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Abstract—To more fully utilize the potential offered by 

multi-core processors, programming languages must have 

features for expressing parallelism. One promising approach is  

collection-oriented operations, which are easily expressed by 

the programmer and can be implemented by the runtime 

system in a parallel fashion for improved performance. 

However, the ordinary implementation requires a barrier 

synchronization among all the processors after each parallel 

operation, thereby creating a performance penalty that grows 

with the number of processors. For large numbers of 

processors, this inhibits scalability and reduces performance 

especially for smaller size data sets. This paper explores a 

optimization technique called operator fusion, which removes 

the necessity for barrier synchronization. The general 

principles and rules governing the use of operator fusion are 

described and then illustrated with a specific collection-

oriented parallel library that we have developed for the object-

oriented programming language Scala, which is an extension of 

the language Java. Performance improvement resulting from 

operator fusion is analyzed  for several benchmark programs 

on a computer with a multi-core processor. 

 
Index Terms— data parallel, multi-core processor, parallel 

programming, Scala 

 

I. INTRODUCTION 

O help the programmer specify parallelism in a program, 

the programming language must have some special 

parallel programming features. The predominant approach 

used so far is multi-threading, in which the programmer 

explicitly assigns computing tasks to individual parallel 

threads. If the parallel threads modify shared data, then 

locking is used to provide atomic access. This approach has 

several drawbacks. The programmer is involved in many of 

the low-level details of management and synchronization of 

parallel tasks. Also, multi-threaded programs have potential 

data races that essentially create a nondeterministic program:  

a program that may produce different outputs for the same 

input data during different executions. Program deadlocks 

may also occur in a nondeterministic fashion. This 

nondeterminism complicates the software development 

process, and makes it more difficult to develop reliable 

software. 

One promising approach to solve many of these problems 

is high-level collection-oriented operations, in which every 

element of the collection is operated upon in parallel by the 
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same operation. This is often called data parallel 

programming. One example is the array operations of the 

language Fortran 90 [1], which may have a sequential or 

parallel implementation. A more sophisticated set of  

operations is found in High-Performance Fortran [2, 3], 

including data distribution directives and user-defined data 

parallel functions. The widely publicized MapReduce [4] 

operation used by Google is another example of a collection-

oriented parallel operation. 

One of the earliest commercial applications of data 

parallel programming during the late 1980s was in the 

Connection Machine [5] of Thinking Machines Corporation. 

The programming languages available for the Connection 

Machine included data parallel versions of both Lisp and C. 

Much of what was known at that time about data parallel 

programming is summarized in the book by Guy Blelloch, 

Vector Models for Data-Parallel Computing [6]. Looking 

back even earlier, the array operations of the language APL 

[7] can be considered as primitive examples of collection-

oriented operations that can have a data parallel 

implementation. In the case of APL, the array operations 

were not introduced for the purpose of parallel execution, 

but simply to make the programming process easier by 

providing higher level programming abstractions.  

More recent examples of data parallel languages include 

Ct [8], a language under development by Intel for their 

experimental terascale processor architectures. The company 

RapidMind has successfully marketed a data parallel 

extension of the C++ language with collective operations on 

arrays [9]. Intel has just released a software package called 

Array Building Blocks [10] that combines and extends many 

of the features of Ct and the RapidMind extensions. 

Researchers at Stanford University have developed a data 

parallel extension of the C language called Brook [11], 

intended for efficient execution on computers with GPU 

coprocessors. Brook allows user-defined data-parallel 

functions on streams, which are essentially large data arrays. 

The language X10 under development by IBM [12] and 

HPJava [13] are both data parallel versions of Java, intended 

for scientific and engineering applications on high-

performance computer clusters.  

II. OPERATOR FUSION 

One of the main performance issues in data parallel 

programming is the need for synchronizing the processors 

after each data parallel operation. Data parallel operations 

are more widely applicable for general purpose 

programming if they are fairly primitive in nature. Then the 

programmer can construct a parallel program by combining 
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large numbers of these primitive operations. However, the 

barrier synchronization required after each data parallel 

operation creates a performance penalty, which grows with 

the number of processors. For large numbers of processors, 

this inhibits scalability and reduces performance especially 

for smaller size data sets. 

In this paper, we explore a technique called operator 

fusion, which removes the necessity for barrier 

synchronization after each data parallel operation. Data 

parallel operations are implemented by dividing the work 

among the available processors. To be sure that the 

operation is complete, all of the processors execute a barrier 

before moving on to the next operation. However, under 

certain circumstances, it is possible for a processor to move 

immediately to the next data parallel operation without 

waiting for the other processors. For example, consider a 

sequence of four data parallel operations:  P, Q, R, S. In an 

ordinary parallel implementation, all processors are required 

to finish their assigned portion of the computing for 

operation P, and then execute a barrier before any can begin 

on operation Q. Similarly, all processors must finish their 

work on operation Q before beginning R. With an 

implementation based on operator fusion, a processor 

completes its work on data parallel operation P and then 

moves on to operation Q immediately; similarly for 

operations R and S. Thus, the sequence of four data parallel 

operations can be executed with only one barrier operation 

after S, instead of four barriers in the implementation 

without operator fusion. 

In this paper, we explore the use of operator fusion in a 

collection-oriented parallel library. The library is an add-on 

to an ordinary object-oriented programming language. The 

library implementation is done completely at runtime. In 

section III we present the general principles underlying the 

operator fusion optimization, including a general algorithm 

for determining when it can be used. In subsequent sections, 

we describe our collection-oriented library and analyze the 

performance improvement resulting from operator fusion for 

several benchmark programs. 

Removing processor synchronization barriers to improve 

performance of parallel programs is not a new idea. Some 

parallel programming languages have explicit instructions 

that the programmer can use to indicate a barrier is not 

necessary in certain circumstances. For example, the 

language OpenMP allows a NO WAIT directive to prevent a 

barrier synchronization among the threads executing a 

parallel loop. In contrast to this, we are concerned with 

automatic operator fusion, done completely at runtime by 

the collection-oriented library without any knowledge or 

intervention by the programmer. 

The Intel Array Building Blocks (ArBB) library for C++ 

does include some automatic operator fusion. However, this 

optimization is applied only in the limited context of 

function bodies that are invoked with a special ArBB call 

operation. Furthermore, all of the ordinary C++ flow of 

control instructions (for, while, if) in the function body must 

be replaced by special ArBB flow of control operations. In 

contrast to this, our implementation of operator fusion is 

automatically applied to every individual collection-oriented 

operation in the library at runtime. 

III. GENERAL PRINCIPLES 

The first step is to explore the general principles of 

operator fusion and develop a simple algorithm for 

determining when operator fusion is possible. For this 

purpose, consider a very general framework with a User 

Program written in any high-level language. Embedded at 

various points in this User Program are calls to data parallel 

operations. These calls may be features of the programming 

language, or simply calls to library functions (methods). To 

allow the possibility of operator fusion of the data parallel 

operations, two simple assumptions are needed:  isolation 

and partitioning. These will be explored in the next two 

subsections.          

A. Isolation of Data Parallel Operations 

The first assumption is the existence of a clean interface 

between the User Program and the data parallel operations. 

The data parallel operations perform transformations on a 

special group of collections (data structures), which we call 

Data Parallel Collections (abbreviated: DP-Collections). 

The User Program interacts with the DP-Collections through 

a fixed set of Data Parallel Operations (abbreviated: DP-

Operations). The User Program passes parameters to these 

DP-Operations, which are used to carry data into the 

operations and return data back to the User Program. 

However, the User Program has no direct access to the DP-

Collections, except via one of these special DP-Operations. 

Furthermore, the DP-Operations have no side-effects:  they 

can only read/write the DP-Collections and the data passed 

as parameters from the User Program. In other words, the 

DP-Operations are isolated from the User Program data, and 

similarly the User Program is isolated from the DP-

Collections. 

This isolation assumption is very reasonable and will 

probably be valid for a wide range of data parallel libraries, 

beyond the specific data parallel library described in 

subsequent sections of this paper. For example, the Intel Ct 

library [8] and Array Building Blocks library [10] both 

satisfy the isolation property. For now, let us determine to 

what extent operator fusion of data parallel operations is 

possible based only on this simple isolation assumption. For 

this purpose, a useful analytical tool is a History Graph of 

the DP-Operations. During each specific execution of the 

User Program, a series of DP-Operations (d1, d2, …, dn) will 

be generated. Each DP-Operation di will have parameters, 

some of which may be a reference to a specific DP-

Collection, and some of which may be a reference to a User 

Program data value (object). The execution history of the 

DP-Operations defines a directed, acyclic graph as follows: 

 Each executed DP-Operation di is a node in the 

graph. The index i is called the sequence number or 

timestamp of the operation. 

 Each DP-Collection referenced by a parameter of 

any DP-Operation is a node in the graph. 

 Each User Program data value (object) referenced 

by a parameter of the DP-Operation is a node in the 

graph. 
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 If DP-Collection c is read by DP-Operation di , there 

is an edge from c to di. If c is modified by di , there 

is an edge from di to c.  

 If User Program data value u is read by DP-

Operation di , there is an edge from u to di. If u is 

modified by di , there is an edge from di to u.   

An example of a History Graph is shown in Fig. 1. The 

particular sequence of DP-Operations (d1, d2, d3, d4) in the 

history is generated by the User Program, depending on the 

input data. We are not suggesting that such a History Graph 

actually be constructed during the execution of a real 

program. We are just using the graph as a conceptual tool to 

help analyze and understand the principles of operator 

fusion. Each DP-Operation in the graph is executed by a 

team of Worker Threads running in parallel. Now consider 

the following question:  under what conditions can the 

barrier synchronization after each DP-Operation be safely 

removed? 

For any given DP-Operation operation di in the graph with 

an input DP-Collection v, let I(di, v, m) denote the set of data 

elements in DP-Collection v that are directly read by Worker 

Thread m during DP-Operation di. For DP-Operation dj with 

an output DP-Collection v, let O(dj, v, k) denote the set of 

data elements in DP-Collection v that are directly written by 

Worker Thread k during DP-Operation dj.  

A data element e of a DP-Collection v is said to be a 

cross-thread data element if there exist DP-Operations di 

and dj, such that e ϵ O(dj, v, k) and e ϵ I(di, v, m) and k  m. 

In simple words, a cross-thread data element is one that is 

created (written) by one Worker Thread and then consumed 

(read) by a different Worker Thread. Cross-thread data items 

restrict the possibilities for operator fusion of the DP-

Operations. If Worker Thread k writes a cross-thread data 

item e during DP-Operation operation dj, and e is read by a 

different Worker Thread m during a subsequent DP-

Operation operation di, then some kind of barrier 

synchronization among the Worker Threads is required after 

operation dj. Otherwise, Worker m might attempt to read 

data item e before it is created by Worker k. 

If the output DP-Collection v of any DP-Operation 

operation di in the history graph has no cross-thread data 

items, then no barrier synchronization is required after 

operation di. Thus, all the Worker Threads involved in the 

execution of operation di can immediately move on to the 

next DP-Operation operation dj as soon as they complete 

their share of operation di. Thus, each Worker Thread 

experiences a fusion of its computing on operations di and dj. 

The general discussion of the last few paragraphs has 

assumed that the output of the DP-Operation is a DP-

Collection. However, some DP-Operations may produce an 

output data value (object) that is not a DP-Collection. As an 

example, consider operation d4 and its output x in Fig. 1. A 

reference to this object x is returned to the User Program by 

operation d4. Since x is not a DP-Collection, the User 

Program may directly access the data of x. Thus, it is 

necessary to make sure the Worker Threads have completed 

their computation of x before returning to the User Program 

after the call to operation d4. Thus, barrier synchronization is 

required after operation d4 that includes all the Worker 

Threads and also the Master Thread executing the User 

Program. When the Master Thread is included, we call it a 

Strong Barrier. However, as long as the output of any DP-

Operation is a DP-Collection, then a strong barrier is not 

necessary. 

The situation is similar for an input parameter to a DP-

Operation that is not a DP-Collection, for example input u to 

DP-Operation d1 in Fig. 1. The User Program may have 

another reference to data value (object) u and attempt to 

modify it. Therefore, d1 must complete its work before the 

User Program is allowed to continue. Thus, a strong barrier 

is needed after d1, unless u is an immutable object, which 

cannot be modified.  

B. Partitioning of Data Parallel Collections 

The above general discussion of operator fusion is based 

completely on the assumption of isolation between the User 

Program and DP-Collections. Now one additional 

assumption will allow the development of a simple and 

practical operator fusion algorithm: each DP-Collection has 

a standard (default) partitioning. The partitions are disjoint 

and cover the whole DP-Collection.  The overall purpose of 

the partitioning is to facilitate data parallelism. Each Worker 

Thread can be assigned to work on a different partition in 

parallel with no interference. 

Partitioning facilitates operator fusion if the same 

partitioning is used by many different DP-Operations. For 

example, consider a DP-Collection v with partitions p1, p2, 

…, pm. Now assume that Worker Threads W1, W2, …, Wm 

are assigned to work on these partitions independently in 

parallel during a particular DP-Operation di. If the same 

group of m Worker Threads is assigned to the partitions in 

the same way during the subsequent DP-Operations di+1, 

p r 
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Figure 1.   History Graph of PVector Operations. 
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then there is no need for a barrier after di — fusion of 

operations di and di+1 is possible without introducing any 

data races or timing-dependent errors. After completing its 

share of the computing in operation di, Worker k can move 

on immediately to operation di+1 without waiting for the 

other Workers — there is no need for a barrier after 

operation di. Using the terminology of the previous section, 

the standard partitioning prevents the possibility of any 

cross-thread data elements in this particular DP-Collection 

v. 

At this stage of analysis, we are not specifying any details 

about the nature of the data structures allowed in the DP-

Collections or the particular partitioning method. We only 

assume there is some standard partitioning method for each 

DP-Collection. If this standard partitioning is used by many 

of the DP-Operations for allocating Worker Threads, then 

there will be a lot of opportunity for fusion of the DP-

Operations. However, all DP-Operations are not required to 

adhere to the standard partitioning. Some DP-Operation may 

use a different partitioning or may not have any distinct 

partitioning at all, in which case these DP-Operations will 

not be candidates for operator fusion. 

This assumption of a standard (default) partitioning for 

each DP-Collection, along with the isolation assumption 

from Section IIIA, will allow us to develop a simple 

operator fusion algorithm to determine whether specific DP-

Operations require a barrier synchronization or not. The 

input to this algorithm will be a descriptor for each DP-

Operation that specifies certain important properties of that 

operation.  

Each DP-Operation d has one or more input parameters, 

some of which may be DP-Collections, and an output 

parameter which may be a DP-Collection (see the History 

Graph of Fig. 1 for examples). For each of these DP-

Collection parameters, the operator fusion algorithm needs 

to know whether or not DP-Operation d adheres to the 

standard partitioning of that DP-Collection. If the standard 

partitioning of any input parameter is violated, this is called 

an input crossing; similarly, violation for an output 

parameter is called an output crossing. 

C. The Operator Fusion Algorithm 

Following is summary of the seven properties of each DP-

Operation that will serve as input to the operator fusion 

algorithm: 

 InputCross: true if this operation has an input 

crossing 

 OutputCross: true if this operation has an output 

crossing 

 OutDP: true if the output of this operation is a DP-

Collection 

 InUserData: true if any of the inputs to this 

operation is not a DP-Collection 

 OutputNew: true is the output of this operation is a 

newly created DP-Collection 

 HasBarrier: true if this operation has an internal 

barrier synchronization of the Worker Threads 

 HasStrongBarrier: true if this operation has an 

internal strong barrier synchronization 

These seven properties are static – they only need to be 

determined once for each DP-Operation in the library. The 

properties do not depend on the particular User Program, but 

only on the definition of the DP-Operations and the 

particular implementation of the operations. 

In addition to the above static information, the operator 

fusion algorithm also needs some dynamic information that 

must be gathered during the execution of the User Program. 

Each call to any DP-Operation by the User Program is 

assigned a unique sequence number, which serves as a kind 

of time stamp. Each DP-Collection also has a unique time 

stamp:  the sequence number of the DP-Operation that 

created it. This is assigned dynamically when the DP-

Collection is created. Also, each specific DP-Collection has 

a time stamp (sequence number) of the most recent DP-

Operation to perform an input crossing on it (InCrossTime). 

One additional piece of dynamic information required is the 

time stamp of the most recent barrier operation. 

The operator fusion algorithm is shown in Fig. 2 and has 

there separate procedures. enterOp is called by each Worker 

Thread before beginning each DP-Operation to determine 

whether a barrier is needed before execution of the DP-

Operation. exitOp is called by each Worker Thread after 

each DP-Operation is complete to determine whether a 

barrier is needed before moving on to the next DP-

Operation. userProg is called by the User Program after 

each DP-Operation call to determine whether the User 

Program must participate in a strong barrier with the Worker 

Threads before continuing. 

All three procedures in this operator fusion algorithm 

depend heavily on the properties of the DP-Operations, 

which is contained in the array OpInfoTab. For example, 

OpInfoTab[opcode].InputCross is true if the DP-

Operation identified by opcode has an input crossing on one 

of its DP-Collection input parameters. The algorithm also 

uses the time stamps of the DP-Operations and the DP-

Collections. The variable barrierTime, which is the time 

stamp of the most recent barrier, is used and modified during 

the algorithm. The procedures of this algorithm have no 

loops and can therefore be executed in constant time. 

The focus of this operator fusion algorithm is to detect 

those specific conditions that require a barrier operation, and 

avoid a barrier whenever possible. The algorithm is quite 

general and is based only the two assumptions described 

earlier:  isolation and partitioning. The implementation 

dependent aspects of the algorithm are captured by the seven 

properties of the DP-Operations as found in the array 

OpInfoTab. 

Now we will apply this operator fusion algorithm to a 

specific collection-oriented parallel library for the language 

Scala. The subsequent sections of this paper describe the 

library in detail and give an example program that uses the 

library to solve a partial differential equation. We also 

summarize the results of performance studies on several 

benchmark programs showing that operator fusion 

significantly improves the performance of the library.  

IV. DATA PARALLEL LIBRARY 

We wish to be as general as possible in describing the 
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principles and practice of operator fusion. However, to 

illustrate the principles and show that the technique is 

practical, it is necessary to focus on a specific 

implementation. For this purpose, we use a collection-

oriented parallel library for the object-oriented language 

Scala, which extends the language Java by adding functional 

programming features. Scala is compiled into Java byte-code 

and is executed by the Java Virtual Machine. Any of the 

Java library functions may be called from within a Scala 

program. We chose Scala [14] as our implementation 

language because it is particularly well suited for creating 

runtime libraries. However, the collection-oriented parallel 

library presented in this paper could also be implemented 

with operator fusion in Java, C#, or any object-oriented 

language. Runtime operator fusion in data parallel libraries 

is in no way limited to the language Scala. 

The basic parallel collection object we use in our library 

is called a Parallel Vector (abbreviated PVector). A Parallel 

Vector is an indexed sequence of data items, which bears 

some resemblance to a one-dimensional array. However, the 

range of operations available for Parallel Vectors is really 

quite different from a simple array, as described in the 

subsequent sections of this paper. Parallel Vectors are 

implemented in Scala with a generic library class 

PVector[T]. To create an instance of PVector in a Scala 

program, one must supply a specific type (or arbitrary class 

name) for the generic type [T].  

The PVector class in our data parallel Scala library 

provides several constructors for creating and populating 

new PVector objects. The PVector class also has a variety of 

methods that can be invoked by the user program to 

transform and/or combine PVector objects. The calls to the 

PVector constructors and methods are imbedded in the user 

program. The implementation of the constructors and 

methods is done completely within the library using  

parallelism. Thus, the parallelism is essentially hidden from 

the user program. The user does not have to deal with the 

complexities and problems associated with parallel program-

ming, as briefly described in the Introductory section of this 

paper.  

The fusion of the PVector operations is also contained 

within the library implementation, and is therefore hidden 

from the user program. Thus, the user may view the PVector 

as just another type of collection with a set of available 

operations implemented in the library. Using the 

terminology of section III, the PVectors are the DP-

Collections, and PVector methods are the DP-Operations. 

Our data parallel Scala library currently implements a 

total of fifteen primitive operations on PVectors. For 

purposes of understanding, these can be divided into five 

major categories:  Map, Reduce, Permute, Initialize, 

Input/Output. Following is a brief description of the 

operations contained in each of these categories. This 

discussion uses some Scala code segments. Readers 

unfamiliar with Scala may refer to [14] or any of the online 

Scala tutorials that are easily found on the internet. 

However, the Scala syntax is so similar to Java that it should 

be understandable by any reader who has some familiarity 

with Java or C#. 

A. Map Operations 

The map operation is a very powerful data parallel 

operation that applies a user-defined function to each 

element of a PVector. The abstract execution model for this 

application is a virtual processor operating in parallel at each 

element of the PVector. In practice, this may be 

implemented in the library using a combination of parallel 

and sequential execution. Consider a PVector[Boolean] 

called Mask. The map method can be invoked as follows to 

// OpInfoTab:  properties of DP-Operations 

// barrierTime:  time of most recent barrier 

 

enterOp(opCode, opTimeStamp, inData) { 

 /* opCode: identifies the DP-Operation 

    opTimeStamp: sequence no. of DP-

Operation 

    inData: reference to the input  

      DP-Collection with an input crossing  

      (if any, for this DP-Operation)  

 */ 

 if ((OpInfoTab[opCode].InputCross  

     && inData.timeStamp > barrierTime) 

   ||  

    (!OpInfoTab[opCode].OutputNew  

     && opTimeStamp > barrierTime+1 

     && inData.InCrossTime > barrierTime)) { 

  Execute a barrier 

  barrierTime = opTimeStamp - 1 

    } 

 if (OpInfoTab[opCode].InputCross) 

   inData.InCrossTime = opTimeStamp 

} 

  ---------------------------------- 

exitOp(opCode, opTimeStamp, outData) { 

/* opCode: identifies the DP-Operation 

   opTimeStamp: sequence no. of DP-Operation 

   outData: reference to output DP-

Collection 

*/ 

 if (OpInfoTab[opCode].OutDP){ 

   if (OpInfoTab[opCode].OutputCross  

      && !OpInfoTab[opCode].HasBarrier) { 

  Execute a barrier 

  barrierTime = opTimeStamp 

   } 

 } 

 else // output is not a DP-Collection 

  if(!OpInfoTab[opCode].HasStrongBarrier) { 

  Execute a strong barrier 

  barrierTime = opTimeStamp 

  } 

 if (OpInfoTab[opCode].InUserData) { 

  Execute a strong barrier 

  barrierTime = opTimeStamp 

 } 

 else if (OpInfoTab[opCode].HasBarrier)  

     barrierTime = opTimeStamp 

 if (OutData != null)  

   OutData.timeStamp = opTimeStamp 

} 

  --------------------------------- 

userProg(opCode){ 

// opCode: identifies the DP-Operation 

  if ((OpInfoTab[opCode].InUserData  

       || !OpInfoTab[opCode].OutDP) 

    && !OpInfoTab[opCode].HasStrongBarrier) 

 Execute a strong barrier 

} 

Figure 2.   Operator Fusion Algorithm. 
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create a new PVector whose elements are the logical 

negation of Mask: 

B = Mask.map( !_ ) 

The notation ―!_‖ represents an anonymous function with 

one parameter whose output is the logical negation of the 

input. As a complement to the map operation, our data 

parallel library also contains an operation called combine 

that has two input PVectors of the same generic type T and 

creates a single output PVector of generic type U. The 

combine method can be invoked to create a new PVector 

from the sum of the corresponding elements of PVectors A 

and B: 

C = A.combine[Int]( _+_ , B ) 

The notation ―_+_‖ represents an anonymous function 

with two parameters, whose output is the sum of the inputs. 

As with the map operation, the abstract execution model for 

this application is a virtual processor operating in parallel at 

each element of the PVector. 

B. Reduce Operations 

The Map operations work element-by-element on the 

inputs, and produce an output PVector with the same 

dimension. Whereas, the Reduce operations combine the 

elements of the input PVector. To allow the Reduce 

operations to be as general as possible, they also allow a 

user-defined function. Three basic operations are reduce, 

scan, and keyed-reduce. The following reduce operation 

sums the elements of the PVector A: 

A = new PVector[Int](aListofIntegers) 

result = A.reduce(_+_) 

The scan operation is similar to reduce, except the 

reduction is performed on each prefix of the PVector. This is 

sometimes called a parallel prefix operation. The result of a 

scan is a PVector with the same base type and number of 

elements as the original. Element i of the output of the scan 

is defined as the reduction of the elements 0 to i of the input 

PVector.  

A more general type of Reduce operation is the keyed-

reduce, which in addition to the input data PVector also has 

two additional PVector parameters:  the Index and the 

Target. The Target vector is the starting point for the output 

of the keyed-reduce, and must have the same element type as 

the Data vector, but possibly a different number of elements. 

The Index vector is a PVector[Int] with the same length 

as the Data vector. The Index vector specifies the 

destination location in the Target vector for each element of 

the Data vector. If the Index maps several data values to the 

same location in the Target, they are combined using the 

user-defined reduction operation. 

C. Permute Operations 

The Permute operations allow the elements of a PVector 

to be selected and/or reordered. They are all methods of the 

PVector class. Using the conceptual execution model with a 

virtual processor for each element of the PVector, we may 

intuitively think of the Permute operations as collective 

communication operations among the virtual processors. The 

simplest of these operations is called permute, and simply 

reorders the elements of an input PVector[T], as illustrated 

in the following simple example: 

Data Input:      [ 30   5   -2    10 ] 

Index:              [  3    0     1     2 ]    (index in Data vector) 

Output:            [ 10  30   5    -2 ] 

The select operation creates an output PVector by 

selecting a subset of the elements of the input Data PVector. 

The selection process is done using a boolean Mask with the 

same number of elements as the Data PVector. Elements in 

the Data PVector with a true value in Mask are copied to the 

output. Thus, the number of elements in the output will be 

less than or equal to the number in the original. The select 

operation simply creates a subset of the elements from the 

original Data vector in the same order as they appear in the 

Data vector. 

D. Initialize Operations 

The Initialize operations allow new PVectors to be 

created with initial data. One of the PVector constructors 

called a Broadcast operation can be considered as a member 

of this class of operations. The following creates an integer 

PVector with initial value 0 for all the n elements: 

Zero = new PVector[Int](n,0) 

The other Initialize operations are methods in the PVector 

class. The Index operation creates a PVector of length n with 

element values 0, 1, 2, …, n-1. The append operation creates 

a new PVector from the concatenation of two existing 

PVectors. The assign operation copies a source PVector into 

the destination PVector, which is the one that calls the 

assign method. The assign operation is quite different from 

the ordinary assignment denoted by ‗=‘. Consider the 

following two instructions using PVectors A and B, which 

both have the same base type: 

B = A 

B.assign(A) 

In Scala, as in Java, a variable like A or B contains a 

reference to an object – in this case a reference to a PVector 

object.  The first instruction (ordinary assignment) makes a 

copy of the object reference in variable A and writes it into 

variable B, so that A and B then refer to the same PVector 

object. Whereas, the second instruction (assign) copies the 

individual elements from the PVector A into the 

corresponding elements of PVector B. For the assign 

operation to succeed, PVectors A and B must conform:  the 

same number of elements and the same base type. 

E. Conditional Execution Using Masks 

In many parallel algorithms, it is sufficient to have every 

virtual processor apply the same computation in parallel to 

its assigned element of the PVector. However, in more 

complex algorithms it is sometimes desirable to have the 

virtual processors apply different operations. This can be 

implemented by using a boolean PVector called a Mask. A 

true value in the Mask selects one operation, and a false 

value selects a different operation. This is analogous to an if 

statement in an ordinary program. This feature is 

implemented in our data parallel Scala library using an 

object called Where, as illustrated in the following example 

which sets each bi to 1/ai: 
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A = new PVector[Int](aList) 

Zero = new PVector[Int](n,0) 

Where.begin(A != 0)       //  where A != 0 

  B = A.map(1/_)          //    B = 1/A 

Where.elsewhere           //  elsewhere 

  B.assign(Zero)          //    B = 0 

Where.end( ) 

In the above, a boolean mask is created by comparing 

each element of a PVector A to zero (A!=0). A true value in 

the mask indicates the corresponding element of A is not 

zero. The mask is used to specify two different PVector 

operations to set the elements of PVector B. For those 

positions ai of PVector A that are not equal to zero, the value 

of the corresponding element bi of B is set to 1/ai. For the 

positions where ai equals zero, bi is set to zero. The 

A.map(1/_) operation is executed in the normal way, but 

only by those virtual processors where the mask has true 

value. Virtual processors where the mask has a false value 

will execute the B.assign(Zero) statement. 

The individual statements executed for true and false in 

the above example may be replaced by a whole group of 

statements. Thus, this Where Mask feature creates a data 

parallel version of a general purpose if statement in ordinary 

code. The Where Masks may also be nested in an analogous 

way to the nesting of ordinary if statements. 

V. SAMPLE PARALLEL PROGRAM: JACOBI RELAXATION 

After describing the PVector class and its associated 

methods (operations), we can now present a sample data 

parallel Scala program for solving Laplace‘s Equation using 

the Jacobi Relaxation algorithm. Consider a two-

dimensional (square) conducting metal sheet with the 

voltage held constant along the four boundaries. The 

resultant voltage v(x,y) at all the internal points is described 

by Laplace‘s Equation in two dimensions: 

0
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This equation can be solved numerically using a two-

dimensional array of discrete points across the surface of the 

metal sheet. Initially, the points along the boundaries are 

assigned the appropriate constant voltage. The internal 

points are all set to 0 intially. Then Jacobi Relaxation is used 

to iteratively recompute the voltage at each internal point as 

the average of the four immediate neighboring points 

(above, below, left, right). Convergence is tested by 

comparing a desired tolerance value to the maximum change 

in voltage across the entire grid. 

The basic data structure is a two-dimensional (n by n) 

array of Double values, representing the voltage at each 

point on the metal sheet. For data parallel execution, a 

PVector A is created, each of whose elements is a single row 

from the two-dimensional array. Thus, PVector A has n 

elements, each one of which is a one-dimensional array: 

Array[Double](n). This data parallel PVector provides a 

virtual processor for each row of the original two-

dimensional array. To recompute the value at each point, the 

four immediate neighboring points are needed. The left and 

right neighboring points are easy to find because they are in 

the same row, and therefore the same element of the PVector 

A. However, the neighboring points in the rows above and 

below are in neighboring elements of the PVector A. Access 

to these is implemented by shifting A left or right using the 

permute operation described in section IV.C. The data 

parallel Jacobi Relaxation algorithm in Scala is shown in 

Fig. 3. 

The main body of the algorithm is the do-while loop in the 

JacobiRelaxation function body. Prior to the loop are the 

initializations which create the boolean Where Mask and the 

lShift and rShift PVectors to assist in the left-shift and right-

shift permutations, respectively. During the looping, PVec-

tor A contains the initial value of the voltage at each point, 

and the new recomputed values are stored in PVector B. At 

the end of each iteration, the assign operation copies the 

values from B back to A, in preparation for the next iteration. 

In the first operation of the loop, the user-defined operation 

LeftandRight( ) is used to add the left and right neighboring 

values to each point. The map operation causes each virtual 

processor to apply the function LeftandRight( ) to the 

corresponding element of PVector A. The result is stored 

temporarily in vector B.  

In the following instruction, the permute operation shifts 

A right and then uses combine to add the corresponding 

element of B in each virtual processor. This requires an 

additional user-defined operation arraySum( ), which is then 

def JacobiRelaxation(n: Int) = { 

  val tolerance: Double = 0.0001 

  PV.setNumThreads(4) 

  ... // Initialize data array A (not shown) 

  var Done = new PVector[Boolean](n+2) 

  val In = Init.Index(n+2) 

  val lShift = In + 1 

  val rShift = In - 1 

  val Mask = new PVector[Boolean](n+2,true) 

  Mask.set(0,false) 

  Mask.set(n+1, false) 

  Where.begin(Mask) 

  do {  

   B = A.map(leftAndRight) 

   B = A.permute(rShift).combine(arraySum,B) 

   B = A.permute(lShift).combine(arraySum,B) 

   B = B.map(divideByFour) 

   Done = A.combine(getChange,B) 

   done = Done.reduce(_&&_) 

   A.assign(B) 

 } while(!done) 

 Where.end 

 PV.endThreads() 

} 

       

def leftAndRight(a: Array[Double]) =  

    { ... // details not shown } 

       

def arraySum(a: Array[Double],  

       b: Array[Double]) =  

    { ... // details not shown } 

     

def divideByFour(a: Array[Double]) =  

    { ... // details not shown } 

 

def getChange(a: Array[Double],  

      b: Array[Double]) = { 

    { ... // details not shown } 

Figure 3.   Jacobi Relaxation. 
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used again to add the left-shift of A to B. Finally, the 

resultant sum of the neighbors is divided by four using the 

user-defined function divideByFour( ). This completes the 

calculation of the new value at each point as the average of 

the four immediate neighboring points. The user-defined 

operation getChange( ) determines if the change at each 

point is less than the desired tolerance.  The result is a 

boolean PVector Done that is aggregated into a single 

boolean value done by the reduce operation. 

Notice the use of the Where.begin(Mask) operation at 

the start of the do-while loop. This plays a key role in the 

correctness of the algorithm. Since the voltage at the 

boundary edges of the two-dimensional grid are held 

constant, the relaxation must only be applied to the internal 

points and not the boundaries. Element 0 of PVector A is the 

top row of the grid, and element n+1 is the bottom row. Both 

of these rows must be held constant as the internal points are 

modified by the relaxation. This is accomplished by setting 

Mask(0) and Mask(n+1) to false, so that all the PVector 

operations inside the do-while will not be applied to A(0) 

and A(n+1). 

VI. LIBRARY IMPLEMENTATION 

The basic structure of our implementation of PVectors in 

the library is illustrated in Fig. 4. The User Program is 

embedded in the Master Thread, along with the PVector 

class. Each collection-oriented library operation in the User 

Program will invoke a method in the class PVector. 

However, the actual computation to implement the operation 

is performed by the Worker Threads in parallel. Each 

Worker Thread has an Instruction Queue containing the 

sequence of operations it is to perform. The PVector class 

puts the instructions for the Workers into the Instruction 

Queues. Each Worker will have the same sequence of 

instructions in its Queue. We do not permit any out-of-order 

execution by the Workers. 

The output data PVector is simply divided among the 

Worker Threads by using contiguous blocks as illustrated in 

Fig. 4. If the PVector has length 300, then the first block of 

100 is assigned to Worker Thread 0, the next block of 100 to 

Worker Thread 1, and the last block of 100 to Worker 

Thread 2. Input PVectors are also partitioned into blocks in 

the same way. The total number of Worker Threads is 

determined by the user with the library function call 

PV.setNumThreads( ). Using this block allocation technique, 

it is completely predictable in advance which Worker 

Thread will be operating on each element of the PVector, 

based only on the length of the PVector and the total number 

of Workers. 

The operator fusion is facilitated by the PVector class in 
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Figure 4.    Parallel Implementation of PVector Operations. 
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the following way:  as soon as the PVector class receives a 

method invocation from the User Program, it allocates an 

empty PVector (with no data) to serve as the container for 

the output data from the Worker Threads, and returns an 

object reference to this PVector to the User Program. The 

User Program then continues executing even though the 

actual data to fill the output PVector has not yet been created 

by the Worker Threads. This implementation technique does 

not cause any errors because the User Program cannot 

directly access the data inside a PVector — it can only 

access the data indirectly by calling methods in the PVector 

class.  

Since the collection-oriented parallel operations are fairly 

primitive in nature, the User Program will usually generate a 

long sequence of PVector operations. All of the real 

computational activity is done in the Worker Threads, which 

usually fall behind the User Program. Thus, the requested 

PVector operations will build up in the Instruction Queues. 

Operator fusion allows the Worker Threads to continue 

executing independently without having to synchronize with 

each other after each PVector operation. 

However, depending on the nature and implementation of 

the specific sequence of requested PVector operations, it is 

sometimes necessary for some Thread synchronization. 

Sometimes the Worker Threads must execute a barrier 

synchronization, and sometimes the Master Thread must 

participate in this synchronization. Since our library 

implementation clearly has the isolation and partitioning 

properties described in section III,  we can use the operator 

fusion algorithm of section IIIC to determine when a barrier 

(or strong barrier) is needed. The input data for this 

algorithm is the OpInfoTab shown in Table I with the basic 

properties of each of the fifteen operations in our collection-

oriented library. Only the properties InputCross, 

OutputCross, and HasBarrier are shown because these are 

the most interesting and are implementation dependent. The 

other four properties follow obviously from the definition of 

each operation. The abundance of False values in this table 

shows that our implementation has ample opportunity for 

operator fusion. 

To illustrate the principle of operator fusion, consider the 

following series of data parallel operations starting with data 

PVectors A, B, C: 

T1 = A.map( _*2.0 )         // T1 = 2*A 

T2 = T1.combine( _+_ , B )  // T2 = T1 + B 

D = T2.combine( _/_ , C )   // D = T2/C 

Assume three Worker Threads perform these operations 

by dividing the PVectors into blocks as described above. 

The Worker Threads could perform a synchronization 

barrier after each operation. However, this is not necessary 

because the intermediate results computed by the Workers 

do not cross the block boundaries. Worker 0 reads and 

writes only elements in block 0 of PVectors A, B, C, D, T1, 

T2. Similarly, Worker 1 reads and writes only elements in 

block 1 of all the PVectors. Worker 2 uses only elements in 

block 2. Therefore, there is no possibility of interference 

between the Workers:  they read and write separate elements 

of the PVectors. Thus, the (map, combine, combine) 

sequence of data parallel operations could be fused within 

each Worker Thread without any intervening barriers. This 

operator fusion of data parallel operations greatly improves 

the performance. 

TABLE I.  PROPERTIES OF DATA PARALLEL OPERATIONS 

Operation 
Properties (True or False) 

Input Crossing Output Crossing Has Barrier 

map F F F 

combine F F F 

reduce F F True 

scan True F True 

keyed-reduce F True F 

permute True F F 

select F True F 

broadcast F F F 

index F F F 

append F True F 

assign F F F 

list-input F F F 

read F F F 

get F F F 

set F F F 

 

As briefly explained in previous sections, the ability to do 

operator fusion of the data parallel PVector operations 

originates from the fact that all the Worker Threads are 

assigned to disjoint blocks of the PVectors. As long as the 

reading and writing of data values by each Worker remains 

within its own block, there is no possibility of any timing-

dependent errors, and the Workers can just proceed 

independently at their own relative speeds. However, among 

the fifteen operations in our data parallel library, there are 

some operations that do require the Workers to cross block 

boundaries and either read or write an element in a block 

assigned to another Worker. This is indicated by a True 

value in the Input Crossing or Output Crossing columns of 

Table I. However, the vast majority of operations do not 

have crossings, resulting in ample opportunity for operator 

fusion. 

VII. PERFORMANCE BENCHMARKS 

To measure the performance improvement resulting from 

operator fusion, we created a version of our collection-

oriented parallel library with no operator fusion: all of the 

Worker Threads execute a barrier synchronization after each 

operation, and the User Program waits for completion of the 

operation before executing the next instruction. In previous 

sections, we have called this a strong barrier. For three 

benchmark parallel programs, we determined the execution 

time using the two different versions of our library (one 

without operator fusion and one with operator fusion). The 

computer used for performance testing is a Dell Studio XPS 

7100 Minitower with 8 GB of memory and a 6-core 

processor (AMD Phenom II X6 1035T). 
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For the Jacobi Relaxation program described in section V, 

Fig. 5 shows the performance improvement resulting from 

operator fusion for a range of data sizes and varying 

numbers of cores. The vertical axis shows the percentage 

reduction in the overall program execution time when the 

operator fusion optimization is turned on.  The horizontal 

axis shows the number of elements (n) in the PVector. 

Recall that each element of the PVector is an array with n 

elelments, so the total data size is proportional to n
2
. We see 

that operator fusion provides quite a significant performance 

improvement especially for smaller data sizes. Also as 

expected, the performance improvement is greater for larger 

numbers of cores, because the barrier execution time 

increases with the number of cores. 

Now let us do a more general analysis of the expected 

performance improvement from operator fusion. The 

execution of each collection-oriented parallel operation in 

our library has three basic phases: Setup, Operation 

Execution, and Barrier. Fig. 4 shows the Setup Phase 

consisting of the original library function call in the User 

Program and the initial processing of this call in the PVector 

class. The Operation Execution Phase is the parallel 

execution of the PVector operation by the Worker Threads. 

Finally, the Barrier Phase synchronizes the Worker 

Threads. Operator fusion removes the need for this Barrier 

Phase. If n is the PVector size, and p is the number of 

Worker Threads (number of cores), then the expected 

execution time is as follows: 

Setup: O(p);   Operation Execution: O(n/p);    Barrier: O(p); 

If the p is very large, then the Setup and Barrier can be 

reduced to O(log p). This analysis shows that decreasing the 

data size n will increase the relative impact of operator 

fusion on improving performance. This is clearly seen in the 

graphs of Fig. 5.  Similarly, increasing the number of cores p 

will also increase the performance gain from operator fusion 

(also seen in Fig. 5). Even for a six-core processor we see a 

significant performance improvement from operator fusion 

of up to 60%. This general analysis indicates even more 

significant improvement is expected as the number of cores 

is increased. Therefore, as multi-core processor technology 

continues to evolve, operator fusion will become 

increasingly important as  powerful technique for improving 

the performance of data parallel operations. 

To further investigate the impact of operator fusion, we 

considered an additional benchmark program to Merge Two 

Sorted Lists X and Y into a single sorted list Z. A simple 

algorithm that is easily parallelized is as follows:  for each xi 

in list X, do a binary search of list Y to determine the 

position j where xi should be inserted in list Y to preserve the 

ordering. Then the final position of xi in the output list Z 

should be Z[i+j]. To create a parallel version of this 

algorithm using our collection-oriented library, X, Y, and Z 

are represented as PVectors. The binary search of Y by all 

the elements in X is done in parallel using the PVector 

library operations. Similarly, to find the proper location for 

the elements of Y, each yi is used to do a binary search of list 

X (all yi in parallel).  

We executed this Merging Sorted Lists program for a 

range of data sizes using the two versions of our library, with 

and without operator fusion. The results for six cores are 

shown in Fig. 6. The vertical axis shows the percentage 

reduction in the overall program execution time when the 

operator fusion optimization is turned on.  The horizontal 

axis shows the number of elements in list X (and Y). There is 

a significant performance improvement of up to 25%. 

However, this is much less than the 60% improvement for 

the six-core Jacobi Relaxation program. The performance 

improvement in a particular program just depends on how 

many data parallel library operations can be fused in that 

program. 

To determine the maximum possible improvement from 

operator fusion, we considered one additional ―best case‖ 

program:  a simple iterative loop with a series of thirty 

PVector map and combine operations doing basic arithmetic 

on scalar floating point numbers. We call this the Map 

Benchmark program. As seen in Table I, the map and 

combine operations always can be fused. So the program 

requires no barriers. The performance improvement 

resulting from operator fusion is shown in Fig. 7. The 

horizontal axis is the PVector size. The graph shows a 

reduction in overall execution time of up to 82% by using 

the operator fusion optimization only. 
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