
 

 

Abstract—The discrete cosine transform (DCT) and the 

compressive sampling (CS) are two signal processing 

techniques with many applications on a great number of 

engineering fields. In this paper, we propose to apply both 

techniques to the compression of audio signals. 

 

Using spectral analysis and the properties of the DCT, we 

can treat audio signals as sparse signals in the frequency 

domain. This is especially true for sounds representing tones. 

On the other hand, CS has been traditionally used to acquire 

and compress certain sparse images. We propose the use of 

DCT and CS to obtain an efficient representation of audio 

signals, especially when they are sparse in the frequency 

domain.  

 

By using the DCT as signal preprocessor in order to obtain a 

sparse representation in the frequency domain, we show that 

the subsequent application of CS represent our signals with 

less information than the well-known sampling theorem. This 

means that our results could be the basis for a new 

compression method for audio and speech signals. 

 

 
Index Terms—Audio signals, Compressive sampling, DCT, 

sparsity. 

 

I. INTRODUCTION 

ver the past few years, there has been an increased 

interest in the study of compressed sampling (CS),a 

new framework for sampling and compressing certain 

signals. In CS, the bandlimited model (i.e. the Nyquist 

sampling theorem) is replaced by a sparse model, assuming 

that a signal can be efficiently represented using only a few 

significant coefficients in some transform domain. 

 

 The groundbreaking work by Candes et al. [1] and 

Donoho [2] showed that such a signal can be precisely 

reconstructed from only a small set of random linear 

measurements (smaller than the Nyquist rate), implying the 

potential of dramatic reduction of sampling rates, power 

consumption and computation complexity in digital data 

acquisitions. 
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Due to the large amount of data in image signals, CS is very 

attractive in imaging applications, especially for low-power 

and low resolution imaging devices or when the 

measurement is very costly (e.g., Terahertz applications). 

Since the discovery of the CS theory, several compressive 

imaging algorithms have been developed for Fourier 

transform domain measurements in applications such as the 

MRI [3]. 

 

 Despite the above mentioned work, there still exists a 

huge gap between the CS theory and applications to audio 

signals [11], [12]. In particular, it is still unknown how to 

construct a sparse audio signal, especially when CS relies on 

two principles: sparsity (which pertains to the signal of 

interest), and incoherence (which pertains to the sensing 

modality) [4-6]. 

 

 For the problem of making asparse representation of an 

audio signal, we introduce the DCT which is at present, the 

most widely used transform for image and video 

compression systems. Its popularity is due mainly to the fact 

that it achieves a good data compaction, because it 

concentrates the information content in relatively few 

coefficients[7]. This means that we can obtain a compressed 

version of an audio signal by first obtaining a sparse 

representation in the frequency domain, and later processing 

the result with aCS algorithm. 

II. BACKGROUND 

A. Compressive Sampling  

A recent series of papers [1–6] develop a theory of signal 

recovery from highly incomplete information. The central 

results state that a sparse vector be recovered from 

a small number of linear measurements

 ,when  is the measurement 

noise by solving a convex program. 

 

 Consider a length , real valued signal  and suppose that 

the basis  provides a  sparse representation of . In 

terms of matrix notation, we have  in which  can 

be well approximated using only non zero entries 

and   is called as the sparse basis matrix[2]. 

 

 The CS theory states that such a signal  can be 

reconstructed by taking only   linear, non 

adaptive measurements as follows[1,2]: 

 

 

 

DCT-compressive Sampling of Frequency-

sparse Audio Signals 

R.G. Moreno-Alvarado, Mauricio Martinez-Garcia 

O 

Proceedings of the World Congress on Engineering 2011 Vol II 
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-4-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

mailto:rmoreno@calmecac.esimecu.ipn.mx
mailto:mauricio.martinez@lasallistas.org.mx


 

 Where  represents an  sampled vector and is an 

 measurement matrix that is incoherent with , 

ie.,the maximum magnitude of the element in is small 

[5].  

 

Finally, with this information we decide to recover the 

signal by  norm. When  is sufficiently sparse, the 

recovery via  -minimization is probably exact [1]. 

B. The One-Dimensional DCT 

The most common DCT definition of a 1-D sequence of 

length  is: 

 

for . Similarly, the inverse transform is 

defined as: 

 

for  In both equations (2) and (3) 

 is defined as: 

  for  for   

It is clear from (3)that for 

 Thus, the first transform coefficient isthe average value of 

the sample sequence. In the literature, this value is referred 

to as the DCCoefficient. All other transform coefficients are 

called the AC Coefficients[7]. 

C. Properties of DCT 

 

Decorrelation 

 

 Themain advantage of signal transformation is the 

removal ofredundancy between neighboring values. This 

leads to uncorrelated transform coefficients whichcan be 

encoded independently.  

 

Energy Compaction 

 

Efficacy of a transformation scheme can be directly 

gauged by its ability to pack input data intoas few 

coefficients as possible. This allows the quantizer to discard 

coefficients with relativelysmall amplitudes without 

introducing visual distortion in the reconstructed image. 

DCT exhibits excellent energy compaction for highly 

correlated signals. 

III. PROPOSED IMPLEMENTATION OF DCT AND  COMPRESSIVE 

SAMPLING 

In this section, we introduce our proposed techniques 

applied to an audio signal, and describe the technique for 

representing it in a sparse way. We then analyze its 

application to a compressive sampling algorithm. 

 

 Simply speaking, we consider the aspect recovering 

sparse signals from just a few measurements. In this case of 

study, compressive sampling needs to deal with speech 

signals which are only approximately sparse. 

 

 The issue here is to obtain an accurate reconstruction of 

such signals from highly undersampled 

measurements.Ideally, we would like to measure all the  

coefficients of , but in the CS framework we only get to 

observe a subset of these and collect the data. 

 

 
Fig. 1 Music Signal 

 

 
 

Fig. 2 FFT amplitude of Music Signal 

 

 As we can observe in figure (1), our audio signal is not 

sparse in the time domain. In spite of this, we applied as first 

instance, the fast Fourier transform (FFT) for obtaining the 

frequency domain representation. We can observe that this 

representation takes the form of a sparse signal (figure 2). 

 

 However, this representation has real and complex parts, 

which result in a difficult reconstruction due to the phase 

angle changes with the matrix transformations on the 

compressive sampling program, as described in [8]. This 

means that we cannot get the original signal by just applying 

the inverse Fast Fourier Transform. 

  

 As a second experiment, we used a special case of the 

FFT called the DCT [7], [9], [10]. As mentioned above, one 

of the properties is that it attempts to decorrelate the data. 

After decorrelation, each transform coefficient can be 

encoded independently without losing compression 

efficiency. 

IV. EXPERIMENTAL RESULTS 

 In this sectionwe present the use of the DCT to 

preprocess a 15 second music piece, in order to obtain a 

sparse representation of our signal in the frequency domain. 

Subsequent application of a CS algorithm for compression 

and recovery succeeds in obtaining an intelligible signal. 

 

 Let us consider a stationary 15-second music piece with 

length of 661000 samples subdivided into 661 frames of 

1000 samples each one, to increase the CS algorithm 

accuracy [8]. By applying the DCT for each one, we obtain 
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a sparse representation of the music signal frames (figure 3), 

which is considered optimal for our experiment. 
 

 
Fig. 3 First row DCT signal, second row DCT recovered signal  

 
Fig. 4 First row DCT signal, second row DCT recovered signal with 

different length 

 

 

 Considering these frames of music signals as sparse, we 

can apply the algorithm of CS to each frame with length of 

1000 samples, as a first experiment. As a second 

experiment, we apply the algorithm of CS to each frame 

with different DCT-lengths as 128,256,512,700 DCT-length 

of 256 is shown in figure (4). 

 

The performance of the CS has been evaluated using the 

following reconstruction algorithm and software: Min- with 

equality constraints solver in the magic package [8]. 

 

As a result of applying the CS algorithm, we obtain a music 

signal nearly equal as the input sparse signal (figures 3 and 

4). For the special case of experiment II, we have to apply 

the inverse discrete cosine transform (IDCT) to convert the 

data back to time domain, and recover the original speech 

signal (figures 5 and 6). 

 

Tables (I, II) summarize the results of our experiments, for 

both DCT with length of 1,000 and DCT with different 

lengths of a music signal, and its reconstruction similarities. 

We highlighted the best result in bold letters. Figures (7) and 

(8) show the graphic similarities for DCT, and figure (9) 

show the graphic similarities per 1000-sample frames. 

 

As shown in the figures (7) and (8) we see that as more 

observations are made, the similarity of both original DCT 

and DCT recovered signal increases. This property depends 

on the sparsity of the signals: a signal with a highly sparse 

representation decreases the number of samples. 

  

 

For these experiments we have to consider a number of 

samples, and the similarity measures given by: 

 

 

 

Where  is the matrix error given by the norm of  

divided by his length, and  is the matrix power given by 

the norm of  divided by his length. 
 

 
Fig. 5 first row original signal, second row recovered signal 

 

 
Fig. 6  First row original signal, second row recovered signal with  

different length 

 

 
Fig. 7 Similarities with DCT frame of 1,000 

 
TABLE I 

SUMMARY OF SIMILARITIES IN MUSIC EXPERIMENT I 

 Samples                DCT Frame                            Similarity 

   128                   1,000                 0.1208 
   256                   1,000                 0.0234 

   512                   1,000                 0.0014 

   700                            1,000                             3.27e-04 

 

TABLE II 
SUMMARY OF SIMILARITIES IN MUSIC EXPERIMENT II 

 Samples                DCT Frame                            Similarity 

  164                   128                3,11e-06 

  228                   256                0.0012 

  356                   512                0.0017 

  450                            700                                0.0012  
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Fig. 8 Similarities with different DCT frames 

 

 
Fig. 9 Similarities per frames of 1,000 samples 

 

V. CONCLUSION 

 

This paper has proposed an efficient joint implementation 

of DCT, as a method to obtain a sparse audio signal 

representation, and the application of the compressive 

sampling algorithm to this sparse signal. The music is the 

Bach-Cello suite No. 1 Prelude.  

 

The DCT speech signal representation has the ability to 

pack input data into as few coefficients as possible. This 

allows the quantizer to discard coefficients with relatively 

small amplitudes without introducing audio distortion in the 

reconstructed signal.  

 

Although the compressive sampling technique is used 

primarily for compression sample images, we achieve 

reasonable results due to the preprocessing of the audio 

signal.  

 

This means that our hypothesis is satisfied in the sense 

that our proposed technique can achieve a significant 

reduction in the number of samples required to represent 

certain audio signals, and therefore a decrease of the 

required number of bytes for encoding.  

 

It was found that the audio compression model proposed 

in this paper is feasible, and can achieve significant 

compression of the music signal that can reach a value in 

some cases about 50% of compression with a reasonable 

quality depending on the particular application.  

 

The compression values obtained are varied and depend 

largely on how sparse signal can be arranged and the level 

of quality that you want, but for a reasonable quality music 

must have [DCT/2+100] observations. 
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