


Abstract—We propose a new technique to generate a fully

specified pre-computed low power test set in a deterministic
BIST using simple gray counters within reasonable clock
cycles. In our approach, only a small part of the circuit under
test (CUT) is active, the rest of the CUT is fed with low leakage
input patterns. Even the active part is fed by a gray counter
which make the overall power consumption extremely low. The
approach requires moderate number of reseeding and nominal
hardware overload over pseudo random BIST using LFSR or
CA. Moreover, instead of storing in the memory, the seed
patterns can also be fed through a low cost, slow tester which
allows us to efficiently combine a BIST with external testing
using slower tester

Index Terms— Test per clock BIST, test set embedding, low
power BIST, reseeding

I. INTRODUCTION

uilt-in Self Test (BIST) is being increasingly used
today for large and complex chips. Based on the test

application method, BIST can be classified into two types
[1]: test-per-clock and test-per-scan. In test-per-clock
method, a test pattern is applied to the CUT in every clock
cycle and the test response is captured by a response
analyzer. In test-per-scan scheme, a test pattern is serially
loaded into the scan chain and then the pattern is applied to
the CUT. Thus, for an n input circuit, n + 1 cycles are
needed to apply a pattern [1]. Based on the pattern
generation scheme, BIST can also be classified as pseudo-
exhaustive [1], pseudo-random [1][2] and deterministic.
Generally, in BIST solution, pseudo-random patterns are
generated using LFSR or CA for detecting the random
pattern detectable faults. For the random pattern resistant
faults, techniques based on test point insertion [12],
reseeding [3][13], bit flipping [14] or fixing [15], and
weighted random pattern testing [16] have been proposed in
literature. Another technique to test random pattern resistant
faults is based on deterministic BIST.

In a deterministic BIST, it takes into account a pre-
computed set of patterns and generates the patterns among
other patterns. The most trivial way to do that is to store the
patterns in a ROM [4] and apply one pattern in every clock
cycle. However, the area overhead is extremely high. The
solutions are: using a mapping logic between LFSR and
CUT [5] or test set embedding [6]-[11].

S. Kundu is with the Indian Institute of Technology Kharagpur, West

Bengal, India. (phone: +919831219984; fax: +91 3222 - 282264; e-mail:
Subhadip@iitkgp.ac.in).

S. Chattopadhyay is with the Indian Institute of Technology Kharagpur,
West Bengal, India. (phone: +919831219984; fax: +91 3222 - 282264; e-
mail: Subhadip@iitkgp.ac.in).

In test set embedding, a large test set TS is produced in
such a way that a pre-computed test set TD is produced
within TS (|TD| ≤ |TS|). Several techniques have been
proposed for test embedding. In [6][7], use of binary
counter as a pattern generator has been shown. They
proposed two kinds of operations to minimize the cycle
length. The first one is the preprocessing operation such as
constant column elimination, identical column merging and
complemented column merging. The second operation,
known as basic operation, consists of column permutation
and complementary column generation. In [7], counter
reseeding and counter + ROM based approaches have been
proposed. In [9][10] a twisted ring counter is used for test
set embedding in a test per clock approach. In [8], test set
embedding based on width compression has been proposed.
A reconfigurable network, between the LFSR and scan
chains, has been used for test set embedding in [11]. In [5],
a phase shifter network based on XOR-tree has been used
between LFSR and CUT to match the output of LFSR to
that of a deterministic test set. All these approaches except
[5] used unspecified pattern set (that is pattern with don’t
care) for test set embedding.

In a different context, power consumption during testing
is becoming one of the most important metric of testing
because power consumption during testing is much higher
than that of normal mode of operation [17][18]. High
average power leads to high heat dissipation, which may
damage chip or package and results in reliability
degradation due to hot spots [19]. Peak power causes
voltage drop and ground bounce. So, it is mandatory to
consider power metric while proposing a test solution.

There are many approaches to reduce power consumption
in BIST environment. These are - suitable seed selection
[20], dual seed LFSR [21], and low transition random
pattern generator [22] using a k (k being the number of
LFSR cells) input AND gate and a T flip-flop. Another
approach as proposed in [23][24] is vector filtering in which
the patterns which do not detect any faults are filtered out or
blocked from reaching the CUT.

In this paper, we propose a novel technique to embed a
fully specified, power aware test pattern set in a BIST
environment. The pattern set used is such that it consumes
less leakage and dynamic power while applied to CUT.
Initially, we tried to generate the whole test set using a
single gray counter, that is, for an n input circuit, we assume
that an n bit gray counter will generate the whole pattern set.
But, the cycle length required in this case will be huge. So,
we have performed a Particle Swarm Optimization (PSO)
based column reordering and complement column
generation technique over the original low power test set, to
reduce the cycle length. Though, we have achieved

Embedding a Low Power Test Set for
Deterministic BIST using a Gray Counter

S. Kundu and S. Chattopadhyay

B

Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

significant reduction in cycle length after PSO, the cycle
length required to generate the whole test set together, is
still very high. So, the test set, thus obtained has been
broken into smaller subsets. Now, we try to embed each of
these subsets one at a time. The subsets are broken
depending on a fixed counter size in such a way that, for a
particular subset, the number of inputs changing, is less than
or equal to the size of the counter. Rest of the bits remains
constant. When all the patterns have been applied, the next
seed is loaded and the process continues until all patterns in
the deterministic test set have been generated.

Rest of the paper is organized as follows:
Low power test set generation is discussed in Section II.
Section III describes our proposed architecture. PSO based
approach to minimize cycle length is described in Section
IV. Algorithm for breaking the test set into smaller set is
given in Section V. Experimental results have been noted in
Section VI.

II. TEST PATTERN GENERATION

The test pattern generation is exactly same as proposed in
[25]. We generate a test pattern for each collapsed faults
using “–D 1” option in ATPG ATALANTA [29]. The set
thus obtained is rich in don’t cares (test cubes). The don’t
cares of the test cubes are filled to minimize leakage power
using a Genetic Algorithm based approach as described in
[26]. Then the same algorithm proposed in [25] is followed
to obtain the almost minimal set which gives the same fault
coverage as the original set. As observed in [25], the pattern
set requires on an average 70.01% less dynamic power and
6.31% less leakage power compared to the compact pattern
set generated by ATALANTA in its default mode. The test
set thus obtained is our deterministic test set which we
embed in a BIST environment.

III. PSO BASED APPROACH TO MINIMIZE CYCLE LENGTH

We perform the preprocessing operations like constant
column removal, identical column merging, and
complemented column merging, on the low power test set
obtained from Section II. As described in [6][7], basic
operations like column permutation and complementary
column generation, can drastically reduce the cycle length
for testing. The authors of the same paper have also proved
that the problem is NP-hard. They proposed a hill climbing
technique to solve this problem. We have used a PSO based
approach for column permutation and complement column
generation.

Particle Swarm Optimization (PSO) [27] is a population
based stochastic technique developed by Eberhart and
Kennedy in 1995. PSO is initialized with a group of
particles with random position and searches for optima by
updating their position through generations. In our case, the
particle structure is as follows:

Particle {
 int column_permutation[No of Input] ;
 int complemented_column[No of Input] ;
}

Where column_permutation will be holding the column
numbers in which they should appear in the final ordering
and complemented_column tells us whether a column be

used in its original form or in complemented form. Let n be
the number of inputs. Then, for a particle,
column_permutation will be a permutation of numbers
between 1 and n. complemented_column[i] will be either 0
or 1 for a particular input i (1 ≤ i ≤ n) - 0 means the column
will be used in its original format, 1 means complemented.
 The PSO algorithm starts with an initial random position
of particles with random velocity. For our case, we start
with an arbitrary ordering of columns and also random
column type. We also include the original column
permutation with all columns in its original form as a
starting position of a particle. Over the iterations, the
particles change their positions according to their velocity
and attempt to achieve an optimal solution.
 The new position of each particle is calculated using a set
of swap operations over its old position. The details of swap
operators are given in [28]. We follow the exact procedure
as described in [28] for calculating the swap operators.

The fitness of each particle is calculated in terms of cycle
length required to produce the entire test set using an n bit
gray counter (n being the number of input). For a binary
counter [6], the straight distance of a test set T is max(ri) -
min(ri), where ri’s are the values of the binary patterns of the
rows of T. The wraparound distance of T is 2n – max(ri – rj)
where ri and rj are consecutive row patterns in sorted order
and ri > rj. The cyclic distance of T is the minimum of its
straight and wraparound distances. For a gray code counter,
calculating the straight and wraparound distance requires
the knowledge of the pattern sequence generated by it.
Given an n bit pattern, we should able to tell the sequence
number in which the pattern will be produced starting from
an initial pattern in a gray counter. For simplicity, we
consider a reflected gray counter for generation of patterns
starting from all 0 pattern. The following pseudo code is
used to calculate the sequence number of a pattern in a
reflected gray counter.
function calculate_sequence(int *patt)
{
 if(patt[No_of_Input - 1] == 0)

 pos = 0 ;
 else
 pos = 1 ;
 for(i = 2 ; i < No_of_Input ; i ++){
 if(patt[No_of_Input - i] == 1)
 pos = 2i – 1 – pos ;
 }
 Return pos;

}
Where patt[No_of_Input] is the pattern for which the
sequence number is to be calculated. Here patt[0] holds the
most significant bit (MSB) and patt[No of Input – 1] holds
the least significant bit (LSB). Let us consider a 4 bit pattern
1010, then patt[3] = 1, patt[2] = 0 , patt[1] = 1 , and patt[0]
= 0.
The algorithm will work as follows:
 patt[3] = 0 , pos = 0. (base condition)
 patt[2] = 1 , pos = 22 – 1 – 0 = 3 (i = 2)
 patt[1] = 0 , pos = 3 (i = 3)
 patt[0] = 1 , pos = 24 – 1 – 3 = 12 (i = 4)

Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

1010 will appear in 12th position in a reflected gray counter
if we consider 0000 to be the 0th pattern.

Once the sequence of each pattern is known, it is a trivial
work to find the cycle length. The patterns are sorted
according to their sequence numbers. Then the same method
as described for binary counter is used. The cycle length is
used as a fitness for the particles and we are trying to
minimize the cycle length in the PSO. The PSO results are
shown in Table I.

We achieve on an average 52.2% reduction over original
cycle length but as it can be seen from column 3; still the
cycle length is very high. So it is not feasible to generate the
entire pattern set in one run using an n bit gray counter, n
being the number of input. The next section describes the
algorithm for breaking the pattern set into smaller subsets.
The table also notes CPU times needed in milliseconds.

TABLE I
 RESULT OF PSO TO MINIMIZE CYCLE LENGTH

Circuit
Original

cycle length
After PSO

cycle length
%

Reduction
Time

(in ms)
s208 196612 98307 50.0 0.89
s382 9078783 4194305 53.8 1.41
s400 6172 4373 29.1 1.11
s420 4.83E+09 2.15E+09 55.6 6.46
s510 16777521 8388618 50.0 9.84
s526 8696832 4194326 51.8 12.76
s641 4.6E+15 2.25E+15 51.1 93.76
s713 1.35E+16 4.5E+15 66.7 116.28
s820 4718607 2097492 55.5 16.13
s832 5172381 2117654 59.1 17.43
s838 5.53E+19 2.77E+19 50.0 53.05
s953 1.17E+11 3.44E+10 70.5 21.84
s1196 2.01E+09 5.37E+08 73.3 34.17
s1238 2.01E+09 5.37E+08 73.3 12.63
s1488 14683 10838 26.2 5.19
s1494 12291 10338 15.9 5.30
s1423 1.39E+27 6.19E+26 55.6 79.01

Avg. Reduction 52.2

IV. PROPOSED ARCHITECTURE

The proposed architecture is shown in Fig. 1. For an n
input circuit, we use a k bit gray counter. The rest n - k
inputs will be fed directly from memory or from an external
low cost, slow tester. For any seed, the n - k inputs are
remaining constant for the entire cycle length of pattern
generation. The changing k inputs are also fed using a gray
counter. So the overall dynamic power consumption is very
less. Another advantage of this approach is that the idle part
of CUT is fed by low leakage patterns. This is because, as
described in Section II, the don’t care bits of each pattern
are filled to minimize leakage. So, the leakage power
consumption of the CUT is also reduced.

The proposed approach is test per clock scheme where at
each clock cycle one pattern is applied. The advantage of
this approach is that it can also work with conventional scan
design. In fig. 2, we show how it can be added with scan
design. But in this case, the seeds have to be stored in the
memory. Here, Mux 1 decides whether a constant value or
gray counter value will be fed to a scan input. Mux 2 and
the D flip-flop constitute the conventional scan D flops.
Another advantage of this approach is that the multiplexers
placed are not in the functional critical path and hence the
maximum operating frequency for functional purpose does
not get affected.

CUT

ROM
K bit Gray Counter

Fig. 1. Proposed Architecture

D Flip
flop

TE

Circuit

From
Counter

From ROM

Conventional
Scan flip flop

 Fig. 2. With Conventional Scan

The length of a counter depends not only on the nature of
the circuit and its test set, but also on number of seeds to be
stored in memory and the test cycles. As shown in the
experimental result section, there is a good amount of
tradeoff existing between counter length, number of seeds
and also number of clock cycles required.

V. FINDING SMALLER SET

The objective here is to find a subset of the total set TD
depending on a predefined counter length (size) in such a
way that the number of inputs changing in the smaller set
should be less or equal to the counter length. Rest of the
inputs remain constant for the entire subset. This process
continues until we cover all the patterns in test set TD. The
algorithm takes as input the test set TD and an integer
Counter Length. To understand the algorithm, the following
notation is required. Let t1 and t2 be two test patterns, then
t1∩t2 is the set of inputs which have same values in both t1
and t2. We use a temporary set Tsub to hold the patterns in
one subset.

Algorithm: Finding sub set (Inputs: TD and Counter
Length)

Inputs: Test Set (TD) and Counter Length
Outputs: Subsets of TD depending on Counter Length

Step 1. For each pattern, find how many and what are the
bit positions of it that matches with rest of the
patterns. We define for each pattern, a variable,
No_of_pattern_matching, which holds the value of
the number of other patterns match that with this
pattern with number of bit positions greater than or
equal to the specified limit (Number of Input –
Counter Length).

Step 2. If for each pattern, No_of_pattern_matching is zero,
then all these patterns have to be stored in the

Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

memory and the algorithm terminates. Otherwise go
to Step 3.

Step3. Find the pattern with maximum
No_of_pattern_matching. Set Tsub = Null. Add the
pattern to Tsub.

Step 4. Find the pattern which matches in the maximum
positions with t1∩t2∩…∩ti, where each ti is a
member of Tsub. If the number of matches is less
than (Number of Input – Counter Length), go to
Step 6, otherwise go to Step 5.

Step 5. Let the pattern be tj. Add this pattern to Tsub, that is,
Tsub = Tsub U tj. Go to Step 4.

Step 6. The set Tsub thus obtained holds the patterns which
have at least (Number of Input – Counter Length)
number of bits matching. Write Tsub in a file and set
TD = TD – Tsub and Tsub = Null. If TD is empty, then
the algorithm terminates, otherwise go to step 1.

 After generating the subsets, a proper seed for each set is
selected. The seed selection is determined by the cycle
length. Straight and wraparound distances for each set are
calculated according to the method described in Section IV.
If straight distance is less than wraparound distance, then
the pattern with least sequence number is used as seed,
otherwise, the initial pattern of wraparound sequence is used
as seed.

For each file, one seed pattern is required. So the total
number of seeds required is equal to the number of files
generated plus the patterns obtained in Step 2.

VI. EXPERIMENTAL RESULTS

In this section, we apply our gray counter based BIST to
medium and few large full scan version of ISCAS’89
benchmark circuits. It is very difficult to compare our result
with other approaches because most of the test set
embedding techniques [6]-[11] took test cubes as their
deterministic test set. So, they have the advantage of
specifying the don’t care bits in such a way that the cycle
length comes down. The techniques show their results only
for random pattern resistant faults. They assumed that all the
random pattern detectable faults were detected by pseudo
random testing using LFSR or CA within a number of pre-
specified clock cycles. Also, the power consumed by their
approaches is not shown.

Here, in this experiment, we consider a fully specified
low power pattern set capable of detecting all the detectable
faults in the CUT. In Table II, we show our result for test set
embedding. Column 2 notes the counter size which is
actually given as an input to the algorithm proposed in
Section V. The 3rd column indicates the number of seed
patterns required. These patterns can be directly stored in
the ROM or a slow speed, low cost tester can be used to
feed the patterns. Column 4 indicates the number of initial
low power patterns and column 5 notes down the total
number of clock cycles required to generate all the low
power patterns in our method.
 Since it is very difficult to directly compare our results
with existing techniques, we define a variable named
embedding efficiency and compare our results based on
that. The embedding efficiency is defined as a ratio of initial
number of patterns to the number of patterns required to

embed the initial set. Table III compares our result with
[10].

TABLE II
TEST SET EMBEDDING RESULTS

Circuit
Counter
Length

Seed

patterns in
Initial Set

clock cycles
required

s208 6 8 47 262
s382 7 8 60 473
s386 6 12 74 388
s400 7 6 61 352
s420 8 8 43 912
s510 7 12 67 586
s526 7 12 97 808
s641 9 19 143 4111
s713 9 23 136 4401
s820 7 18 120 940
s832 7 22 115 866
s838 10 27 219 11043
s953 10 15 99 6065
s1196 8 27 188 3072
s1238 8 28 193 3222
s1423 12 25 185 37999
s1488 6 23 129 622
s1494 6 21 124 577
s5378 16 51 654 1355127
s9234 20 52 931 22489934

 TABLE III
 COMPARISON WITH [10]

Circuit

Embedding
efficiency

of our
method

As proposed in [10]

patterns
in Initial

Set

clock
cycles

required

Embedding
efficiency

of [10]

s208 0.1794 - - -
s382 0.1268 - - -
s386 0.1907 102 2184 0.0467
s400 0.1733 96 2400 0.0400
s420 0.0471 129 20160 0.0064
s510 0.1143 103 6500 0.0158
s526 0.1200 160 8400 0.0191
s641 0.0348 200 53460 0.0037
s713 0.0309 192 45792 0.0042
s820 0.1277 195 9936 0.0196
s832 0.1328 - - -
s838 0.0198 257 136680 0.0019
s953 0.0163 227 37260 0.0061
s1196 0.0612 291 35904 0.0081
s1238 0.0599 164 33792 0.0049
s1423 0.0049 - - -
s1488 0.2074 - - -
s1494 0.2149 - - -
s5378 0.0005 - - -
s9234 4.14E-05 1521 4042896 0.0004
Avg. 0.0931 0.0136

Embedding efficiency of our method can be easily
calculated by taking the ratio of column 4 and column 5 of
Table 2. As it can be seen from Table 3, our embedding
efficiency is much higher than the technique proposed by
[10] even considering the fact that out test set does not
contain any don’t cares.

The counter length is the most important parameter in our
algorithm because both number of seeds and embedding test
length depend on it. We perform an experiment to find the
suitable counter length for each circuit by varying the
counter length and noting the number of seeds required and
embedding test length in each case. Table 4 shows the
experimental result for circuit s1423.

Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

From Table IV, we can see that as the counter length
increases, number of seed required decreases but the
embedding test length increases. This is expected because
when the counter length is high, more number of original
test patterns are grouped together as the number of column
(No of Input – counter length) they should match, is less.
The increase in number clock cycles with counter size is
obvious because each bit increase in counter size, will result
in double cycle length compare to its smaller size. Thus, it is
extremely important to find a good counter length for each
circuit. Here, we don’t propose any algorithm to find a
suitable counter length for each circuit. We perform the
same experiment with every circuit and choose a value
empirically performing a tradeoff between cycle length and
number of seeds.

TABLE IV
 TRADEOFF RESULT FOR S1423 FOR DIFFERENT COUNTER SIZE

Counter
Length

Number
of Seeds
required

Emb.
Test

Length

Emb.
Efficie-

ncy

Power (per
pattern)

Dyn.
(trans)

Leak.
(uw)

6 55 954 0.1939 31.87 14.47
7 50 1614 0.1146 25.34 14.46
8 42 3938 0.0470 24.74 14.48
9 39 4974 0.0372 22.28 14.51
10 32 9876 0.0187 22.03 14.51
11 30 16521 0.0112 23.02 14.41
12 25 37999 0.0049 23.00 14.62
13 24 61516 0.0037 25.30 14.55
14 21 122329 0.0015 29.49 14.60
15 21 175905 0.0011 29.31 14.76
16 19 470209 0.0004 24.62 14.34

Colum 4 of Table IV shows the embedding efficiency for
each counter length. The power results are shown in
Column 5 and 6. Column 5 shows dynamic power
consumption in terms of average number of transitions. It is
calculated by dividing total circuit transitions by the number
of patterns. Leakage power results in micro watt are given
in column 6. As it can be seen from column 5 and 6, the
variation in both types of power is not much. But the total
energy required will vary according to the test length.

Table V shows the power consumption results produced
by our method. We compare our result with LFSR based
pseudo random testing technique. For an n bit circuit, we
used an n bit LFSR with primitive polynomial configuration
for pseudo random pattern generation.

The counter size for each circuit is given in column 2 of
Table V. In this experiment, we use the same counter size
given in Table II. Column 3 of Table V shows the dynamic
power reduction and column 4 lists the leakage power
reduction. For circuits with very high number of patterns,
only the first 20,000 patterns are applied and average power
per pattern is obtained. Since, the proposed scheme is a test
per clock approach, power per pattern can be used as a
metric. From Table V, it is evident that we have achieved
high reduction in dynamic power. This is because in our
case only a small part of the circuit is active. The rest of the
circuit is fed by a constant pattern. The active part is also
fed by a gray counter. So, the overall dynamic power is
extremely low. We achieved on an average 80.06%
reduction in case of dynamic power and 3.23% reduction in
case of leakage power. The maximum reduction is achieved
for dynamic power is 98.49% for circuit s5378. We

achieved a maximum leakage reduction of 9.96% also for
circuit s5378.
 We performed our simulation on a Pentium IV machine
running at 3 GHz with 1 GB main memory. The CPU time
taken by our method is extremely low, in order of few
milliseconds. So we do not report it separately.

TABLE V
 REDUCTION IN POWER WITH RESPECT LFSR BASED APPROACH

Circuit
Counter
Length

% reduction
in dynamic

power

% reduction
in leakage

power

s208 6 70.12 1.09
s382 7 86.64 2.4
s386 6 64.33 0.24
s400 7 88.02 6.86
s420 8 81.44 0.83
s510 7 55.32 2.44
s526 7 86.55 5.84
s641 9 90.74 6.96
s713 9 92.23 6.70
s820 7 66.46 2.39
s832 7 67.36 2.04
s838 10 92.09 0.56
s953 10 65.70 0.96
s1196 8 89.41 1.99
s1238 8 90.62 2.37
s1423 12 94.21 6.24
s1488 6 61.16 0.06
s1494 6 63.79 0.25
s5378 16 98.49 9.96
s9234 20 96.51 4.38

Average Reduction 80.06 3.23

In Table VI, we have compared our approach with two
other low power BIST methods, LT-RTPG [22] and
transition-monitoring window based approach as proposed
in [30]. The reduction in dynamic power and the
corresponding fault coverage achieved by the respective
methods are also shown in the table. We have used the
results obtained in [30] by using (LFSR=16 and TMW=8)
which gives the best reduction in power by their approach.
As it can be seen from the table, our method shows much
higher saving than both the two techniques. Our fault
coverage is also higher compared to both the methods. Our
method is also suitable for leakage power reduction whereas
the other two methods did not consider leakage power in to
account.

VII. CONCLUSION

In this paper, we have proposed a novel BIST
architecture using a gray counter based approach in such a
way that within a moderate clock cycle, a fully specified,
low power test set can be embedded. This approach
successfully bridges two different aspects of BIST – test set
embedding and low power testing. We achieved 80.06%
reduction in dynamic power in comparison with
pseudorandom testing using LFSR. We also achieved 3.23%
reduction in leakage power.

The dynamic power can further be reduced by ordering
the subsets obtained from the algorithm. The reason is that,
within a subset, the Hamming distance between successive
patterns is one (because n-k bits are fixed and remaining k

Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

bits are coming from a gray counter). So, the hamming
distance between successive patterns is higher than one only
when the two patterns are from two different sets. So, an
ordering between the pattern sets can be done to minimize
the dynamic power. Further, we can reduce the peak power
by this method.

Another work still left is to find a proper choice of test
length. We are trying to formulate an algorithm for finding
the proper counter length depending on the number of seeds
and embedding cycle length.

The hardware overhead of the approach is not high. The
only overhead is storing the seed patterns and that of the
multiplexers.

REFERENCES
[1] M. Abramovici, M.A. Breuer, and A.D. Friedman, Digital Systems

Testing and Testable Design, New York: Computer Science Press,
1990.

[2] P. Bardell, W. McAnney, and J. Savir, Built-in Test for
VLSI.Pseudorandom Techniques, New York, NY: John Wiley, 1987.

[3] A. A. Al-Yamani and E. J. McCluskey, “Seed encoding with LFSRs
and cellular automata,” in Proc. of ACM/IEEE Design Automation
Conf., 2003, pp. 560–565.

[4] V.K. Agarwal, and E. Cerny, “Store and Generate Built-In Testing
Approach”, in Proc. of Int. Symp. Fault-Tolerant Computing, pp. 35-
40, 1981.

[5] M. Bellos, D. Kargaris, and D. Nikolos, “Test Set Embedding Based
on Phase Shifters,” in Proc. of IEEE Computer Society Annual Symp.
on VLSI, pp. 155, 2003.

[6] D. Kagaris, S. Tragoudas, and A. Majumdar, “On the Use of Counters
for Reproducing Deterministic Test Sets,” IEEE Trans. Comp., vol
45, No. 12,pp. 1405-1419, Dec. 1996.

[7] D. Kagaris, and S. Tragoudas, “On the Design of Optimal Counter-
Based Schemes for Test Set Embedding,” IEEE Trans. CAD, vol. 18,
No. 2, pp. 219-230, Feb. 1999.

[8] K. Chakrabarty, and S.R. Das, “Test-Set Embedding Based on Width
Compression for Mixed-Mode BIST,” IEEE Trans. Instrumentation
and Measurement, vol. 49, No. 3, pp. 671-678, Jun. 2000.

[9] K. Chakrabarty, B.T. Murray, and V. Iyengar, “Built-In Test Pattern
Generation for High-Performance Circuits Using Twisted-Ring
Counters,” in Proc. of 17th IEEE VLSI Test Symp., pp. 22-27, 1999.

[10] S.Swaminathan, and K. Chakrabarty, “On Using Twisted-Ring
Counters for Test Set Embedding in BIST,” JETTA, vol.17, No. 6, pp.
529-542, Dec. 2001.

[11] L. Li and K. Chakrabarty, “Test set embedding for deterministic
BISTusing a reconfigurable interconnection network,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 23, no. 9, pp. 1289–
1305, Sep. 2004.

[12] C. Schotten and H. Meyr, “Test point insertion for an area efficient
BIST,” in Proc. of Int. Test Conf., 1995, pp. 515–523.

[13] S. Hellebrand, H.-G. Liang, and H.-J. Wunderlich, “A mixed-mode
BIST scheme based on reseeding of folding counters,” in Proc. of Int.
Test Conf., 2000, pp. 778–784.

[14] H.-J. Wunderlich and G. Kiefer, “Bit-flipping BIST,” in Proc. of Int.
Conf. Computer-Aided Design, 1996, pp. 337–343.

[15] W. Li, C. Yu, S. M. Reddy, and I. Pomeranz, “A scan BIST
generation method using a Markov source and partial bit-fixing,” in
Proc. of ACM/IEEE Design Automation Conf., 2003, pp. 554–559.

[16] S. Wang, “Low hardware overhead scan based 3-weight weighted
random BIST,” in Proc. of Int. Test Conf., 2001, pp. 868–877.

[17] J P. Girard, “Survey of Low-power Testing of VLSI Circuits,” IEEE
Design & Test of Computers, vol. 19, no. 3, pp. 80–90, 2002.

[18] Y. Zorian, “A Distributed BIST Control Scheme for Complex VLSI
Devices,” in Proc. of VLSI Test Symp., pp. 4-9, 1993.

[19] N. Nicolici and X. Wen, “Embedded Tutorial on Low Power Test,” in
Proc. of ETS., pp. 202-207, 2007.

[20] P. Girard, L. Guiller, C. Landrault, S. Pravossoudovitch, J. Figueras,S.
Manich, P. Teixeira, and M. Santos, “Low energy BIST design:
Impact of the LFSRTPG parameters on the weighted switching
activity,” in Proc. of Int. Symp. on Circuits and Systems, CD-ROM
Proceedings, June 1999.

[21] S. Wang and S. K. Gupta, “DS-LFSR: A new BIST TPG for low heat
dissipation,” in Proc. of Int. Test Conf., pp. 848–857, November 1997.

[22] S. Wang and S. K. Gupta, “LT-RTPG: A new test-per-scan BIST TPG
for low heat dissipation,” in Proc. of Int. Test Conf., pp. 85–94,
September 1999.

[23] P. Girard, L. Guiller, C. Landrault, and S. Pravossoudovitch, “A
TestVector Inhibiting Technique for LowEnergy BIST Design,” in
Proc. of VLSI Test Symp., April 1999, pp. 407–412.

[24] S. Manich , A. Gabarró , M. Lopez , J. Figueras , P. Girard , L. Guiller
, C. Landrault , S. Pravossoudovitch , P. Teixeira , M. Santos, “Low
Power BIST by Filtering Non-Detecting Vectors,” Journal of
Electronic Testing: Theory and Applications, vol. 16 n.3, p.193-202,
June 2000.

[25] S. Kundu, Krishna K.S, and S.Chattopadhyay, “Test Pattern Selection
and Customization Targeting Reduced Dynamic and Leakage Power
Consumption," in Proc. of Asian Test Symp., CD-ROM Proceedings,
November 2009.

[26] S. Kundu and S. Chattopadhyay, “Scan-chain masking technique for
low power circuit testing,” in Proc. of ASQED, pp. 183-188,July
2009.

[27] Kennedy I. and Eberhart R. C., “Particle swarm optimization,” in
Proc. of IEEE International Conference on Neural Networks,
Piscataway, NJ. pp.1942-1948, 1995.

[28] K.-P. Wang, L. Huang, C.-G. Zhou, and W. Pang, “Particle swarm
optimization for traveling salesman problem,” in Proc. of Int. Conf. on
Machine Learning and Cybernetics, vol. 3, pp. 1583–1585, Shanghai,
China, August 2003.

[29] H. Lee and D. Ha, “On the Generation of Test Patterns for
Combinational Circuits,” Tech. Rep. 12-93, Dept. of Electrical Engg.,
Virginia Polytechnic Institute and State University, 1993.

[30] Y. Kim, M-H. Wang, Y. Lee and S. Kang, “A New Low Power Test
Pattern Generator using a Transition Monitoring Window based on
BIST Architecture,” in Proc. of Asian Test Symposium, pp. 230–235,
Dec. 2005.

TABLE VI
 COMPARISON WITH OTHER LOW POWER BIST METHODS

Circuit
LT-RTPG [22] Transition-Monitoring Window [30] By Our Method

%red. in
dynamic power

Fault Coverage
%red. in dynamic

power
Fault Coverage

%red. in
dynamic power

Fault
Coverage

s838 33.1 89.92 66.3 97.62 92.09 100.00
s953 34.5 96.16 65.9 95.04 65.70 100.00

s1196 20.4 95.53 64.3 96.71 89.41 100.00
s1423 30.9 98.42 68.8 98.17 94.21 99.08
s5378 27.0 98.74 65.2 95.04 98.49 99.12
s9234 34.9 91.78 68.5 86.24 96.51 93.47

Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

