
 

  

Abstract— This paper presents the matrix method for the 

calculation of ground resistance in a two layer soil. In the 

upper layer the results from the simulation for rod and 

horizontal conductor agree with those from the Tagg formula. 

In the second layer the resistance of a grid was calculated with 

results close to the measured values. The final simulation 

concerns a ground rod that crosses the two layers. Using the 

matrix method, the calculated results were not satisfactory, 

when the reflexion coefficient was negative, due to the potential 

computation near the discontinuity points of the Sunde 

solution. The existence of these discontinuity points have not 

been considered in the literature. Shifting the surface of the 

upper part of the ground rod, in the upper layer, improves the 

solution, although it is not good enough. An alternative is to use 

a homogeneous equivalent soil model, using the Kindermman 

formula for calculating the average resistivity. 

 
Index Terms— Ground electrodes, matrix method, layered 

soil, discontinuity points. 

 

I. INTRODUCTION 

HE calculation of a ground electrode resistance, using a 

two layer soil model, has been widely presented in 

literature. Several methods had been used. Salama et al. 

have developed formulas for grid in two layers soil using the 

synthetic-asymptote approach [1]. Berberovic et al. explored 

the Method of Moments in the calculation of ground 

resistance, using higher order polynomials approximation in 

the unknown current distribution [2], and with a variation 

Sharma and De Four used the Galerkin´s Moment Method 

[3]. Another theoretical tool commonly used is the 

Boundary Element Method, used by authors such as 

Columinas et al. [4] [5] [6] and Adriano et al. [7]. These 

authors transformed the differential equation that governs 

the physical phenomenon, into an equivalent boundary 

integral equation. Coa used the Matrix/Integration Method 

for calculating the mutual resistance segment in one and two 

layered earth [8] and Ma and Dawalibi used an optimised 

method of images for multilayer soils [9]. Even in the study 

of the phenomena of ionization, the two layer ground model 

was used [10]. In general these works used the theory of 

images, which implies infinite series for the expanded Green 
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function [2]. However, most of these studies do not either 

compare their work with experimental data, or with data 

from others references, especially when the grounding 

systems involve rods crossing the two layers. In this paper 

the authors analyse the Green function used in the 

calculation of the ground resistance, focusing on the 

existence of points outside of the domain of the solution, 

contaminating the calculations in the vicinity of them, and 

likely responsible for some difference from the experimental 

data. The matrix method was used in this work since it is the 

simplest and the most basic theoretical tool for ground 

resistance calculations. 

This paper is organized as follows: in Section II rod and 

horizontal conductor in the upper layer are first analysed; in 

Section III grid resistance calculation is performed; Section 

IV analyses a two layer long rod and Section V presents the 

conclusions. 

II. ELECTRODES IN THE UPPER LAYER 

Consider a soil with two layers, for which a solution to 

Laplace's equation for electric potential is needed, due to a 

ground current, IF, originated at the current source point 

PF (xF,yF,zF) in the top layer. The potential at any point 

P(x,y,z) in the same layer is [11]: 

�����, �, �� 	 
��
�� �����, ���, �, ��� (1) 

where ρ2 is the upper layer resistivity, k the voltage 

reflexion coefficient and G the Green function. The S22 

function is [11]: 
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A. Ground rod 

A ground rod of 3 m length and 8 mm radius was 

consider, with the top end buried at the surface. Two 

situations were simulated, the first with a resistivity of 

500 Ωm in the upper layer and a lower layer resistivity of 

100 Ωm, or k = -2/3. In the second simulation were 

exchanged these values of resistivity and was obtained 

k = 2/3. The thickness of the upper layer was varied and the 

obtained simulated values were compared with those from 

the Tagg formula [12], Table I. 

 
TABLE I 

COMPARISON WITH TAGG FORMULA FOR UPPER LAYER ROD 

Parameters/Results 1º SIM 2º SIM 3º SIM 4º SIM 

Upper layer thick, D (m) 4 6 9 11 

Resistance (Tagg), 

k=-2/3 (Ω) 
154 160 163 164 

Resistance Matrix Method, 

k=-2/3 ( Ω) 
155 159 161 162 

Error to Tagg (%) 0.6 0.6 1.2 1.2 

Resistence (Tagg), 

k=2/3 (Ω) 
38.7 36.6 35.0 35.1 

Resist. Matrix Method,  

k=2/3 (Ω) 
37.9 36.0 35.0 34.7 

Error To Tagg (%) 2.3 1.6 0.0 1.1 

 

 

The results are close to those from Tagg formula. It is 

interesting to note that when the thickness of the upper layer 

is 11 m, and considering the IEEE model [12], which is 

entirely in the referred layer, since the zero volt 

equipotential will be at 3+7.6 m depth, so the result will be 

similar to that obtained in homogeneous soil with resistivity 

equal to that of the upper layer. In fact, for homogeneous 

soil, in the first case k = -2/3, a rod with these characteristics 

has a resistance of 167 Ω using Dwight formula [12]. For 

k = 2/3 the same formula obtains a value of 33.5 Ω. 

B. Horizontal buried conductor 

The analysis of horizontally buried conductors in the 

upper layer was also considered. A horizontal electrode with 

10 m length and 50 mm
2
 area, buried to a depth of 0.5 m 

was simulated. The same two soil types were considered. 

The simulated values were compared with those from Tagg 

formula [12]. The different simulations are summarized in 

Table II. The differences between the values of Tagg 

formula and the matrix method are very small. 

 
TABLE II 

COMPARISON WITH TAGG FORMULA FOR UPPER LAYER HORIZONTAL 

CONDUCTOR 

Parameters/Results 
1º 

SIM 
2º 

SIM 
3º  

SIM 
4º 

SIM 
5º 

SIM 

Upper layer thick, D (m) 1 2 4 6 8 

Resistance (Tagg), 

k=-2/3 (Ω) 
54 61 67 70 72 

Resistance Matrix 

Method, k=-2/3 ( Ω) 
54 61.4 68.2 70.3 71.7 

Error to Tagg (%) 0 0.7 1.8 0.4 0.4 

Resistence (Tagg), 

k=2/3 (Ω) 
27.4 22.6 19.4 18.1 17.4 

Resist. Matrix Method, 

k=2/3 (Ω) 
27.3 22.4 19.2 17.9 17.3 

Error To Tagg (%) 0.4 0.9 1.0 1.1 0.6 

III. GRID IN LOWER LAYER 

For a current point source in the lower layer, the potential 

at a point in the same layer, solution of Laplace equation, is 

given by the following expression [11]: 
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Where S11 is: 
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For the grid shown in Fig. 1 the resistance was calculated 

considering that the resistivity of the upper layer is 

3000 Ωm, the resistivity of the lower layer is 22 Ωm and the 

thickness of the upper layer is 0.2 m. The grid was buried to 

a depth of 0.6 m. Note that the conductors were considered 

to have an area of 50 mm
2
 [13]. The obtained value of the 

resistance using the software program developed was 

0.924 Ω. This value has an error of 7.6% for the 1 Ω 

measured value, and a deviation of 5.4% for the 0.987 Ω 

calculated value [13]. 

 

 
Fig. 1. Buried Grid 

IV. TWO LAYER ROD 

When considering a rod that crosses through the two 

layers, calculating the potential at a point that is in a 

different layer of the point source is required. To calculate 

the potential in the upper layer, due to a point source in the 

lower layer, the formula is [11]: 

�����, �, �� 	 �
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where σi is the conductivity of the ‘i’ layer and S21 is [11]: 
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For the resistance calculation of a ground rod crossing the 

two layers the functions V11, V22, and V21 were used. The V12 

function was not used because of symmetry in the 

coefficient matrix [11]. The results for a 2 m length rod and 

8 mm radius, buried at ground level, with an upper soil layer 

of 100 Ωm resistivity and a 500 Ωm resistivity in the lower 

layer are summarized in the third row of Table III. The 

maximum deviation is 20%. Searching for better results, a 

discretization in the area close to the discontinuity plane 

between the two layers was refined, with points separated by 

1 mm in the first centimeters above and below the plane 

z = −D. The remaining points kept the 1 cm discretization. 

The results in the fifth row show a slight improvement. 

Finally the entire rod was discretized with source points 

separated by 1 mm with results presented in the last two 

rows. 

 
TABLE III 

COMPARISON WITH TAGG FORMULA FOR TWO LAYER ROD K=2/3 

Parameters/Results 1º SIM 2º SIM 3º SIM 

Upper layer thick, D (m) 0.5 1.0 1.5 

Resistance (Tagg), (Ω) 134 93.4 72.0 

Resistance Matrix Method, ( Ω) 161 103 73.1 

Error to Tagg (%) 20 10 1.5 

Improved discretization (Ω) 160 102 72.9 

Error To Tagg (%) 19 9.2 1.3 

1 mm total discretization (Ω) 160 102 69 

Error To Tagg (%) 19 9.2 -4.2 

 

 

Changing the value of the resistivity of the two layers, the 

values shown in Table IV were obtained. 

 
TABLE IV 

COMPARISON WITH TAGG FORMULA FOR TWO LAYER ROD K=-2/3 

Parameters/Results 1º SIM 2º SIM 3º SIM 

Upper layer thick, D (m) 0.5 1.0 1.5 

Resistance (Tagg), (Ω) 60 77 114 

Resistance Matrix Method, ( Ω) 52 42.5 57.6 

Error to Tagg (%) -13 -45 -50 

Improved discretization (Ω) 51.4 42.3 57.1 

Error To Tagg (%) -14 -45 -50 

1 mm total discretization (Ω) 51.2 42.2 56.5 

Error To Tagg (%) -15 -45 -51 

 

 

An increase in ground resistance was expected when the 

upper layer thickness increases, because is more resistive, 

although this appears not to happen. The errors are 

unacceptable. The only satisfactory conclusion seems to be 

that a 1 cm discretization between points is sufficient. 

As the examples previously presented validated the V11 

and V22 functions, the source of these errors can be 

connected with V21, so this function was analyzed in detail. 

With this purpose a current point source, PA, in the lower 

layer and an upper layer point P sharing the same abscissa 

and the same ordinate, so the first and second argument of 

Green function are t=u=0, were considered, Fig. 2. 

 

Fig. 2 Discontinuity points 

 

Both points are equidistant to the discontinuity plane at a 

distance h, so the difference in quotas between the two 

points is 2h, while the sum of these quotas is 2D, resulting 

in the following expression for S21: 
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The fractions can only be computed if: 

 , � +
"		and  , 1						 

First condition is easily satisfied. The second condition 

cannot be satisfied. The point P under consideration is 

outside the function domain, so the proposed solution is not 

applicable at this point. If this point is on the ground surface, 

its potential cannot be calculated. 

In the matrix method the equations (1), (2) and (3) must 

be used at the electrode surface. Since the V21 discontinuity 

points are in the axis of the rod, in the upper layer, the 

calculation is done in the vicinity of a point outside the 

domain. With a 1 cm discretization, this occurs easily. 

Usually the surface points are in front off the point source, 

sharing the same quota. Considering the conductor radius, r, 

in the difference of ordinates or abscissa, Green function has 

just only one zero argument, instead of two. 

��-, 0, ., � 	 ��0, -, .� 	 �
/0�'1�	 (5) 

As early mentioned, with the point P(x,y,z) and the point 

source, equidistant to the discontinuity plane at a distance h, 

it follows that the difference in quota between the two points 

is 2h, while the sum of these quotas is 2D. Expanding (3) 

and grouping the terms with the same power of k, the 

following expression was obtained: 
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Even for k close to unity, in modulus, which is its 

maximum value, the terms involving the powers of k can be 

neglected, since the denominators are too high, because the 

upper layer thickness, D, is much greater than the rod radius, 

and the 1/r fraction is dominant, to those involving D. 

With this approximation a simplified version of the S21 

function was obtained: 
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Furthermore with k close to unity, in modulus, the second 

fraction can be neglected, so S21 is simply: 

 

��� 8 1
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This simplified equation shows that for k close to unity, 

the term k/r is dominant and the sign of k defines whenever 

S21 is positive or negative. 

Notice that with the source points separated by 1 cm, the 

minimum value for h is closer to 1cm so 2h easily becomes 

greater than the rod radius. If k is negative, S21 is negative 

and, using (3), the potential at that conductor surface point 

will also be negative, which makes no sense since they are 

assumed to be positive. 

To overcome this problem, in the calculation of V21, it 

was assumed that the points on the rod surface, in the top 

layer, could be displaced 0.1 or 0.2 m away from the axis 

and therefore reduce the influence of k, due to the increasing 

value of r. With rods with several meters in length, this 

shifting of surface points is not significant. The results are 

shown in Table V and Table VI. 

For k = 2/3 the results are improved with 0.2 m 

displacement of the upper electrode surface, since the 

maximum error is now 15 % instead of the 20 % error of 

Table III. Notice the values are conservative. 

For k = - 2 / 3 the errors were drastically reduced, from 

50% to 34% or 32%, but still they remain unacceptable. 

However, in this case, the results make sense. 

 

TABLE V 

COMPARISON WITH TAGG FORMULA FOR TWO LAYER ROD K=2/3 

Parameters/Results 1º SIM 2º SIM 3º SIM 

Upper layer thick, D (m) 0.5 1.0 1.5 

Resistance (Tagg), (Ω)  134 93 72 

Resistance (Ω) 0.1 m displacement 159 101 74 

Error for Tagg (%) 18 8.3 2.2 

Resistance 0.2 m displacement, (Ω) 154 99 73 

Error for Tagg (%) 15 6 1.4 

 

 

 

 

 

 

 
TABLE VI 

COMPARISON WITH TAGG FORMULA FOR TWO LAYER ROD K=-2/3 

Parameters/Results 1º SIM 2º SIM 3º SIM 

Upper layer thick, D (m) 0.5 1.0 1.5 

Resistance (Tagg), (Ω)  60 77 114 

Resistance 0.1 m displacement, (Ω) 52.6 55.9 77.4 

Error to Tagg (%) -12 -28 -34 

Resistance 0.2 m displacement, (Ω) 52.4 58.4 77.9 

Error to Tagg (%) -13 -24 -32 

 

 

With increasing thickness of the upper layer, which is 

more resistive, the electrode resistance also increases. The 

matrix method results in unacceptable error in the 

calculation of rods resistance in a two layer soil, when the 

upper layer is more resistive, a very common case, even 

displacing the surface points in the upper layer of 0.1 or 

0.2 m. When the upper layer is less resistive the method can 

be used. Using an average value of resistivity in an 

equivalent homogeneous soil, using the Kindermman and 

Dwight formulas [10] allows for results below 20%, as 

shown in Table VII. 

The average resistivity is obtained using Kinderman 

formula [9]: 

 

9: 	 ;� � ;�;�9� � ;�9�
 

 

where 

L1 : Rod lenght in top layer; 

L2 : Rod lenght in lower layer 

ρ1 : Top layer resistivity; 

ρ2 : Down layer resistivity 

Using a weighted average value for resistivity in an 

equivalent homogeneous soil [14], the problem can be 

solved for k negative. 
 

TABLE VII 

COMPARISON WITH TAGG FORMULA USING AN EQUIVALENT 

HOMOGENEOUS SOIL 

Parameters/Results 1º SIM 2º SIM 3º SIM 

Upper layer thick, D (m) 0.5 1.0 1.5 

Average Resistivity k=2/3, (Ω/m) 250 167 125 

Average Resistivity k=-2/3, (Ω/m) 125 167 250 

Dwight formula k=2/3 (Ω) 118 78.4 58.8 

Error To Tagg (%) -13 -16 -18 

Dwight formula k=-2/3 (Ω) 58.7 78.4 118 

Error To Tagg (%) -2 0.1   3 

 

 

As can be seen in the last row of Table VII, the errors for 

negative k are small. For positive values of k the results are 

not conservative, although errors are not too high. In this 

case the 0.2 m displacement appears to be the best option. 
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V. CONCLUSION 

The matrix method produces very good results (less than 

3 % error) when the electrodes are in a single layer, in a two 

layer soil. With rods crossing the two layers, if the 

resistivity of the lower layer is larger, the method gives 

results with 20 % maximum errors. This error can be 

reduced by displacing the surface points in the top layer to 

0.1 or 0.2 m away from the axis rod. 

If the upper layer is the most resistive, a more common 

case, the method obtains unacceptable results, even 

displacing the surface points in the upper layer 0.1 or 0.2 m 

away from the rod axis. The points in the lower layer have 

images on the upper layer that are discontinuity points of the 

Sunde solution, not allowing for potential calculations in 

these points. In the vicinity of those points, for the negative 

voltage reflexion coefficient, the calculated potential can 

even be negative. This kind of problem has not been 

reported in the literature. Although the matrix method is not 

commonly used, some methods are obtained by integrating 

the S functions, propagating the discontinuity points. 

The use of Kinderman formula for an apparent resistivity 

in homogeneous soil can overcome the problems for 

negative reflexion coefficient, exploring the knowledge we 

have in that soil type. 
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