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Abstract— Multi-Mesh of Trees (MMT) is an efficient 
interconnection network for massively parallel 
processing system. This network is a hybrid product of 
multi-mesh and mesh of trees. Many interesting 
topological properties and various algorithms have been 
developed on this architecture. In this paper, we propose 
an algorithm for shortest path routing on an n4-
processor multi-mesh of trees network. The proposed 
algorithm requires 12 log n + 1 time in the worst case to 
deliver a message from a source node to a destination 
node.  
 
Index Terms—Interconnection network, mesh of trees, 
multi-mesh of trees, shortest path routing, time 
complexity  

 

I. INTRODUCTION 

ULTI-MESH OF TREES (MMT) [1] is an efficient 
network that takes the benefits of the topological 
structures of two interconnection networks, the mesh 

of trees (MOT) [2] and the multi-mesh (MM) network [3]. 
The diameter of an n4-processor MMT is shown to be 4 log 
n + 2 [1]. As a result many diameter based algorithms such 
as Lagrange’s interpolation, polynomial root finding, 
matrix-vector multiplication, DFT computation and sorting 
have been shown to map in O(log n) time [1] in comparison 
with O(n) time on multi-mesh network [3]. Recently parallel 
prefix [4] and multi-sort [5] have been reported on the same 
architecture with 3.75 log N + 6 and O(n2) time respectively. 
 
 Shortest path routing is a kind of routing which 
attempts to send data packets over an interconnection 
network in such a way that the path taken from the sending 
node to the recipient one is minimized. It is one of the most 
fundamental and most commonly encountered problems in 
the study of communication networks. A great deal of 
research [17] has been devoted to this subject. Efe [6], Xin 
Yu [7] presented an algorithm for shortest path routing on 
crossed cube network in O(n2) time. Dobravec [8] reported 
an optimal dynamic two terminal message routing algorithm 
for k-circulant (k ≥ 2) networks for the restricted shortest 
path in O(log n) time. Shortest path routing on a binary de 
Bruijn network with 2n processors was reported by J. W. 
Mao et al. [9] in O(n2) time.  Ming-Yang Su et. al.[10] 
presented a shortest-path routing on a WK-recursive 

network having network size td . Their algorithm was 
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shown to require O(t) time for each intermediate node to 
determine the next node along the shortest path with O(d − 
t) pre-processing time. Sau and Zerovnik [11] presented an 
optimal permutation routing algorithm on full-duplex 
hexagonal mesh networks.  Ke Qiu [12] presented a routing 
algorithm that finds n disjoint shortest paths from the source 
node to n target nodes in the n-dimensional hypercube in 
O(n3 log n) time. Pradhan [13] reported a shortest path 
routing on a binary tree in O (log n) time. Nguyen [14] 
developed a routing algorithm for hyper-de Bruijn 
networks. Recently, we have reported shortest path routings 
on n2-processor MOT and n4-processor OTIS-MOT [15] in 8 
log n and 8 log n + 1 time respectively. 
 In this paper, we present an algorithm for shortest path 
routing on n4-processor MMT. Our proposed algorithm is 
shown to require 12 log n + 2 time in the worst situation. 

The rest of the paper is organized as follows. Section 
2, describes the topological structure of the multi-mesh of 
trees network. In section 3 we present our proposed 
algorithm for the shortest path routing followed by the 
conclusion in section 4. 

II. TOPOLOGY OF MULTI-MESH OF TREES  

An n × n MMT network is built around n2 blocks arranged 
in a two-dimensional lattice with n rows and n columns. 
Each block is basically an n × n MOT with n2 processors. 
Therefore the total number of processors in the MMT is n4. 
There are two types of links in MMT:  intra-block links (i.e., 
among the processors inside a block) and the inter-block 
links (i.e., among the processors of two different blocks). As 
an example, 3 × 3 MMT is shown in Fig. 1 in which all the 
inter-block links are not shown.  

 
Let B(,) denote the block placed in the th row and th 
column, then we address the processor placed in the xth row 
and yth column within the block B(, ) as P(, , x, y). 
Then the intra-block links can be defined as follows: 

1)  Horizontal intra-block links: The processors in each 
row are connected to form a binary tree rooted at P(α, 
β, x, 1), i.e., the processor P(α, β, x, y) is directly 
connected to the processors P(α, β, x, 2y) and P(α, β, 
x, 2y+1)  if they exist for        1≤ α, β, x, y ≤ n. 

2)  Vertical intra-block links: The processors in each 
column are connected to from a binary tree rooted at 
P(α, β, 1, y), i.e., the processor P(α, β, x, y) is directly 
connected to the processors P(α, β, 2x, y) and P(α, β, 
2x+1, y) if they exist for        1≤ α, β, x, y ≤ n. 

The inter-block links are also of two types defined as 
follows: 
  3)  Horizontal inter-block links: The processor P(α, β, x, 

1)  is directly connected to the processor P(α, x, β, n), 
1 ≤ α, β, x ≤ n. As a special case when  = x, this link 
connects two processors within the same block.  

   4) Vertical inter-block links: The processor P(α, β, 1, y) 
is directly connected to the processor P(y, β, n, α), 1 ≤ 

Shortest Path Routing on Multi-Mesh of Trees 

Sudhanshu Kumar Jha, Prasanta K. Jana, Senior Member, IEEE 

M

Proceedings of the World Congress on Engineering 2011 Vol II 
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011



 

α, β, y ≤ n. When α = y, this link connects two 
processors within the same block. 

In Fig. 1, the intra-block and the inter-block links are shown 
by solid and dashed lines respectively. The address of each 
block is shown by a pair of indices in boldfaces above the 
block and the processor indices are shown adjacent to each 
processor. This is shown only for the first block. We assume 
that all the links are bi-directional, i.e., full duplex, so that 
the data movements can be accomplished in both the 
directions. The network is shown to have diameter 4 log n + 
2 and bisection width 2n (n  1) [1]. 

III.    PROPOSED ALGORITHM 

For the completeness of the paper, we first describe the 
shortest path routing algorithm on a MOT as we reported in 
[15]. We next present our proposed routing algorithm on the 
MMT network. 

A. Shortest path routing on MOT (SPR_MOT) 

For the purpose of shortest path routing on MOT, we 
address each node of the MOT by two-index binary labels 
as shown in Fig. 2 for a 7×7 mesh of trees. In this binary 
labelling, the root of a row-tree or column-tree is labelled 
with 1; if any internal node is labelled with u then its left 
child and right child are labelled with 2u and 2u+1 
respectively. Let (x, y) and (u, v) denote the source and 
destination nodes respectively in a MOT and (xb, yb) and (ub, 
vb) be their corresponding binary representations. For the 
shortest path routing, we obtain the edges of the path 
between these nodes as follows. We first traverse the row-
tree following the shortest path routing on a binary tree [13], 
[16] over column-index and stops when yb = vb. We then 
follow the shortest path routing on the column tree until xb = 
ub. This requires 4 log n time. Fig. 2 illustrates the shortest 
path routing in the worst as well as the best cases between 
the  source  node S1 (10, 100)  and  the  destination node D1  
 
 
 (111, 110) and between S2 (11, 11) and D2 (110, 11) 
respectively. Note that in the worst case, the shortest path 
routing on the row-tree ends at the node W (10, 110) as its 
column index matches with that of the destination node D1. 
 We refer the above shortest path routing on MOT 
between the source node S and the destination node D as 
SPR_MOT(S, D) for its use in the rest of the paper. This is 
to note that SPR_MOT requires 4 log n time as reported in 
[15]. 

B.  Shortest path routing on MMT 

We assume here that P(αs, βs, xs, ys) and P(αd, βd, xd, yd) are 
the source and destination nodes respectively. We can 
observe from Fig. 1 that there exists more than one inter-
block link between any two blocks in the same row or 
column. Also there is more than one path between any two 
nodes within each block in the MMT network.  Therefore, 
we have to find out the shortest path among the number of 
available paths. We perform the shortest path routing (SPR) 
on MMT following the two major cases as described below.  
 
Case A: When both the source and destination nodes lie in 
the same block of the MMT, i.e, αs = αd and βs = βd. 
As the block is basically a mesh of trees (MOT), we simply 
perform, the shortest path routing on mesh of trees as 

discussed in [15]. However, we take care here the two 
special cases namely βs = xd and αs = yd, i.e., when the inter-
block link connects the two processors within the same 
block. We use a function called SPR_Block_Level_MMT (S, 
D)  to  incorporate  these  two   special  cases  as follows  in  
which S and D denote the source and destination nodes 
respectively. 
 
Algorithm SPR_Block_Level_MMT ((s, s, xs, ys), (s, s, 
xd, yd)) 
 
/* P(s, s, xs, ys) is the source and P(s, s, xd, yd) is the 

destination */ 
{ 
 If (βs = xd) 
 { 
         Route the message from (s, s, xs, ys) to (s, s, xd, yd) 

using horizontal inter-block links. 
 } 
 Else if (αs = yd) 
 { 
         Route the message from (s, s, xs, ys) to (s, s, xd, yd) 

using vertical inter-block links. 
 } 
 Else 
 { 
      Call SPR_MOT ((s, s, xs, ys), (s, s, xd, yd)) 
 } 

} // end of the algorithm 
 
This is obvious to note that the SPR_Block_Level_MMT 
algorithm requires 4 log n time since SPR_MOT requires the 
same time.  
Case B: When source and destination nodes lie in two 
different blocks of the MMT.  
 
This has the following two sub-cases.  
 i) Both the source and the destination nodes may exist in 
the same row (or column) block of the MMT, i.e. here αs = 
αd and βs ≠ βd (or αs ≠ αd and βs = βd). In this case, the source 
and the destination blocks are directly connected by two 
horizontal (or vertical) inter-block links. Therefore, starting 
from the source node, we first visit the nearest exit node in 
the source block and reach to the destination block via the 
inter-block link and finally visit the destination node by 
applying shortest path routing SPR_MOT discussed 
previously.  
ii) They may not exist in the same row (or column) block of 
the MMT, i.e., αs ≠ αd and βs ≠ βs. In this case, there is no 
direct inter-block link from the source block to the 
destination block. Therefore, we require to traverse via one 
intermediate block to reach the destination block.  

Note that for the above case, we can exit from the source 
block via either the root node P(*, *, *, 1) or leaf node P(*, 
*, *, n ) with respect to the destination block  where ‘*’ 
denotes any possible value of the index. We refer such 
nodes as the exit nodes. From the source node, we first 
reach to the nearest exit node (in the source block) with 
respect to the destination block.  We use a function dist (S, 
*) to obtain the nearest exit node from the source node. The 
dist(S, Y) function actually calculates the shortest distance 
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between the source node S and a possible exit node Y within 
a same block. 

The rough sketch of the shortest path routing on the MMT 
considering all the above case is shown in Fig. 3 in which Si 
and Di denotes the source and the destination nodes. 
    We now formally present the shortest path routing 
algorithm on MMT as follows covering both the cases A and 
B. 
 
Algorithm SPR_MMT ((s, s, xs, ys), (d, d, xd, yd) 
 
/* P(s, s, xs, ys) is the source and P(d, d, xd, yd) is the 

destination */ 
{ 
  Case 1: (s = d) AND (s = d)          
 
  /* Both source and destination lie in the same block*/ 
 Call SPR_Block_Level_MMT ((s, s, xs, ys), (d, d, xd, yd))    
 
 Case 2: (s = d) AND (s  ≠d)          
 
 /* Both source and destination are in different blocks but 

their blocks lie in the same row of MMT */ 
      If( dist((s, s, xs, ys), (s, s, d, 1)) ≤ dist((s, s, xs, ys), 

(s, s, d, n))    
       { 

2.1 Call SPR_MOT ((s, s, xs, ys), (s, s, d, 1))  
2.2 Route the message from (s, s, d, 1) to        

(s, d, s, n) using horizontal inter-block link. 
2.3 Call SPR_Block_Level_MMT ((s, d, s, n), 

(d, d, xd, yd)) 
} 

Else 
       { 

2.1 Call SPR_MOT ((s, s, xs, ys), (s, s, d, n))  
2.2 Route the message from (s, s, d, n) to        

(s, d, s, 1) using horizontal inter-block link. 
2.3 Call SPR_Block_Level_MMT ((s, d, s, 1), 

(d, d, xd, yd)) 
} 

 
Case 3: (s ≠ d) AND (s = d)       
    
/* Both source and destination are in a different blocks but 
their blocks lie in the same column of MMT */ 
If(dist((s, s, xs, ys), (s, s, 1, d)) ≤ dist((s, s, xs, ys),  
(s, s, n, d))    
  { 

3.1 Call SPR_MOT((s, s, xs, ys), (s, s, 1, d))  
3.2 Route the message from (s, s, 1, d) to (d, s, n, 

s) using vertical inter-block link. 
3.3 Call SPR_Block_Level_MMT ((d, s, n, s), (d, d, 

xd, yd))  
} 

Else 
{ 

3.1 Call SPR_MOT((s, s, xs, ys), (s, s, n, d))  
3.2 Route the message from (s, s, n, d) to (d, s, 1, 

s) using vertical inter-block link. 

3.3 Call SPR_Block_Level_MMT ((d, s, 1, s), (d, d, 
xd, yd))  

} 
 

Case 4: (s ≠ d) AND (s ≠ d)          
 
/* Source and destination are in different blocks and their 
blocks are not also in same row or same column of MMT. 
Therefore, in this case we have to route the message in a 
particular block from where, either case 2 or case 3 satisfy 
*/ 
If(dist((s, s, xs, ys), (s, s, 1, d)) ≤ dist((s, s, xs, ys), (s, 
s, n, d))    
   
{ 

4.1  Call SPR_MOT ((s, s, xs, ys), (s, s, 1, d))  
4.2   Route the message from (s, s, 1, d) to (d, s, n, 

s) using vertical inter-block link. 
4.3 Call SPR_MOT (((d, s, n, s), (d, s, d, n))  
4.4 Route the message from (d, s, d, n) to (d, d, s, 

1) using horizontal inter-block link. 
4.5 Call SPR_Block_Level_MMT ((d, d, s, 1), (d, d, 

xd, yd))  
} 

Else 
  { 

4.1  Call SPR_MOT ((s, s, xs, ys), (s, s, n, d))  
4.2  Route the message from (s, s, n, d) to (d, s, 1, 

s) using vertical inter-block link. 
4.3  Call SPR_MOT ((d, s, 1, s), (d, s, d, n)) 
4.4  Route the message from (d, s, d, n) to (d, d, s,  

1) using horizontal inter-block link. 
4.5 Call SPR_Block_Level_MMT ((d, d, s, 1), (d, d, 

xd, yd))  
} 

} /* End of algorithm */ 
 
Time Complexity: Case 1 requires 4 log n time. Case 2 and 
case 3 each requires 8 log n + 1 time as in both the cases, 
there is a single call of SPR-MOT, a single call of 
SPR_Block_Level_MMT and a single inter-block 
communication including else part. Case 4 requires a 
maximum of 12 log n + 2 time due to two calls of 
SPR_MOT, one call of SPR_Block_Level_MMT and two 
inter-block communications including else part. Therefore, 
the shortest path routing on MMT requires 12 log n + 2 time 
in the worst situation. 
The correctness of the above algorithm can be readily seen 
from the above illustrations and the description of the 
algorithm. 
 

IV. CONCLUSION 

We have presented a shortest path routing algorithm on the 
multi-mesh of trees network having n4-processor. The 
proposed algorithm is based on shortest path routing on the 
binary tree. We have shown that the algorithm runs in 12 
log n + 2 time in the worst situation. 
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Fig. 1 Graph topology of Multi-Mesh of Trees with 81 processors. All inter-block links are not shown 

 
Fig.2 Shortest path in a MOT between nodes (10,100) (source) and    (111,110) (destination).  

The traversal of row- tree ends at the node W(10,110). The figure is taken from [15]. 
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FIG. 3. ILLUSTRATION OF SHORTEST PATH ROUTING ALGORITHM 
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