triggered, prefetching the data. Dubois
in [2] proposes a similar solution called assisted execution
where nanothreads help the main thread. This proposition
also requires hardware support for the nanothreads to be able
to use the main threads registers and memory.

The advantage of software approaches [3], [5], [7], [9]
compared the hardware based solutions discussed above is
that they can be evaluated without simulation. They can be
implemented right away and need no costly manufacturing
or modification of existing hardware. Instead they are ready
to be prototyped and executed on any current CPU and
the performance gain can be measured in terms of reduced
execution time or reduced cache miss count for example.

The most promising work in this area is by Kim et al. [3].
Not only did they use compiler support for automatic helper
thread creation but also used CPU performance counters
to find the hotspots of the algorithm worth exploring and
working with. Their work is quite comprehensive but it can
be argued that manual fine-tuning can achieve even better
wall-clock speedups. Similar work has been published by
Ro and Gaudiot [15] (they also require hardware support
for triggering the p-thread - pre-execution thread) and by
Yonghong et al. [16].

The work of Malhotra and Christos [5] extended the
C++ STL library with pre-execution capabilities demonstrat-
ing that even general-use software can benefit from pre-
execution.

For a survey and a taxonomy of data prefetch mechanisms
(including pre-execution techniques) see [17].

Inspired by the works presented in this section our goal
is to taking software pre-execution to the next level and
providing a template which can be applied to any data

intensive application. Our purpose is pushing the boundaries
of pre-execution through manual optimization.

III. CACHE MISSES

In modern data intensive applications memory latency is a
real concern [18]–[21]. Cache memories are integrated into
the CPU for this reason; they provide fast access to data
accessed in the past. It is also argued by Abraham et al.
in [22] that a small fraction of instructions are responsible
for most of the cache misses. The aim of pre-execution is
precisely finding these instructions and triggering an early
prefect of the memory addresses they require. Once they are
prefetched into the cache the next time the data is requested
it will be served by the cache saving the CPU from severe
performance penalty.

The memory addresses cannot be efficiently predicted in
complex algorithms [4]. When iterating through an array for
example it is easy to predict the next address and software
and hardware prefetch mechanisms make due. The goal
of pre-execution on the other hand is to handle arbitrary
memory access patterns, such as finding items in a hash table
based dictionary in our case.

Pre-execution dispatches two copies of the same algo-
rithm: a “main” version and the “pre-execution” version
which is a slight modification of the algorithm (it commits no
changes into the main memory). Any data one thread loads
into the cache is accessible to the other thread (supposing
they share the same L2 or L3 cache). When the pre-execution
thread works ahead of the main thread (see Figure 1) it paves
the way in front of the main thread. Of course this effect has
a limited scope; if the pre-execution thread prefetches data
too early, the data might be replaced in the cache by the time
the main thread arrives at to point to be able to use them.

Fig. 1. The main thread and the pre-execution thread working side-by-side.

IV. SOFTWARE PRE-EXECUTION

In this paper we use a strictly software approach with a
perfect predictor: the algorithm itself. The justification for the
software approach is the relative short time it takes to proto-
type the solution. Every high-level programming language
has ways of dynamically creating threads and managing
communication and synchronization between them. Hence
it is easy to develop and test.

A. The general idea (N)

A common approach to implementing of pre-execution
(e.g. in [5], [7]) is using trigger points in the algorithm when
an early prefetch can be issued (see Figure 2). This request
is dispatched to a new thread ( [8]) or is queued and carried
out by a dedicated worker thread [7].
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Fig. 2. Trigger point of dispatching a prefetch request.

In this paper we propose a different approach for the
following reasons. The trigger point has to be specified
manually, which is not easy; and if it is placed not early
enough the prefetch happens too late. Also in certain cases
it is hard to issue an early prefetch, say 100-200 instructions
before the data is needed. The interval between the point
where the memory address is calculated and the point of the
actual memory read is usually a few of instructions only.

We resolve this situation by using a worker thread which
proceeds (mostly) independently from the main thread and
executes exactly the same instructions. This pre-execution
thread calculates the memory addresses early and issues a
load instruction. As the two threads operate the same way
there is no need for communication between them to find out
what to load. The pre-execution thread is a perfect predictor
this way. We just have to make sure that the pre-execution
thread is ahead of the main thread at all times (will be
discussed below). The biggest advantage of this approach
that it is applicable to any algorithm.

The methodology we used is as follows. We remind
the reader that this is only the first, naı̈ve implementation.
Throughout this section we only provide a starting point to
prepare the discussion of more advanced versions.

1) Given a single-treaded algorithm we strip it down
to the most critical parts that actually performs the
operations on the data. This slice [8] of the program
is what we will work on.1

2) This slice (algorithm excerpt) is examined and in
case there is any modification it commits to memory
these operations are (manually) removed from the pre-
execution thread thus only one of the threads is allowed
to make permanent changes.

3) The algorithm is amended with shared variables that
register the index of the item being processed. This
information is used for synchronization between the
threads.

4) Finally using the operating systems threading capabil-
ities the processing is started in two parallel threads;
one is the main thread (allowed to commit results) and
the other one is the pre-execution thread which cannot
perform write operations to the shared memory. (This
thread is allowed to have private variables that can be
modified locally but are invisible for the main thread.)

Both threads work on the same data set from the very
first item to the last one. They both process every single
item. As the threads are not guaranteed to run with the same
pace some level of control is necessary. By introducing index
counters (i.e. which item are the threads currently processing)
we can keep track of progress of the threads and intervene

1It is very common in data-processing algorithms that the dataset is
iterated through once and the items are evaluated one-by-one. In such
constellation it is very easy to pinpoint the part of the algorithm we can
accelerate: it is the loop which traverses the data set [3].

if required.
If the main thread is far behind the data the pre-execution

thread loads into the cache could get overwritten by other
data before it is referenced by the main thread; on the other
hand if the thread are to close, the pre-execution thread
has little chance of making the prefetch early enough and
becomes a waste of system resources making no contribution
to the execution time.

In order to keep the temporal distance optimal, we look at
the index counters in both threads. If the main thread seems
to be too far behind the pre-execution thread is paused for a
short time. Pause means yielding the CPU before the end of
the current time slot and implicitly asking the scheduler to
run the main thread instead. On the other hand, if the main
thread sees, that the other thread is not far ahead enough,
it will renounce of its time slice for the benefit of the pre-
execution thread.

A note on implementing the index counters. The threads
share the index counter variables (accessible in both threads).
When this variable is written the CPU must invalidate any
copy of the same variable cached by other cores of the
CPU. If these variables share the same cache line every
write operation to this variable will invalidate the entire
cache line. This is called cache-trashing. To overcome this
potential issue each counter is stored on 64 bytes, equal to
the size of the cache line, but only the first four bytes are
used for storage. This makes sure no two counters share
the same cache line. Since writing an integer is atomic on
x86 (and compatible) architecture no other synchronization
is necessary other then declaring the variable volatile. (We
understand and accept the fact that this does not guarantee
proper consistency but neither do we require it. A “not to
old” value of this index counter is good enough as long
as the overhead of complete thread safe access locks are
eliminated.)

B. Jumping in the data set (J)
Instead of suspending the main thread it makes more sense

always to let it run without any interruption and control
only the pre-execution thread. Controlling the pre-execution
thread is usually done by triggering it at specific points
points in the algorithm or when specific hardware events
occur. We instead propose that the pre-execution thread is
run continuously as before, but moved ahead of the main
thread by a specified distance. Exploiting the possibility of
“jumping” back and forth in the data set (i.e. being able to
access and arbitrary item in the data set) the pre-execution
thread can be instructed to move ahead in the dataset when
it falls behind (its index counter is compared to the main
threads index counter), or go back when it goes too far ahead.

Effectively this means that the pre-execution thread may
skip certain items and process other ones more than once.
Neither is a problem in terms of performance. It goes without
saying that skipping items has no effect on performance. If
an item is processed more than once the CPU is kept busy
but not at the cost of wasting memory resources. Memory
loads will either be served by the cache (as they have been
preloaded during the last pass) or by the main memory if
the data has been evacuated from the cache in the meantime.
In the latter case the load will not go to waste as the main
thread will still need the data later.
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The worker thread is never allowed to get behind the main
thread. The amount of items to jump ahead of the main
thread is a configurable parameter of the algorithm. Skipping
far ahead could cause items to be long evicted from the
cache when the main thread accesses it; not keeping enough
distance could allow the main thread to take over. Finding
an optimal value is important. Using a simple model for
cache behavior an upper bound for this parameter can be
calculated by dividing the cache size by the size of the data
items prefetched.

C. Workahead-set (W,Wb)
The next - and last - enhancement to our algorithm is

the use of workahead-sets. Here we make use of the fact
that there is no need for intervention in the pre-execution
thread after every processed item. We can let the process
go unattended for a while and check it only, if it finished
processing e.g. a thousand items. Infrequent synchronization
makes better utilization of the CPU and reduces the cost of
control.

Of course the set size (i.e. how long we let the pre-
execution thread run without supervision) must be deter-
mined and chosen wisely.

This concept (W) is called workahead-sets in [7]. It is
suggested in that work that traversing the workahead-set
backwards (Wb) may resolve issues when both threads work
with the same item.

D. Summary
Table I summarizes the features and the characteristics of

the algorithms presented above.

TABLE I
SUMMARY OF THE FEATURES OF THE PRE-EXECUTION ALGORITHMS.

THE NAME OF EACH VERSION IS DERIVED FROM THE FIRST LETTER OF
THE FEATURE WHICH DESCRIBES IT MOST; E.G. W MEANS

WORKAHEAD-SET.

Alg. Waits Workahead-set Forward
N yes no yes
J no no yes

W no yes yes
Wb no yes no

V. EVALUATION

In this section we present the evaluation of the algorithms
discussed so far. As explained in Section I a data intensive
application, which is the case study for this paper, is data
transformation by the use of a central dictionary. The dic-
tionary is implemented as a hash table. To show the effec-
tiveness of the presented technique three different hash table
implementations were tested. The hash tables are Google’s
sparsehash and a two custom optimized implementations (an
open- and a bucket hash table).

The processing algorithms are implemented in C++ with
careful optimization and compiled for 32 bit with full opti-
mization configuration with Microsoft Visual Studio 2008.
The test were executed on an Intel Core i7-920 CPU (4
physical cores and HyperThreading) @ 2.66 GHz with 6
GB RAM and Windows 7 64 bit.

In every test scenario the same amount of data was
processed and every test case was repeated 5 times and the
results were averaged.

A. HyperThreading and multi-core CPU

Intel’s HyperThreading technology enables a single phys-
ical core to appear as two logical cores and allows the
operating system to schedule two threads on the single
core. Some components of the core are duplicated but the
execution units are not. Such SMT CPU is not the equivalent
of a dual-core CPU.

However this SMT solution may also has benefits. In the
Core i7 CPU the cores have dedicated L2 caches (512kB
each) and a shared L3 cache (8MB). In a single-core with
HyperThreading setup the logical CPUs share the L2 cache
and the data in it. In a dual-core no HyperThreading setup the
cores share only the L3 cache and have distinct L2 caches.
At the same time our implementation of pre-execution is not
speculative, that is, the pre-execution thread executes almost
the same code as the main thread. This means it uses the
CPU quite heavily, which may be a problem with SMT. The
cost-benefit is not clear in this case.

Both setups were used in our evaluation: single-core with
HyperThreading and dual-core without HyperThreading. (On
a technical note the CPU allows the user to enable or disable
HyperThreading and to disable cores in the CPU.)

B. Pre-execution vs. single threaded approach

The first batch of tests will determine if pre-execution
as a whole makes sense. The four different pre-execution
implementations (discussed in Section IV) are compared to
a baseline single threaded algorithm.

Figure 3 shows the measured execution times of the
algorithms when a single core was enabled in the CPU
with HyperThreading turned on. As expected the N version
(one with wait instructions) performs quite badly. It might
be surprising at first but it is necessary to understand that
the expected (and promised) performance gain does not
come at zero cost. A naı̈ve pre-execution implementation
makes things worse. Removing the wait instructions from the
implementations and using the jumpahead parameter instead
(J) resolves this problem. Adding the workahead-sets to the
picture (W, Wb) and we got a modest 2 to 13 percent
gain in performance; except for the third hash table google
sparsehash.

Figure 4 displays the results of the same test repeated
on the same CPU but now with two physical cores enabled
and HyperThreading turned off. The picture has changed
dramatically. The J, W and Wb pre-execution algorithms are
superior by a wide margin in each test case.

The difference once again is SMT or true multi-core CPU.
There cannot be any doubt that pre-execution is a valid
and promising technique. From the results above it seems
like that SMT is good for pre-execution but true multi-core
CPUs are even better. Since such CPUs dominate the market
nowadays this is not a real concern.

It must also be noted that the advantage of SMT over
multi-core CPUs, discussed in Section V-A, hold true, how-
ever in the Intel Core i7 CPU the L2 cache shared by the
logical cores of a single core is only 512kB. The L3 cache
shared by all cores on the other hand is 8MB. Hence the
small fraction of data which is preloaded into the L2 cache
when executed on an SMT processor does not outweigh the
performance loss of the two threads sharing CPU resources.
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Fig. 3. All pre-execution versions with all three hash tables executed on a single core with HyperThreading enabled. The first bar in each figure is the
baseline single threaded application. The lighter colored bars indicate shorter execution time than the baseline.

Fig. 4. All pre-execution versions with all three hash tables executed on two cores with HyperThreading disabled. The first bar in each figure is the
baseline single threaded application. The lighter colored bars indicate shorter execution time than the baseline.
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Fig. 5. The execution time as a function of the workahed-set size (horizontal axis) and jumpahead distance (vertical axis). The darker the shade is the
shorter the measured execution time is.

C. Jumpahead and workahead-set size

The last question which needs to be answered is now
to choose the workahead-set size (Section IV-C) and the
jumpahead parameter (Section IV-B). Figure 5 plots the
execution time as a function of both parameters. The vertical
axis is the jumpahead parameter and the horizontal is the
workahead-set size. The darker the shade is the shorter the
execution time is.

There is a clear pattern discoverable in all three figures.
But first the parameter ranges have to be explained. The
jumpahead distance can obviously start from 0 which would
make no sense (it would mean consider the item the main
thread is currently working on); the upper limit is how many
items fit into the cache before starting to overwrite them. In
case of 8MB L3 cache and prefetched data size of 32 bytes
it is 256.000 items. We chose 100.000 as the maximum for
this parameter.

The workahead-set size should be no less than 1. There is
no theoretical upper limit; it is a cost-benefit decision. More
synchronization (lower value) is overhead while allows more
control.

From Figure 5 we can see that there seems to be a connec-
tion between the two parameters. The lower the workahead-
set size it the smaller jumpahead distance we should choose.
The explanation is that more frequent synchronization al-

lows fine-grained control. If we choose infrequent control a
larger safety zone (bigger temporal distance) should be used
between the main thread and the pre-execution thread.

VI. CONCLUSION AND DISCUSSION

In this paper we presented a technique called pre-execution
which promises hiding memory latency by issuing early
prefetch requests of memory addresses. When such algorithm
is executed on multi-core or SMT CPUs performance gain
can be obtained.

Through the case study of data transformation it has
been presented that data intensive applications can benefit
from applying this technique. The pure software solution we
propose uses a dedicated thread which is executed parallel to
the main thread; and they both execute almost the same code.
This method is easy to implement as it requires minimal
modifications to the code base, but have the advantage of
general applicability.

We demonstrated that simple implementations of this idea
may result in performance loss rather than gain which is not
to hold against the technique but rather the implementation.
Frequent synchronization should be avoided and the threads,
though should be supervised, must not be suspended.

It was shown that using workahed-sets and a jumpahead
distance the pre-execution thread can be kept ahead of the
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main thread. In the future we are planning implementing an
automated algorithm which configures these parameters in
runtime by monitoring the threads.
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