
 

 
Abstract—Inventory control of slow-moving items is 

essential for many establishments since these items have a low 
lead time demand but a high price. Besides, as the demand 
pattern for slow-moving items is irregular, the estimation of 
the lead time demand is challenging. This study gives a 
comparison of the different methods of modelling the lead time 
demand, motivated by a case study at a retailing establishment. 
After modelling the lead time demand with different methods 
for the selected slow-moving items, optimum reorder points 
are obtained. 
 

Index Terms— bootstrapping, continuous review policy, 
reorder point, slow-moving inventory 
 

I. INTRODUCTION 

ariation in demand increases the challenge of 
maintaining inventory to avoid stockouts or to satisfy 

the customer fill rate. Since it is hard to obtain an accurate 
estimate of the lead time demand, the inventory control 
problem is getting complicated by the fact that demand is 
uncertain or the variation of demand is highly volatile. A 
random demand with a large proportion of zero values is 
described as an intermittent demand [1]. Such items are also 
referred to as slow-moving items. A demand that is 
intermittent is often also ‘lumpy’, meaning that there is great 
variability among the nonzero values [2]. 

Inventory control of slow-moving items is essential to 
many establishments, since excess inventory leads to high 
holding costs and stockouts can have a great impact on the 
performance of operations. As the demands for slow-
moving items are extremely stochastic and as the demand 
might sometimes be zero or as a lumpy demand, it is 
difficult to develop efficient strategies for the inventory 
management of items with such a demand owing to their 
nature. This complicates the estimation of the lead time 
demand distribution that is essential to obtain the control 
parameters of most inventory policies [3-4]. 

This paper deals with a case study on both forecasting 
lead time demand and developing an inventory policy for 
Class A inventories for a company that produces handmade 
items. In the following section the related literature is 
briefly reviewed. Section 3 gives the description and 
assumptions of the problem. Computational results of five 
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different techniques for modelling the lead time demand and  

II. REVIEW OF RELATED LITERATURE 

An early paper about the inventory control policy of low 
demand items with Poisson demand belongs to [5]. Ever 
since, the theoretical studies in the literature on the 
inventory control of slow-moving items have been 
abundant, whereas the case studies have been few. In 
addition, the selected product in the case studies performed 
is generally spare parts. 

The base stock policy in the continuous review inventory 
models when the demand distribution is Poisson was 
examined by [6-8]. A forecasting method superior to the 
exponential smoothing was developed by [9], assuming the 
demand is Bernoulli process and demand size is assumed to 
have a Normal distribution. According to the Croston’s 
method, separate exponential smoothing estimates of the 
average size of the demand and the average demand interval 
are made after demand occurs. If no demand occurs, the 
estimates do not change. Certain limitations of the Croston’s 
method are identified in [10]. The authors quantify the bias 
associated with the Croston’s method and they present a 
modification to the Croston’s method that gives 
approximately unbiased demand estimates. [11] gives a 
discussion about the comparison of forecasting methods and 
accuracy of resulting estimates. A Markovian bootstrap 
approach was used by [2] to forecast lead time demand. The 
bootstrap method allows of creating the demand pattern and 
then estimating the demand size if it occurs. Different 
inventory policies are discussed for slow-moving items [12-
15].  

Many of the studies in the existing literature generally 
concentrate on the theoretical aspects of the demand 
forecasting problem or inventory management problem or 
else both problems together. However, the studies working 
with empirical data are not encountered much although 
there are some examples, such as [3] and [16]. An empirical 
comparison of different reorder point methods is studied in 
[3]. The authors construct the lead time demand with respect 
to different approaches and give an optimization by the 
decomposition approach. [16] propose a new method of 
determining the order-up-to levels for intermittent demand 
items in a periodic review system. They model the lead time 
demand as a compound binomial process and show that the 
proposed method is better than the existing ones using 
empirical data. Unlike the existing literature, our work 
analyzes an empirical data set to forecast the lead time 
demand and to optimize the customer service level. Spare 
parts are considered as products in almost all studies in the 
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literature on the inventory control of slow-moving items. In 
a fashion that will not be encountered much in the literature, 
our study uses real demand data concerning a product other 
than spare parts and covers the development of an inventory 
control policy to optimize the customer service level for 
slow-moving items. 

 

III. PROBLEM DESCRIPTION 

The data used in this study are obtained from a firm that 
has been active in the area of production and sale of 
touristic carpets in Turkey since 2000. Monthly demand 
data are obtained from the company for the period from 
01.01.2004 to 30.06.2009. About 95% of the customers are 
tourists who generally come as a group whose size is 
usually unknown in advance. Therefore, on some days, sales 
are high according to the size of the group, whereas there is 
no sale on some days. This nature of the data makes it 
highly volatile and complicates the development of an 
inventory policy. The slow-moving item in our study is 
carpet, whereas almost all studies in the existing literature 
evaluate spare parts as slow-moving items.  

Around forty (40) different types of carpet are being sold, 
but since there are different dimensions for each carpet, the 
number of the products approaches a hundred. Within the 
scope of the study, an ABC analysis is performed and the 
inventory policy is proposed only for Class A products. 
65% of the total sales and 20% of the total items are 
classified as Class A items. Seven (7) types of carpet are 
included in this category. Detailed information can be found 
in [17] for the ABC classification.  

The turnover ratio is a ratio that shows the speed of sale 
of the products in the stock throughout the year. The low 
rate in the turnover rate indicates that the product has a low 
sale. The stock of popular, fast-moving items should turn 
more often (up to 12 times per year), whereas slow-moving 
items may turn only once or not at all. The turnover ratio is 
evaluated for Class A items. The turnover ratios for two of 
them are found less than 1. The turnover ratios for the two 
products, which are coded as AZR02 and ML03, are 
calculated as 0.71 and 0.83, respectively. Therefore, it is 
concluded that since the carpets AZR02 and ML03 have a 
low turnover rate, they can be classified as slow-moving 
items. Each type of carpet has different dimensions.  

One particular type of slow-moving demand forecasting, 
which is especially difficult to predict, involves that of the 
“intermittent demand” that is characterized by frequent zero 
values intermixed with nonzero values. Traditionally, the 
characteristics of intermittent demand are derived from two 
parameters: the average inter-demand interval (ADI) and the 
coefficient of variation (CV). ADI measures the average 
number of time periods between two successive demands 
and CV represents the standard deviation of requirements 
divided by the average requirement over a number of time 
periods. The data demand patterns are explicitly considered 
in relation to the pattern and the size of the demand when it 
occurs. These are classified into four categories [10] on the 
basis of modified criteria [18]. More detailed information 
about the definitions of the categories can be found in [19]. 

From the demand data, the CV2 and ADI values are 

calculated for each dimension of the selected carpets AZR2 
and ML3 summarized in Table I. The dimensions, which are 
classified as intermittent, are used for the analysis, and 
inventory policies for these items are generated. 

 

Usually the types of costs associated with inventory are 
holding cost, ordering cost and stockout cost. An annual 
fixed rate of 20% is used. This means unit holding cost of a 
carpet for a year is calculated as 20% of the purchasing cost 
of a carpet. By consulting the firm about the calculation of 
order cost, it is decided that 5% of the total amount 
approximately yields the unit order cost. As usual, unit 
order cost is independent of the order amount. Since it is 
aimed to establish the optimal balance between the service 
level and the inventory holding costs, the stockout cost is 
excluded from our study. 

Continuous review (r,q) policy is implemented in our 
study, where r represents the reorder point and q represents 
the order amount. The order size q is obtained by the basic 
economic order quantity (EOQ) model, using the average 
annual demand. EOQ calculation is rounded, according to 
[20], as follows: 

Evaluate m=EOQ 
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Once the cumulative distribution of the lead time demand 

distribution is obtained, a reorder point that satisfies the 
desired customer service level or fill rate is determined. 
Using the cumulative distribution function of the lead time 
demand, for a possible reorder point r, the fill rate is 
calculated using (2). 

 
 
q

sE
ratefill 1                (2) 

 

TABLE I 
DEMAND STRUCTURE 

Code CV2 ADI 
DEMAND 

STRUCTURE 

AZR2D06 0.846 1.19 ERRATIC 
AZR2D07 0.522 1.94 LUMPY 
AZR2D08 0.512 1.47 LUMPY 
AZR2D09 0.213 3.82 INTERMITTENT 
AZR2D10 0.367 1.94 INTERMITTENT 
AZR2D11 0.507 1.94 LUMPY 
ML3D05 0.377 1.00 SMOOTH 
ML3D06 0.522 1.00 ERRATIC 
ML3D07 0.488 0 SMOOTH 
ML3D08 0.311 2.06 INTERMITTENT 
ML3D09 0.484 1.32 SMOOTH 
ML3D10 0.316 2.83 INTERMITTENT 
ML3D11 0 10.17 INTERMITTENT 
ML3D12 0.133 8.13 INTERMITTENT 

ML3D13 0.109 10.00 INTERMITTENT 
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where q is EOQ and E(s) is the expected shortage. EOQ is 

calculated using the formula 
 

h

DKE2
 where K is the 

annual order cost, h is the annual holding cost for one unit 
and E(D) is the expected annual demand.  Expected 
shortage can be calculated using (3). 
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IV. COMPUTATION OF REORDER POINT 

In classical inventory theory, it is common to assume that 
the lead time demand follows normal distribution. However, 
when the demand is intermittent, the classical approach 
gives unsatisfactory results. Different approaches that 
estimate the lead time demand when it is intermittent are 
applied to the demand data. After modelling the lead time 
demand, the inventory policy is determined. The proposed 
inventory policies are compared in terms of the customer 
service level and the total costs. Determining an inventory 
policy involves determining inventory control parameters, 
such as reorder points and safety stocks. In order to do so, 
one needs to determine the lead time demand distribution. 
Four different approaches are used to model the lead time 
demand in this study. From the frequency distribution of 
lead time demand, the list of possible reorder point values r 
are obtained by setting r=x, where x are the lead time 
demand values and f(x) are their corresponding 
probabilities. The probability distribution f(x) is obtained 
from the empirical distribution in part A, from the Poisson 
distribution in part B, from the forecast values’ empirical 
distribution in part C, and from the bootstrap sample’s 
empirical distribution in part D.  

In each approach, the reorder point that satisfies the given 
fill rate β is determined. ES(r) is defined as the expected 
shortage for a given reorder point r which is evaluated as in 
(4).  

 

     



rxx

xfrxrES              (4) 

 

Then 









q

rES )(
1  is the calculated fill rate for a given r. 

Then, the problem is to choose the smallest r satisfying (5) 
where q is the economic order quantity.  
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A. Empirical Demand Distribution 

An empirical model is implemented to estimate the 
distribution of lead time demand. Demands during the lead 
time are taken directly from the data set. After the 
determination of the lead time distribution, the fill rates 
calculated according to this distribution and the 

corresponding reorder points are presented in Table II for 
each product that has been classified as intermittent. 

B. Poisson demand 

The mean and standard deviation of demand data for the 
selected products are calculated. For each product, the 
statistical hypothesis, where null hypothesis implies that 
data fits Poisson distribution (H0: Data follows Poisson 
distribution), is tested for α=0.01. The p-values for the test 
results and the decisions are summarized in Table III. As it 
has been decided that the demand fits Poisson, the 
frequency distribution is constructed according to the 
Poisson probability distribution function using the 
parameters given in Table III. For each value of the lead 
time demand, fill rates are computed for each product. The 
calculated fill rates and the reorder points that satisfy these 
fill rates are represented in Table IV. 

 

 

 

 

C. Croston’s Method 

The Croston’s method estimates the mean demand per 
period by applying exponential smoothing separately to the 
intervals between nonzero demands and their sizes [21]. The 
notation used is defined as follows: 

X(t): the observed demand in period t, t = 1,...,T. 
I(t): the smoothed estimate of the mean interval between 

nonzero demands 
S(t): the smoothed estimate of the mean size of a nonzero 

demand 

TABLE II 
FILL RATES CALCULATED FOR EMPRICAL DISTRIBUTION 

Product Code r ES(r) 1-ES(r)/q 

AZR2D09 2 0.136 0.864 
AZR2D10 3 1.091 0.844 
ML3D08 3 0.281 0.859 
ML3D10 3 0.217 0.892 
ML3D11 1 0.032 0.968 
ML3D12 1 0.061 0.939 
ML3D13 1 0.062 0.938 

TABLE III 
RESULTS OF THE HYPOTHESIS TESTING 

Product Code Mean 
Standard 
Deviation 

p-value 
Decision 
(α=0.01) 

AZR2D09 2.38 2.05 0.471 Fail to reject H0 
AZR2D10 2.39 2.36 0.022 Fail to reject H0 
ML3D08 2.45 2.211 0.430 Fail to reject H0 

ML3D10 1.90 1.802 0.315 Fail to reject H0 
ML3D11 0.37 0.550 0.999 Fail to reject H0 
ML3D12 0.20 0.533 0.999 Fail to reject H0 
ML3D13 0.25 0.560 0.999 Fail to reject H0 

TABLE IV 
FILL RATES CALCULATED FOR POISSON DISTRIBUTION 

Product Code r ES(r) 1-ES(r)/q 

AZR2D09 5 0.200 0.857 
AZR2D10 4 0.393 0.869 
ML3D08 4 0.261 0.870 
ML3D10 3 0.313 0.844 
ML3D11 1 0.133 0.867 
ML3D12 2 0.061 0.939 
ML3D13 2 0.061 0.939 
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z: the time interval since the last nonzero demand 
α: smoothing constant between 0 and 1. 
The Croston’s method works as follows: 
If X(t) = 0 then 
S(t) = S(t - 1)  
I(t) = I(t - 1)    
z = z + 1    
or else 
S(t) = αX(t) + (1 - α)S(t - 1) 
I(t) = αz + (1 - α)I(t - 1)  
z = 1 
Considering the demand size and intervals together, the 

estimate of the mean demand per period can be calculated as 
in (6) 
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)(
)(

tI

tS
tM                   (6) 

 
In the literature it is recommended to use low values for 

the smoothing constant [11]. For each product analyzed, the 
smoothing constant α is assumed as 0.1 in calculations since 
this value minimizes MAPE (mean absolute percentage 
error). When demand occurs at every review interval, the 
Croston’s method would be identical to conventional 
exponential smoothing. The fill rates calculated for the 
Croston’s method are summarized in Table IV. 

D. Markov Bootstrap Method 

The results of the implementation of bootstrap method 
introduced in [2] will be presented in this section. Since 
other methods concentrate on estimating the mean demand, 
they provide an inaccurate estimate of the lead time 
distribution. This method has the advantage of capturing the 
autocorrelations between demand realizations better, 
especially when dealing with intermittent demands with a 
high proportion of zero values. With this method, a two-
state Markov chain is defined, namely the demand’s being 
zero and nonzero. Considering the data set, the transition 
probabilities between states are computed. According to the 
transition probabilities computed, a sequence consisting of 0 
and 1 is obtained. The zeros mean that there is no demand, 
while 1’s mean that the demand is greater than zero. In the 
months when the demand is 1, previous data as regards the 
size of the demand are used and forecasting is performed 
with the bootstrap method. The 1’s in the sequence are 
replaced by the obtained demand estimations and the 
forecasting procedure is completed. Finally, the lead time 
demand is computed and this procedure is repeated for a 

number of times. The Willemain’s Bootstrap Method can be 
briefly summarized with the following steps [2]: 

Step 0 – Obtain historical demand data in the selected 
time buckets (e.g. days, weeks, months). 

Step 1 – Estimate transition probabilities for the two – 
state (zero vs. nonzero) Markov model. 

Step 2 – Under the condition of the last observed demand, 
use the Markov model to generate a sequence of zero / 
nonzero values over the forecast horizon. 

Step 3 – Replace every nonzero state marker with a 
numerical value sampled at random with replacement from 
the set of observed nonzero demands. 

Step 4 – Jitter the nonzero demand values. 
Step 5 – Sum the forecast values over the horizon to get 

one predicted value of LTD. 
Step 6 – Repeat steps 2 – 5 for many times. 
Step 7 – Sort and use the resulting distribution of LTD 

values. 
X* is accepted as a random demand value and Z is 

accepted as a random deviated value. By using these 
notations, the process operates as follows: 

JITTERED = 1 + INT(X* + Z √ X*)  
IF JITTERED ≤ 0, THEN JITTERED = X*  
The calculated fill rates and the reorder points that satisfy 

the predetermined fill rate are presented in Table V for each 
product, respectively. 

V. INVENTORY POLICY 

The continuous review (r,q) inventory policy is 
implemented for the system. The reorder point r is evaluated 
using the LTD distribution according to the modelling 
methods described above. The order size q is calculated 
according to the economic order quantity using the average 
annual demand. For the evaluated products, the proposed 
policies are compared with the current policy in terms of the 
customer service level and total costs. The aim is to 
implement the policy that optimizes the system. 

VI. CONCLUSION 

Using the calculated reorder points, the inventory costs 
for all demand forecasting methods are presented in Table 
VI and compared with the currently applied state. The 
inventory cost (IC) is obtained as the sum of the holding 
cost (HC) and the ordering cost (OC). The difference 
between IC, which is obtained with every method, and 
current IC has been given proportionally. This difference 
has been found according to the principle given with (7). 

TABLE IV 
FILL RATES CALCULATED FOR CROSTON’S METHOD 

Product Code r ES(r) 1-ES(r)/q 

AZR2D09 5 0.136 0.903 
AZR2D10 2 0.075 0.975 
ML3D08 4 0.381 0.810 
ML3D10 1 0.682 0.659 
ML3D11 2 0.500 0.500 
ML3D12 1 0.273 0.727 
ML3D13 2 0.182 0.818 

 

TABLE V 
FILL RATES CALCULATED FOR BOOTSTRAP METHOD 

Product Code r ES(r) 1-ES(r)/q 

AZR2D09 8 0.329 0.835 
AZR2D10 5 0.529 0.824 
ML3D08 7 0.239 0.880 
ML3D10 6 0.488 0.874 
ML3D11 3 0.084 0.916 
ML3D12 1 0.079 0.921 
ML3D13 1 0.082 0.918 
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IC has not been computed for those states in which the 

service level is not met. This state has been encountered 
during modelling with the Croston’s method. IC has not 
been computed because the estimation, obtained with the 
Croston’s method for the products with Code No. ML3D10, 
ML3D11 and ML3D12, has not met the service fill rate. 
Although the lead time of the product with Code No. 
ML3D11 is 5 months, its mean lead time demand has been 
found as 1.66. The Croston’s method has not yielded any 
good results in cases with a lead time demand lower than 2. 
It might be stated that this method will yield a better result 
in those intermittent data sets where the demand data 
contain different values from 0 and 1 and the months with 
no observation of any demands are relatively fewer. 

When a comparison is made according to the current 
system, the empirical forecasting method has yielded a 
better result only for the product AZR2D10. When the 
empirical model is considered in general, it has displayed a 
better performance than the Markov bootstrap method. Even 
though the Markov bootstrap method has seemed to have 
yielded a better result in only one product (ML3D11) than 
the others, the differences are quite close to each other with 
the current system in the product ML3D12. When the 
difference of cost is considered, the estimation obtained 
with the Croston’s method for the product ML3D13 is the 
best; however, when evaluated together with the fill rate, the 
empirical and bootstrap approaches yield approximately the 
same results.  
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TABLE VI 
COMPARISON 

Product  
Code 

Current System Emprical model Poisson model Croston’s Model Bootstrap Model 

Inv. 
costs 

Service 
level 

Inv. 
costs 

Service 
level 

Diff 
(%) 

Inv. 
costs 

Service 
level 

Diff 
(%) 

Inv. 
costs 

Service 
level 

Diff 
(%) 

Inv. 
costs 

Servic
e level 

Diff  
(%) 

AZR2D09 173,82 0,70 80,42 0,864 53,73 92,42 0,90 46,83 43,82 0,975 74,79 125,1 0,838 28,02 
AZR2D10 60,57 0,70 20,22 0,844 66,65 40,36 0,886 33,36 31,43 0,975 48,10 42,83 0,838 29,28 
ML3D08 79,38 0,70 46,23 0,859 41,76 47,76 0,833 45,19 43,51 0,810 45,19 56,77 0,805 28,48 
ML3D10 147,96 0,70 88,06 0,892 40,48 55,36 0,804 62,58 - 0,650 - 91,96 0,814 37,85 
ML3D11 143,19 0,70 36,45 0,968 74,54 36,99 0,844 74,17 - 0,650 - 3,24 0,884 97,74 
ML3D12 112,55 0,70 36,74 0,939 67,35 36,55 0,984 67,52 - 0,727 - 37,69 0,921 66,51 
ML3D13 101,67 0,70 29,37 0,938 71,11 30,45 0,984 70,04 25,59 0,818 74,83 30,27 0,918 70,22 

 

Proceedings of the World Congress on Engineering 2011 Vol I 
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-18210-6-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011




