


Abstract— Multi-Mesh of Trees (MMT) is an efficient
interconnection network for massively parallel
processing system. This network is a hybrid product of
multi-mesh and mesh of trees. Many interesting
topological properties and various algorithms have been
developed on this architecture. In this paper, we propose
an algorithm for shortest path routing on an n4-
processor multi-mesh of trees network. The proposed
algorithm requires 12 log n + 1 time in the worst case to
deliver a message from a source node to a destination
node.

Index Terms—Interconnection network, mesh of trees,
multi-mesh of trees, shortest path routing, time
complexity

I. INTRODUCTION

ULTI-MESH OF TREES (MMT) [1] is an efficient
network that takes the benefits of the topological
structures of two interconnection networks, the mesh

of trees (MOT) [2] and the multi-mesh (MM) network [3].
The diameter of an n4-processor MMT is shown to be 4 log
n + 2 [1]. As a result many diameter based algorithms such
as Lagrange’s interpolation, polynomial root finding,
matrix-vector multiplication, DFT computation and sorting
have been shown to map in O(log n) time [1] in comparison
with O(n) time on multi-mesh network [3]. Recently parallel
prefix [4] and multi-sort [5] have been reported on the same
architecture with 3.75 log N + 6 and O(n2) time respectively.

 Shortest path routing is a kind of routing which
attempts to send data packets over an interconnection
network in such a way that the path taken from the sending
node to the recipient one is minimized. It is one of the most
fundamental and most commonly encountered problems in
the study of communication networks. A great deal of
research [17] has been devoted to this subject. Efe [6], Xin
Yu [7] presented an algorithm for shortest path routing on
crossed cube network in O(n2) time. Dobravec [8] reported
an optimal dynamic two terminal message routing algorithm
for k-circulant (k ≥ 2) networks for the restricted shortest
path in O(log n) time. Shortest path routing on a binary de
Bruijn network with 2n processors was reported by J. W.
Mao et al. [9] in O(n2) time. Ming-Yang Su et. al.[10]
presented a shortest-path routing on a WK-recursive

network having network size td . Their algorithm was

Sudhanshu Kumar Jha is associated with the Department of Computer
Science and Engineering, Indian School of Mines, Dhanbad – 826 004 (e-
mail: sudhanshukumarjha@gmail.com).
Prasanta K. Jana is associated with the Department of Computer Science
and Engineering, Indian School of Mines, Dhanbad – 826 004 (e-
mail: prasantajana@yahoo.com).

shown to require O(t) time for each intermediate node to
determine the next node along the shortest path with O(d −
t) pre-processing time. Sau and Zerovnik [11] presented an
optimal permutation routing algorithm on full-duplex
hexagonal mesh networks. Ke Qiu [12] presented a routing
algorithm that finds n disjoint shortest paths from the source
node to n target nodes in the n-dimensional hypercube in
O(n3 log n) time. Pradhan [13] reported a shortest path
routing on a binary tree in O (log n) time. Nguyen [14]
developed a routing algorithm for hyper-de Bruijn
networks. Recently, we have reported shortest path routings
on n2-processor MOT and n4-processor OTIS-MOT [15] in 8
log n and 8 log n + 1 time respectively.
 In this paper, we present an algorithm for shortest path
routing on n4-processor MMT. Our proposed algorithm is
shown to require 12 log n + 2 time in the worst situation.

The rest of the paper is organized as follows. Section
2, describes the topological structure of the multi-mesh of
trees network. In section 3 we present our proposed
algorithm for the shortest path routing followed by the
conclusion in section 4.

II. TOPOLOGY OF MULTI-MESH OF TREES

An n × n MMT network is built around n2 blocks arranged
in a two-dimensional lattice with n rows and n columns.
Each block is basically an n × n MOT with n2 processors.
Therefore the total number of processors in the MMT is n4.
There are two types of links in MMT: intra-block links (i.e.,
among the processors inside a block) and the inter-block
links (i.e., among the processors of two different blocks). As
an example, 3 × 3 MMT is shown in Fig. 1 in which all the
inter-block links are not shown.

Let B(,) denote the block placed in the th row and th
column, then we address the processor placed in the xth row
and yth column within the block B(, ) as P(, , x, y).
Then the intra-block links can be defined as follows:

1) Horizontal intra-block links: The processors in each
row are connected to form a binary tree rooted at P(α,
β, x, 1), i.e., the processor P(α, β, x, y) is directly
connected to the processors P(α, β, x, 2y) and P(α, β,
x, 2y+1) if they exist for 1≤ α, β, x, y ≤ n.

2) Vertical intra-block links: The processors in each
column are connected to from a binary tree rooted at
P(α, β, 1, y), i.e., the processor P(α, β, x, y) is directly
connected to the processors P(α, β, 2x, y) and P(α, β,
2x+1, y) if they exist for 1≤ α, β, x, y ≤ n.

The inter-block links are also of two types defined as
follows:
 3) Horizontal inter-block links: The processor P(α, β, x,

1) is directly connected to the processor P(α, x, β, n),
1 ≤ α, β, x ≤ n. As a special case when  = x, this link
connects two processors within the same block.

 4) Vertical inter-block links: The processor P(α, β, 1, y)
is directly connected to the processor P(y, β, n, α), 1 ≤

Shortest Path Routing on Multi-Mesh of Trees

Sudhanshu Kumar Jha, Prasanta K. Jana, Senior Member, IEEE

M

Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

α, β, y ≤ n. When α = y, this link connects two
processors within the same block.

In Fig. 1, the intra-block and the inter-block links are shown
by solid and dashed lines respectively. The address of each
block is shown by a pair of indices in boldfaces above the
block and the processor indices are shown adjacent to each
processor. This is shown only for the first block. We assume
that all the links are bi-directional, i.e., full duplex, so that
the data movements can be accomplished in both the
directions. The network is shown to have diameter 4 log n +
2 and bisection width 2n (n  1) [1].

III. PROPOSED ALGORITHM

For the completeness of the paper, we first describe the
shortest path routing algorithm on a MOT as we reported in
[15]. We next present our proposed routing algorithm on the
MMT network.

A. Shortest path routing on MOT (SPR_MOT)

For the purpose of shortest path routing on MOT, we
address each node of the MOT by two-index binary labels
as shown in Fig. 2 for a 7×7 mesh of trees. In this binary
labelling, the root of a row-tree or column-tree is labelled
with 1; if any internal node is labelled with u then its left
child and right child are labelled with 2u and 2u+1
respectively. Let (x, y) and (u, v) denote the source and
destination nodes respectively in a MOT and (xb, yb) and (ub,
vb) be their corresponding binary representations. For the
shortest path routing, we obtain the edges of the path
between these nodes as follows. We first traverse the row-
tree following the shortest path routing on a binary tree [13],
[16] over column-index and stops when yb = vb. We then
follow the shortest path routing on the column tree until xb =
ub. This requires 4 log n time. Fig. 2 illustrates the shortest
path routing in the worst as well as the best cases between
the source node S1 (10, 100) and the destination node D1

 (111, 110) and between S2 (11, 11) and D2 (110, 11)
respectively. Note that in the worst case, the shortest path
routing on the row-tree ends at the node W (10, 110) as its
column index matches with that of the destination node D1.
 We refer the above shortest path routing on MOT
between the source node S and the destination node D as
SPR_MOT(S, D) for its use in the rest of the paper. This is
to note that SPR_MOT requires 4 log n time as reported in
[15].

B. Shortest path routing on MMT

We assume here that P(αs, βs, xs, ys) and P(αd, βd, xd, yd) are
the source and destination nodes respectively. We can
observe from Fig. 1 that there exists more than one inter-
block link between any two blocks in the same row or
column. Also there is more than one path between any two
nodes within each block in the MMT network. Therefore,
we have to find out the shortest path among the number of
available paths. We perform the shortest path routing (SPR)
on MMT following the two major cases as described below.

Case A: When both the source and destination nodes lie in
the same block of the MMT, i.e, αs = αd and βs = βd.
As the block is basically a mesh of trees (MOT), we simply
perform, the shortest path routing on mesh of trees as

discussed in [15]. However, we take care here the two
special cases namely βs = xd and αs = yd, i.e., when the inter-
block link connects the two processors within the same
block. We use a function called SPR_Block_Level_MMT (S,
D) to incorporate these two special cases as follows in
which S and D denote the source and destination nodes
respectively.

Algorithm SPR_Block_Level_MMT ((s, s, xs, ys), (s, s,
xd, yd))

/* P(s, s, xs, ys) is the source and P(s, s, xd, yd) is the

destination */
{
 If (βs = xd)
 {
 Route the message from (s, s, xs, ys) to (s, s, xd, yd)

using horizontal inter-block links.
 }
 Else if (αs = yd)
 {
 Route the message from (s, s, xs, ys) to (s, s, xd, yd)

using vertical inter-block links.
 }
 Else
 {
 Call SPR_MOT ((s, s, xs, ys), (s, s, xd, yd))
 }

} // end of the algorithm

This is obvious to note that the SPR_Block_Level_MMT
algorithm requires 4 log n time since SPR_MOT requires the
same time.
Case B: When source and destination nodes lie in two
different blocks of the MMT.

This has the following two sub-cases.
 i) Both the source and the destination nodes may exist in
the same row (or column) block of the MMT, i.e. here αs =
αd and βs ≠ βd (or αs ≠ αd and βs = βd). In this case, the source
and the destination blocks are directly connected by two
horizontal (or vertical) inter-block links. Therefore, starting
from the source node, we first visit the nearest exit node in
the source block and reach to the destination block via the
inter-block link and finally visit the destination node by
applying shortest path routing SPR_MOT discussed
previously.
ii) They may not exist in the same row (or column) block of
the MMT, i.e., αs ≠ αd and βs ≠ βs. In this case, there is no
direct inter-block link from the source block to the
destination block. Therefore, we require to traverse via one
intermediate block to reach the destination block.

Note that for the above case, we can exit from the source
block via either the root node P(*, *, *, 1) or leaf node P(*,
*, *, n) with respect to the destination block where ‘*’
denotes any possible value of the index. We refer such
nodes as the exit nodes. From the source node, we first
reach to the nearest exit node (in the source block) with
respect to the destination block. We use a function dist (S,
*) to obtain the nearest exit node from the source node. The
dist(S, Y) function actually calculates the shortest distance

Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

between the source node S and a possible exit node Y within
a same block.

The rough sketch of the shortest path routing on the MMT
considering all the above case is shown in Fig. 3 in which Si
and Di denotes the source and the destination nodes.
 We now formally present the shortest path routing
algorithm on MMT as follows covering both the cases A and
B.

Algorithm SPR_MMT ((s, s, xs, ys), (d, d, xd, yd)

/* P(s, s, xs, ys) is the source and P(d, d, xd, yd) is the

destination */
{
 Case 1: (s = d) AND (s = d)

 /* Both source and destination lie in the same block*/
 Call SPR_Block_Level_MMT ((s, s, xs, ys), (d, d, xd, yd))

 Case 2: (s = d) AND (s ≠d)

 /* Both source and destination are in different blocks but

their blocks lie in the same row of MMT */
 If(dist((s, s, xs, ys), (s, s, d, 1)) ≤ dist((s, s, xs, ys),

(s, s, d, n))
 {

2.1 Call SPR_MOT ((s, s, xs, ys), (s, s, d, 1))
2.2 Route the message from (s, s, d, 1) to

(s, d, s, n) using horizontal inter-block link.
2.3 Call SPR_Block_Level_MMT ((s, d, s, n),

(d, d, xd, yd))
}

Else
 {

2.1 Call SPR_MOT ((s, s, xs, ys), (s, s, d, n))
2.2 Route the message from (s, s, d, n) to

(s, d, s, 1) using horizontal inter-block link.
2.3 Call SPR_Block_Level_MMT ((s, d, s, 1),

(d, d, xd, yd))
}

Case 3: (s ≠ d) AND (s = d)

/* Both source and destination are in a different blocks but
their blocks lie in the same column of MMT */
If(dist((s, s, xs, ys), (s, s, 1, d)) ≤ dist((s, s, xs, ys),
(s, s, n, d))
 {

3.1 Call SPR_MOT((s, s, xs, ys), (s, s, 1, d))
3.2 Route the message from (s, s, 1, d) to (d, s, n,

s) using vertical inter-block link.
3.3 Call SPR_Block_Level_MMT ((d, s, n, s), (d, d,

xd, yd))
}

Else
{

3.1 Call SPR_MOT((s, s, xs, ys), (s, s, n, d))
3.2 Route the message from (s, s, n, d) to (d, s, 1,

s) using vertical inter-block link.

3.3 Call SPR_Block_Level_MMT ((d, s, 1, s), (d, d,
xd, yd))

}

Case 4: (s ≠ d) AND (s ≠ d)

/* Source and destination are in different blocks and their
blocks are not also in same row or same column of MMT.
Therefore, in this case we have to route the message in a
particular block from where, either case 2 or case 3 satisfy
*/
If(dist((s, s, xs, ys), (s, s, 1, d)) ≤ dist((s, s, xs, ys), (s,
s, n, d))

{

4.1 Call SPR_MOT ((s, s, xs, ys), (s, s, 1, d))
4.2 Route the message from (s, s, 1, d) to (d, s, n,

s) using vertical inter-block link.
4.3 Call SPR_MOT (((d, s, n, s), (d, s, d, n))
4.4 Route the message from (d, s, d, n) to (d, d, s,

1) using horizontal inter-block link.
4.5 Call SPR_Block_Level_MMT ((d, d, s, 1), (d, d,

xd, yd))
}

Else
 {

4.1 Call SPR_MOT ((s, s, xs, ys), (s, s, n, d))
4.2 Route the message from (s, s, n, d) to (d, s, 1,

s) using vertical inter-block link.
4.3 Call SPR_MOT ((d, s, 1, s), (d, s, d, n))
4.4 Route the message from (d, s, d, n) to (d, d, s,

1) using horizontal inter-block link.
4.5 Call SPR_Block_Level_MMT ((d, d, s, 1), (d, d,

xd, yd))
}

} /* End of algorithm */

Time Complexity: Case 1 requires 4 log n time. Case 2 and
case 3 each requires 8 log n + 1 time as in both the cases,
there is a single call of SPR-MOT, a single call of
SPR_Block_Level_MMT and a single inter-block
communication including else part. Case 4 requires a
maximum of 12 log n + 2 time due to two calls of
SPR_MOT, one call of SPR_Block_Level_MMT and two
inter-block communications including else part. Therefore,
the shortest path routing on MMT requires 12 log n + 2 time
in the worst situation.
The correctness of the above algorithm can be readily seen
from the above illustrations and the description of the
algorithm.

IV. CONCLUSION

We have presented a shortest path routing algorithm on the
multi-mesh of trees network having n4-processor. The
proposed algorithm is based on shortest path routing on the
binary tree. We have shown that the algorithm runs in 12
log n + 2 time in the worst situation.

Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

Fig. 1 Graph topology of Multi-Mesh of Trees with 81 processors. All inter-block links are not shown

Fig.2 Shortest path in a MOT between nodes (10,100) (source) and (111,110) (destination).

The traversal of row- tree ends at the node W(10,110). The figure is taken from [15].

Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

FIG. 3. ILLUSTRATION OF SHORTEST PATH ROUTING ALGORITHM

REFERENCES
[1] P. K. Jana, Multi-mesh of trees with its parallel algorithms, Journal of

Systems Architecture 50 (2004) 193–206.
[2] S.G. Akl, The Design, Analysis of Parallel Algorithms, Prentice-Hall,

Englewood Cliffs, NJ, 1989.
[3] D. Das, B.P. Sinha, Multi-mesh––an efficient topology for parallel

processing, in: Proceedings of the Ninth International Parallel
Processing Symposium, Santa Barbara, CA, April 25–28, 1995, pp. 17–
21.

[4] . K. Jha, P. K. Jana, “Fast Parallel Prefix Computation on Multi-Mesh of
Trees”, accepted for presentation in IEEE Int’l. Conf. on Computer and
Communication Technology (ICCC2010), MNNIT, Allahabad, 17-19
September 2010.

[5] N. Rakesh, Multi-sort Algorithm on Multi-Mesh of Trees, MASAUM
Journal of Computing Vol.1 No.1 August 2009.

[6] K. Efe. The crossed cube architecture for parallel computing”. IEEE
Trans. Parallel and distributed Systems, 3(1992) 513-524.

[7] X. Yu, M. Wu, and G. J. Wang. A novel shortest path routing algorithm
in the crossed cube, Chinese Journal of Computers, 30, (2007), 615-621.

[8] Tomaz Dobravec, Janez Z Erovnik, Borut Robic, An optimal message
routing algorithm for circulant networks, Journal of Systems
Architecture, 52 (2006) 298–306.

[9] Jyh-Wen Mao and Chang-Biau Yang, Shortest path routing and fault
tolerant routing on de Bruijn networks, Journal of Networks, 35(2000)
207-215.

[10] Ming-Yang Su, Gen-Huey Chen, and Dyi-Rong Duh, A Shortest-Path
Routing Algorithm for Incomplete WK-Recursive Networks, IEEE
transactions on parallel and distributed systems, vol. 8, no. 4, April
1997, pp 367- 379.

[11] Ignasi Sau and Janez Zerovnik, An optimal permutation routing
algorithm for full-duplex hexagonal mesh networks, University of
Ljubljana, preprint series, Vol. 44 (2006), 1017, ISSN 1318-4865.

[12] Ke Qiu, An Efficient Disjoint Shortest Paths Routing Algorithm for the
Hypercube, in Proc. of 14th IEEE Intl. Conf. on Parallel and Distributed
Systems, 2008.

[13] D. K. Pradhan, Fault-Tolerant Computing: Theory and Techniques,

(Englewood Cliffs, Prentice Hall, 1986).
[14] Ngoc Chi Nguyen, Thanh Vu Dinh, Tuan Dang Anh, Improving shortest

path routing in hyper-de Bruijn networks, in Proc. of IFOST 2000, 288 –
292.

[15] Keny T. Lucas, P. K. Jana, “Sorting and routing on OTIS-mesh of
trees”, Parallel Processing Letters, Vol. 20, Issue 2, 2010, pp. 145-154.

[16] K. Efe, Mesh-connected trees: a bridge between grids and meshes of
trees, IEEE Trans. Parall. Distri. Syst. 7 (1996) 1281–1291.\

[17] N. Deo and C. Pang, “Shortest-Path Algorithms: Taxonomy and
Annotation,” Networks, 14 (1984) pp: 275323.

Proceedings of the World Congress on Engineering 2011 Vol II
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

