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Abstract—We propose a new technique to generate a fully 

specified pre-computed low power test set in a deterministic 
BIST using simple gray counters within reasonable clock 
cycles. In our approach, only a small part of the circuit under 
test (CUT) is active, the rest of the CUT is fed with low leakage 
input patterns. Even the active part is fed by a gray counter 
which make the overall power consumption extremely low. The 
approach requires moderate number of reseeding and nominal 
hardware overload over pseudo random BIST using LFSR or 
CA. Moreover, instead of storing in the memory, the seed 
patterns can also be fed through a low cost, slow tester which 
allows us to efficiently combine a BIST with external testing 
using slower tester 
 

Index Terms— Test per clock BIST, test set embedding, low 
power BIST, reseeding 

I. INTRODUCTION 

uilt-in Self Test (BIST) is being increasingly used 
today for large and complex chips. Based on the test 

application method, BIST can be classified into two types 
[1]: test-per-clock and test-per-scan. In test-per-clock 
method, a test pattern is applied to the CUT in every clock 
cycle and the test response is captured by a response 
analyzer. In test-per-scan scheme, a test pattern is serially 
loaded into the scan chain and then the pattern is applied to 
the CUT.  Thus, for an n input circuit, n + 1 cycles are 
needed to apply a pattern [1]. Based on the pattern 
generation scheme, BIST can also be classified as pseudo-
exhaustive [1], pseudo-random [1][2] and deterministic. 
Generally, in BIST solution, pseudo-random patterns are 
generated using LFSR or CA for detecting the random 
pattern detectable faults. For the random pattern resistant 
faults, techniques based on test point insertion [12], 
reseeding [3][13], bit flipping [14] or fixing [15], and 
weighted random pattern testing [16] have been proposed in 
literature. Another technique to test random pattern resistant 
faults is based on deterministic BIST.  

In a deterministic BIST, it takes into account a pre-
computed set of patterns and generates the patterns among 
other patterns. The most trivial way to do that is to store the 
patterns in a ROM [4] and apply one pattern in every clock 
cycle. However, the area overhead is extremely high. The 
solutions are: using a mapping logic between LFSR and 
CUT [5] or test set embedding [6]-[11]. 
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In test set embedding, a large test set TS is produced in 
such a way that a pre-computed test set TD is produced 
within TS (|TD| ≤ |TS|). Several techniques have been 
proposed for test embedding.  In [6][7], use of binary 
counter as a pattern generator has been shown. They 
proposed two kinds of operations to minimize the cycle 
length. The first one is the preprocessing operation such as 
constant column elimination, identical column merging and 
complemented column merging. The second operation, 
known as basic operation, consists of column permutation 
and complementary column generation. In [7], counter 
reseeding and counter + ROM based approaches have been 
proposed. In [9][10] a twisted ring counter is used for test 
set embedding in a test per clock approach. In [8], test set 
embedding based on width compression has been proposed. 
A reconfigurable network, between the LFSR and scan 
chains, has been used for test set embedding in [11]. In [5], 
a phase shifter network based on XOR-tree has been used 
between LFSR and CUT to match the output of LFSR to 
that of a deterministic test set. All these approaches except 
[5] used unspecified pattern set (that is pattern with don’t 
care) for test set embedding. 

In a different context, power consumption during testing 
is becoming one of the most important metric of testing 
because power consumption during testing is much higher 
than that of normal mode of operation [17][18]. High 
average power leads to high heat dissipation, which may 
damage chip or package and results in reliability 
degradation due to hot spots [19]. Peak power causes 
voltage drop and ground bounce. So, it is mandatory to 
consider power metric while proposing a test solution. 

There are many approaches to reduce power consumption 
in BIST environment. These are - suitable seed selection 
[20], dual seed LFSR [21], and low transition random 
pattern generator [22] using a k (k being the number of 
LFSR cells) input AND gate and a T flip-flop. Another 
approach as proposed in [23][24] is vector filtering in which 
the patterns which do not detect any faults are filtered out or 
blocked from reaching the CUT.      

In this paper, we propose a novel technique to embed a 
fully specified, power aware test pattern set in a BIST 
environment. The pattern set used is such that it consumes 
less leakage and dynamic power while applied to CUT. 
Initially, we tried to generate the whole test set using a 
single gray counter, that is, for an n input circuit, we assume 
that an n bit gray counter will generate the whole pattern set. 
But, the cycle length required in this case will be huge. So, 
we have performed a Particle Swarm Optimization (PSO) 
based column reordering and complement column 
generation technique over the original low power test set, to 
reduce the cycle length. Though, we have achieved 
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significant reduction in cycle length after PSO, the cycle 
length required to generate the whole test set together, is 
still very high. So, the test set, thus obtained has been 
broken into smaller subsets. Now, we try to embed each of 
these subsets one at a time. The subsets are broken 
depending on a fixed counter size in such a way that, for a 
particular subset, the number of inputs changing, is less than 
or equal to the size of the counter. Rest of the bits remains 
constant. When all the patterns have been applied, the next 
seed is loaded and the process continues until all patterns in 
the deterministic test set have been generated. 

Rest of the paper is organized as follows: 
Low power test set generation is discussed in Section II. 
Section III describes our proposed architecture. PSO based 
approach to minimize cycle length is described in Section 
IV. Algorithm for breaking the test set into smaller set is 
given in Section V. Experimental results have been noted in 
Section VI. 

II. TEST PATTERN GENERATION 

The test pattern generation is exactly same as proposed in 
[25]. We generate a test pattern for each collapsed faults 
using “–D 1” option in ATPG ATALANTA [29]. The set 
thus obtained is rich in don’t cares (test cubes). The don’t 
cares of the test cubes are filled to minimize leakage power 
using a Genetic Algorithm based approach as described in 
[26]. Then the same algorithm proposed in [25] is followed 
to obtain the almost minimal set which gives the same fault 
coverage as the original set. As observed in [25], the pattern 
set requires on an average 70.01% less dynamic power and 
6.31% less leakage power compared to the compact pattern 
set generated by ATALANTA in its default mode. The test 
set thus obtained is our deterministic test set which we 
embed in a BIST environment. 

III. PSO BASED APPROACH TO MINIMIZE CYCLE LENGTH 

We perform the preprocessing operations like constant 
column removal, identical column merging, and 
complemented column merging, on the low power test set 
obtained from Section II. As described in [6][7], basic 
operations like column permutation and complementary 
column generation, can drastically reduce the cycle length 
for testing. The authors of the same paper have also proved 
that the problem is NP-hard. They proposed a hill climbing 
technique to solve this problem. We have used a PSO based 
approach for column permutation and complement column 
generation. 

Particle Swarm Optimization (PSO) [27] is a population 
based stochastic technique developed by Eberhart and 
Kennedy in 1995. PSO is initialized with a group of 
particles with random position and searches for optima by 
updating their position through generations. In our case, the 
particle structure is as follows: 

Particle { 
  int column_permutation[ No of Input ] ; 
  int complemented_column[ No of Input ] ; 
} 

Where column_permutation will be holding the column 
numbers in which they should appear in the final ordering 
and complemented_column tells us whether a column be 

used in its original form or in complemented form. Let n be 
the number of inputs. Then, for a particle, 
column_permutation will be a permutation of numbers 
between 1 and n. complemented_column[i] will be either 0 
or 1 for a particular input i ( 1 ≤ i ≤ n ) - 0 means the column 
will be used in its original format, 1 means complemented. 
 The PSO algorithm starts with an initial random position 
of particles with random velocity. For our case, we start 
with an arbitrary ordering of columns and also random 
column type. We also include the original column 
permutation with all columns in its original form as a 
starting position of a particle. Over the iterations, the 
particles change their positions according to their velocity 
and attempt to achieve an optimal solution.  
 The new position of each particle is calculated using a set 
of swap operations over its old position. The details of swap 
operators are given in [28]. We follow the exact procedure 
as described in [28] for calculating the swap operators.  

The fitness of each particle is calculated in terms of cycle 
length required to produce the entire test set using an n bit 
gray counter (n being the number of input).  For a binary 
counter [6], the straight distance of a test set T is max(ri) - 
min(ri), where ri’s are the values of the binary patterns of the 
rows of T. The wraparound distance of T is 2n – max(ri – rj) 
where ri and rj are consecutive row patterns in sorted order 
and ri > rj. The cyclic distance of T is the minimum of its 
straight and wraparound distances. For a gray code counter, 
calculating the straight and wraparound distance requires 
the knowledge of the pattern sequence generated by it. 
Given an n bit pattern, we should able to tell the sequence 
number in which the pattern will be produced starting from 
an initial pattern in a gray counter. For simplicity, we 
consider a reflected gray counter for generation of patterns 
starting from all 0 pattern. The following pseudo code is 
used to calculate the sequence number of a pattern in a 
reflected gray counter. 
function  calculate_sequence( int *patt ) 
{ 
   if( patt[No_of_Input - 1] == 0 ) 

    pos = 0 ; 
  else 
    pos = 1 ; 
  for( i = 2 ; i < No_of_Input ; i ++ ){ 
    if(  patt[No_of_Input - i] == 1 ) 
      pos = 2i – 1 – pos ; 
  } 
  Return pos; 

}  
Where patt[No_of_Input] is the pattern for which the 
sequence number is to be calculated. Here patt[0] holds the 
most significant bit (MSB) and patt[ No of Input – 1] holds 
the least significant bit (LSB). Let us consider a 4 bit pattern 
1010, then patt[3] = 1, patt[2] = 0 , patt[1] = 1 , and patt[0] 
= 0.  
The algorithm will work as follows: 
 patt[3] = 0 ,      pos = 0.  (base condition )  
 patt[2] = 1 ,      pos = 22 – 1 – 0 = 3    ( i = 2 ) 
 patt[1] = 0 ,  pos = 3         ( i = 3 ) 
 patt[0] = 1 ,   pos = 24 – 1 – 3 = 12   ( i = 4 ) 
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1010 will appear in 12th position in a reflected gray counter 
if we consider 0000 to be the 0th pattern.  

Once the sequence of each pattern is known, it is a trivial 
work to find the cycle length. The patterns are sorted 
according to their sequence numbers. Then the same method 
as described for binary counter is used. The cycle length is 
used as a fitness for the particles and we are trying to 
minimize the cycle length in the PSO. The PSO results are 
shown in Table I. 

We achieve on an average 52.2% reduction over original 
cycle length but as it can be seen from column 3; still the 
cycle length is very high. So it is not feasible to generate the 
entire pattern set in one run using an n bit gray counter, n 
being the number of input. The next section describes the 
algorithm for breaking the pattern set into smaller subsets. 
The table also notes CPU times needed in milliseconds. 

TABLE I 
 RESULT OF PSO TO MINIMIZE CYCLE LENGTH 

Circuit 
Original 

cycle length 
After PSO 

cycle length 
% 

Reduction 
Time  

( in ms ) 
s208 196612 98307 50.0 0.89 
s382 9078783 4194305 53.8 1.41 
s400 6172 4373 29.1 1.11 
s420 4.83E+09 2.15E+09 55.6 6.46 
s510 16777521 8388618 50.0 9.84 
s526 8696832 4194326 51.8 12.76 
s641 4.6E+15 2.25E+15 51.1 93.76 
s713 1.35E+16 4.5E+15 66.7 116.28 
s820 4718607 2097492 55.5 16.13 
s832 5172381 2117654 59.1 17.43 
s838 5.53E+19 2.77E+19 50.0 53.05 
s953 1.17E+11 3.44E+10 70.5 21.84 
s1196 2.01E+09 5.37E+08 73.3 34.17 
s1238 2.01E+09 5.37E+08 73.3 12.63 
s1488 14683 10838 26.2 5.19 
s1494 12291 10338 15.9 5.30 
s1423 1.39E+27 6.19E+26 55.6 79.01 

Avg. Reduction 52.2  

IV. PROPOSED ARCHITECTURE 

The proposed architecture is shown in Fig. 1. For an n 
input circuit, we use a k bit gray counter. The rest n - k 
inputs will be fed directly from memory or from an external 
low cost, slow tester. For any seed, the n - k inputs are 
remaining constant for the entire cycle length of pattern 
generation. The changing k inputs are also fed using a gray 
counter. So the overall dynamic power consumption is very 
less. Another advantage of this approach is that the idle part 
of CUT is fed by low leakage patterns. This is because, as 
described in Section II, the don’t care bits of each pattern 
are filled to minimize leakage. So, the leakage power 
consumption of the CUT is also reduced. 

The proposed approach is test per clock scheme where at 
each clock cycle one pattern is applied. The advantage of 
this approach is that it can also work with conventional scan 
design. In fig. 2, we show how it can be added with scan 
design. But in this case, the seeds have to be stored in the 
memory. Here, Mux 1 decides whether a constant value or 
gray counter value will be fed to a scan input. Mux 2 and 
the D flip-flop constitute the conventional scan D flops. 
Another advantage of this approach is that the multiplexers 
placed are not in the functional critical path and hence the 
maximum operating frequency for functional purpose does 
not get affected. 

CUT 

ROM 
K bit Gray Counter

 
Fig. 1. Proposed Architecture 

D Flip 
flop 

TE 

Circuit 

From 
Counter 

From ROM

Conventional  
Scan flip flop 

 

 Fig. 2. With Conventional Scan  

The length of a counter depends not only on the nature of 
the circuit and its test set, but also on number of seeds to be 
stored in memory and the test cycles. As shown in the 
experimental result section, there is a good amount of 
tradeoff existing between counter length, number of seeds 
and also number of clock cycles required. 

V. FINDING SMALLER SET 

The objective here is to find a subset of the total set TD 
depending on a predefined counter length (size) in such a 
way that the number of inputs changing in the smaller set 
should be less or equal to the counter length. Rest of the 
inputs remain constant for the entire subset. This process 
continues until we cover all the patterns in test set TD. The 
algorithm takes as input the test set TD and an integer 
Counter Length. To understand the algorithm, the following 
notation is required. Let t1 and t2 be two test patterns, then 
t1∩t2 is the set of inputs which have same values in both t1 
and t2. We use a temporary set Tsub to hold the patterns in 
one subset. 

Algorithm: Finding sub set (Inputs: TD and Counter 
Length)  

Inputs: Test Set (TD) and Counter Length 
Outputs: Subsets of TD depending on Counter Length 

Step 1. For each pattern, find how many and what are the 
bit positions of it that matches with rest of the 
patterns. We define for each pattern, a variable, 
No_of_pattern_matching, which holds the value of 
the number of other patterns match that with this 
pattern with number of bit positions greater than or 
equal to the specified limit (Number of Input – 
Counter Length). 

Step 2. If for each pattern, No_of_pattern_matching is zero, 
then all these patterns have to be stored in the 
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memory and the algorithm terminates. Otherwise go 
to Step 3. 

Step3. Find the pattern with maximum 
No_of_pattern_matching. Set Tsub = Null. Add the 
pattern to Tsub. 

Step 4. Find the pattern which matches in the maximum 
positions with t1∩t2∩…∩ti, where each ti is a 
member of Tsub. If the number of matches is less 
than (Number of Input – Counter Length), go to 
Step 6, otherwise go to Step 5.  

Step 5. Let the pattern be tj. Add this pattern to Tsub, that is, 
Tsub = Tsub U tj. Go to Step 4. 

Step 6. The set Tsub thus obtained holds the patterns which 
have at least (Number of Input – Counter Length) 
number of bits matching. Write Tsub in a file and set 
TD = TD – Tsub and Tsub = Null. If TD is empty, then 
the algorithm terminates, otherwise go to step 1.  

 After generating the subsets, a proper seed for each set is 
selected. The seed selection is determined by the cycle 
length. Straight and wraparound distances for each set are 
calculated according to the method described in Section IV. 
If straight distance is less than wraparound distance, then 
the pattern with least sequence number is used as seed, 
otherwise, the initial pattern of wraparound sequence is used 
as seed.  

For each file, one seed pattern is required. So the total 
number of seeds required is equal to the number of files 
generated plus the patterns obtained in Step 2.    

VI. EXPERIMENTAL RESULTS 

In this section, we apply our gray counter based BIST to 
medium and few large full scan version of ISCAS’89 
benchmark circuits. It is very difficult to compare our result 
with other approaches because most of the test set 
embedding techniques [6]-[11] took test cubes as their 
deterministic test set. So, they have the advantage of 
specifying the don’t care bits in such a way that the cycle 
length comes down. The techniques show their results only 
for random pattern resistant faults. They assumed that all the 
random pattern detectable faults were detected by pseudo 
random testing using LFSR or CA within a number of pre-
specified clock cycles. Also, the power consumed by their 
approaches is not shown. 

Here, in this experiment, we consider a fully specified 
low power pattern set capable of detecting all the detectable 
faults in the CUT. In Table II, we show our result for test set 
embedding. Column 2 notes the counter size which is 
actually given as an input to the algorithm proposed in 
Section V. The 3rd column indicates the number of seed 
patterns required. These patterns can be directly stored in 
the ROM or a slow speed, low cost tester can be used to 
feed the patterns. Column 4 indicates the number of initial 
low power patterns and column 5 notes down the total 
number of clock cycles required to generate all the low 
power patterns in our method.  
  Since it is very difficult to directly compare our results 
with existing techniques, we define a variable named 
embedding efficiency and compare our results based on 
that. The embedding efficiency is defined as a ratio of initial 
number of patterns to the number of patterns required to 

embed the initial set. Table III compares our result with 
[10]. 

TABLE II 
TEST SET EMBEDDING RESULTS  

Circuit 
Counter 
Length 

# 
Seed 

# patterns in 
Initial Set 

# clock cycles 
required 

s208 6 8 47 262 
s382 7 8 60 473 
s386 6 12 74 388 
s400 7 6 61 352 
s420 8 8 43 912 
s510 7 12 67 586 
s526 7 12 97 808 
s641 9 19 143 4111 
s713 9 23 136 4401 
s820 7 18 120 940 
s832 7 22 115 866 
s838 10 27 219 11043 
s953 10 15 99 6065 
s1196 8 27 188 3072 
s1238 8 28 193 3222 
s1423 12 25 185 37999 
s1488 6 23 129 622 
s1494 6 21 124 577 
s5378 16 51 654 1355127 
s9234 20 52 931 22489934 

    TABLE III 
 COMPARISON WITH [10] 

Circuit 

Embedding 
efficiency 

of our 
method 

As proposed in [10] 

# 
patterns 
in Initial 

Set 

# clock 
cycles 

required 

Embedding 
efficiency 

of [10] 

s208 0.1794 - - - 
s382 0.1268 - - - 
s386 0.1907 102 2184 0.0467 
s400 0.1733 96 2400 0.0400 
s420 0.0471 129 20160 0.0064 
s510 0.1143 103 6500 0.0158 
s526 0.1200 160 8400 0.0191 
s641 0.0348 200 53460 0.0037 
s713 0.0309 192 45792 0.0042 
s820 0.1277 195 9936 0.0196 
s832 0.1328 - - - 
s838 0.0198 257 136680 0.0019 
s953 0.0163 227 37260 0.0061 
s1196 0.0612 291 35904 0.0081 
s1238 0.0599 164 33792 0.0049 
s1423 0.0049 - - - 
s1488 0.2074 - - - 
s1494 0.2149 - - - 
s5378 0.0005 - - - 
s9234 4.14E-05 1521 4042896 0.0004 
Avg. 0.0931   0.0136 

Embedding efficiency of our method can be easily 
calculated by taking the ratio of column 4 and column 5 of 
Table 2. As it can be seen from Table 3, our embedding 
efficiency is much higher than the technique proposed by 
[10] even considering the fact that out test set does not 
contain any don’t cares. 

The counter length is the most important parameter in our 
algorithm because both number of seeds and embedding test 
length depend on it. We perform an experiment to find the 
suitable counter length for each circuit by varying the 
counter length and noting the number of seeds required and 
embedding test length in each case. Table 4 shows the 
experimental result for circuit s1423.  
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From Table IV, we can see that as the counter length 
increases, number of seed required decreases but the 
embedding test length increases.  This is expected because 
when the counter length is high, more number of original 
test patterns are grouped together as the number of column 
(No of Input – counter length) they should match, is less. 
The increase in number clock cycles with counter size is 
obvious because each bit increase in counter size, will result 
in double cycle length compare to its smaller size. Thus, it is 
extremely important to find a good counter length for each 
circuit. Here, we don’t propose any algorithm to find a 
suitable counter length for each circuit. We perform the 
same experiment with every circuit and choose a value 
empirically performing a tradeoff between cycle length and 
number of seeds.  

TABLE IV 
 TRADEOFF RESULT FOR S1423 FOR DIFFERENT COUNTER SIZE 

Counter 
Length 

Number 
of Seeds 
required 

Emb. 
Test 

Length 

Emb. 
Efficie-

ncy 

Power ( per 
pattern ) 

Dyn.  
(trans) 

Leak. 
(uw) 

6 55 954 0.1939 31.87 14.47 
7 50 1614 0.1146 25.34 14.46 
8 42 3938 0.0470 24.74 14.48 
9 39 4974 0.0372 22.28 14.51 
10 32 9876 0.0187 22.03 14.51 
11 30 16521 0.0112 23.02 14.41 
12 25 37999 0.0049 23.00 14.62 
13 24 61516 0.0037 25.30 14.55 
14 21 122329 0.0015 29.49 14.60 
15 21 175905 0.0011 29.31 14.76 
16 19 470209 0.0004 24.62 14.34 

Colum 4 of Table IV shows the embedding efficiency for 
each counter length. The power results are shown in 
Column 5 and 6. Column 5 shows dynamic power 
consumption in terms of average number of transitions. It is 
calculated by dividing total circuit transitions by the number 
of patterns. Leakage power results in micro watt are given 
in column 6. As it can be seen from column 5 and 6, the 
variation in both types of power is not much. But the total 
energy required will vary according to the test length. 

Table V shows the power consumption results produced 
by our method. We compare our result with LFSR based 
pseudo random testing technique. For an n bit circuit, we 
used an n bit LFSR with primitive polynomial configuration  
for pseudo random pattern generation.  

The counter size for each circuit is given in column 2 of 
Table V. In this experiment, we use the same counter size 
given in Table II. Column 3 of Table V shows the dynamic 
power reduction and column 4 lists the leakage power 
reduction. For circuits with very high number of patterns, 
only the first 20,000 patterns are applied and average power 
per pattern is obtained. Since, the proposed scheme is a test 
per clock approach, power per pattern can be used as a 
metric. From Table V, it is evident that we have achieved 
high reduction in dynamic power. This is because in our 
case only a small part of the circuit is active. The rest of the 
circuit is fed by a constant pattern. The active part is also 
fed by a gray counter. So, the overall dynamic power is 
extremely low. We achieved on an average 80.06% 
reduction in case of dynamic power and 3.23% reduction in 
case of leakage power. The maximum reduction is achieved 
for dynamic power is 98.49% for circuit s5378. We 

achieved a maximum leakage reduction of 9.96% also for 
circuit s5378. 
 We performed our simulation on a Pentium IV machine 
running at 3 GHz with 1 GB main memory. The CPU time 
taken by our method is extremely low, in order of few 
milliseconds. So we do not report it separately. 

TABLE V 
 REDUCTION IN POWER WITH RESPECT LFSR BASED APPROACH 

Circuit 
Counter 
Length 

% reduction 
in dynamic 

power 

% reduction 
in leakage 

power 

s208 6 70.12 1.09 
s382 7 86.64 2.4 
s386 6 64.33 0.24 
s400 7 88.02 6.86 
s420 8 81.44 0.83 
s510 7 55.32 2.44 
s526 7 86.55 5.84 
s641 9 90.74 6.96 
s713 9 92.23 6.70 
s820 7 66.46 2.39 
s832 7 67.36 2.04 
s838 10 92.09 0.56 
s953 10 65.70 0.96 
s1196 8 89.41 1.99 
s1238 8 90.62 2.37 
s1423 12 94.21 6.24 
s1488 6 61.16 0.06 
s1494 6 63.79 0.25 
s5378 16 98.49 9.96 
s9234 20 96.51 4.38 

Average Reduction 80.06 3.23 

In Table VI, we have compared our approach with two 
other low power BIST methods, LT-RTPG [22] and 
transition-monitoring window based approach as proposed 
in [30]. The reduction in dynamic power and the 
corresponding fault coverage achieved by the respective 
methods are also shown in the table. We have used the 
results obtained in [30] by using (LFSR=16 and TMW=8) 
which gives the best reduction in power by their approach. 
As it can be seen from the table, our method shows much 
higher saving than both the two techniques. Our fault 
coverage is also higher compared to both the methods. Our 
method is also suitable for leakage power reduction whereas 
the other two methods did not consider leakage power in to 
account. 

VII. CONCLUSION 

In this paper, we have proposed a novel BIST 
architecture using a gray counter based approach in such a 
way that within a moderate clock cycle, a fully specified, 
low power test set can be embedded. This approach 
successfully bridges two different aspects of BIST – test set 
embedding and low power testing. We achieved 80.06% 
reduction in dynamic power in comparison with 
pseudorandom testing using LFSR. We also achieved 3.23% 
reduction in leakage power.  

The dynamic power can further be reduced by ordering 
the subsets obtained from the algorithm. The reason is that, 
within a subset, the Hamming distance between successive 
patterns is one (because n-k bits are fixed and remaining k 

Proceedings of the World Congress on Engineering 2011 Vol II 
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011



 

bits are coming from a gray counter). So, the hamming 
distance between successive patterns is higher than one only 
when the two patterns are from two different sets. So, an 
ordering between the pattern sets can be done to minimize 
the dynamic power. Further, we can reduce the peak power 
by this method. 

Another work still left is to find a proper choice of test 
length. We are trying to formulate an algorithm for finding 
the proper counter length depending on the number of seeds 
and embedding cycle length. 

The hardware overhead of the approach is not high. The 
only overhead is storing the seed patterns and that of the 
multiplexers.   
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TABLE VI 
 COMPARISON WITH OTHER LOW POWER BIST METHODS 

Circuit 
LT-RTPG [22] Transition-Monitoring Window [30] By Our Method 

%red. in 
dynamic power 

Fault Coverage 
%red. in dynamic 

power 
Fault Coverage 

%red. in 
dynamic power 

Fault 
Coverage 

s838 33.1 89.92 66.3 97.62 92.09 100.00 
s953 34.5 96.16 65.9 95.04 65.70 100.00 

s1196 20.4 95.53 64.3 96.71 89.41 100.00 
s1423 30.9 98.42 68.8 98.17 94.21 99.08 
s5378 27.0 98.74 65.2 95.04 98.49 99.12 
s9234 34.9 91.78 68.5 86.24 96.51 93.47 
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