
  
Abstract—The fractional Fourier transform can be considered 
as a rotated standard Fourier transform in general and its 
benefit in signal processing is growing to be known more. In this 
paper, we have computed the first order moment of fractional 
Fourier transform according to the ambiguity function exactly. 
In addition we have derived relations between time and spectral 
moments with those obtained in fractional domain. We will 
prove that the first moment in fractional Fourier transform can 
be considered as a rotated the time and frequency gravity in 
general. For more satisfaction, we choose three different types 
signals and obtain analytically their fractional Fourier 
transform as well. 

 
Index Terms—Fractional Fourier transform, first order 

moment 
 

I. INTRODUCTION 
n the mathematics literature, the concept of fractional order 
Fourier transform (FT) was proposed some years ago [1]-  
[3]. The ordinary FT being a transform of order 1, and the 

signal in time is of order zero. The fractional FT depends on a 
parameter α  and can be interpreted as a rotation by an angle 
α  in the time- frequency plane. The relationship between 

fractional FT order and angle is given by 
2
πα a= . The 

fractional FT of function )(tx  can be written in the form: 

∫
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where the kernel is given by 
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represents the imaginary unit ( 1− ). The parameter α  is 
continuous and interpreted as a rotation angle in the phase 

plane. When α  increases from 0 to 
2
π , the fractional FT 

produce a continuous transformation of a signal to its Fourier 
image. If α  or πα +  is a multiple of π2 , the kernel reduces 
to )( ut −δ  or )( ut +δ  respectively. We also note that for  
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2
πα = , the kernel coincide with the kernel of the ordinary 

FT. In summary, the fractional FT is a linear transform, and 
continuous in the angle α , which satisfies the basic 
conditions for being interpretable as a rotation in the time- 
frequency plane [4]. Fractional FT is the energy-preserving 
transform [4], it means: 

duuXdttx ∫∫
+∞

∞−

+∞

∞−

= 22 |)(||)(| α             (2) 

Due to the energy-preserving property of the FT, the squared 
magnitude of the FT of a signal 2|)(| ωX  is often called the 
energy spectrum of the signal and is interpreted as the 
distribution of the signal’s energy among the different 
frequencies. As the fractional FT is also energy conservative, 

2|)(| uXα  is named as the fractional energy spectrum of the 
signal x(t), with angle α . 
   In time-frequency representations, one normally uses a 
plane with two orthogonal axes corresponding to time and 
frequency respectively, (Fig. 1). 
 

 
Fig. 1: Time- frequency plane and a set of coordinates ),( vu  rotated by an 

angle α  relative to the original coordinates ),( ωt . 
 
A signal represented along the frequency axis is the FT of the 
signal representation )(tx  

along the time axis. It can also be 
represented along an axis making some angle α  with the 
time axis. Along this axis, we define the fractional FT of 

)(tx  at angle α  defined as the linear integral transform, 
equation (1). It is easy to prove that pairs ),( ωt  and ),( vu  
corresponding to an axis rotation by: 
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   Although many properties were known for fractional FT, it 
is convenient to include in this preliminary section three 
results which will be useful later on. Now according to 

)()( uXtx
FrFT

α⇔ , we denote these properties, they are named 

shift, modulation, and multiplication as follows: 
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    This paper is organized as follows. In section II, we 
derive the first fractional FT moment according to ambiguity 
function (AF) and find some relations among time-frequency 
and fractional moment respectively. In section III, we obtain 
the fractional FT of some signals those can be used as an 
additive noise model. Finally section IV concludes the paper.  

II. FRACTIONAL MOMENT BASED ON AMBIGUITY 
FUNCTION 

In this paper, based on connection between the AF and the 
fractional FT, we derive the fractional moment. The AF of a 
signal )(tx  is defined as [5]: 
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Where asterisk ‘*’ refers to the complex conjugate operation. 
It is easy to show that: 
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Before starting to derive the first order moment in fractional 
FT based on the first order moment in time and frequency, we 
recall that as fractional FT is a linear transform and energy 
conservative, so in general the fractional first order moment 
can be considered as: 

duuXuu ∫
+∞

∞−

>=< 2|)(| α              (10) 

Now according to the fractional FT definition, equation (1), 
and shift and modulation properties (equation (4) and 
equation (5)), we rewrite the AF in equation (11): 
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A. Time Moment 
Although it takes really long analytic computation, we try to 
obtain the first order moment belong to time according to 
equation (8) and by using equation (11) as follows: 
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Easy using equations (12), and (7) show the fractional FT is 
energy conservative or unique signal has unique fractional FT 
and so the transform is reversible 

( duuXdttxAFE xx ∫∫
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consider the signal energy is 1 ( 1=xE ). Now we determine 
the first derivative in order to determine the first order 
moment in time domain, equation (13): 
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and then we have: 
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Now we should simplify the derived equations for the first 
order moment in time domain. Using equations (1) and (11) 
for fractional FT definition, it is not too hard to prove the 
following relationship: 

u
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Thereby, we rewrite the first order moment: 
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As u  and v  are orthogonal axes (Fig. 1), we can obtain the 
first order moment in v  domain by using signal in u  domain 
as: 
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Now the first order moment for time domain is obtained 
according to the fractional moment as follows: 

><+><−>=< uvt αα cossin          (18) 

B. Frequency Moment 
Exactly the same algebra is used in order to obtain frequency 
moment. By notifying equation (9) and using equation (11), 
we write equations (19) and (20): 
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and as following we have: 
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In order to simplify the derived equation, the following 
relation by employing equations (1) and (11) are determined: 
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And now, the first spectral moment is written as follows: 
><+><>=< uv ααω sincos           (23) 

In order to make the derived equations more readable, we 
define the first order moment according to their 
corresponding plane. They are >=< tm0 ; >=< ωπ

2

m ; 

>=< umα ; >=<
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2
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. Therefore, we rewite the derived 

equations (18) and (23) as the following matrix form: 
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As rotation is true for pairs ),( ωt  and ),( vu , equation (3), 
obviously it is also true for the first moment in original plane. 
This result emphasize on why fractional FT is considered as a 
rotation operator. The first order moment, >=< umα , in a 
fractional domain defined by an arbitrary angle α  can be 
calculated from the relationship 

2
0 sincos πα αα mmm += . 

In addition, taking into account equations (18), and (23), we 
conclude the following relationship: 

2
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According to what is derived, we can say that the first order 
moment is rotate invariant. 

III. DIFFERENT SIGNALS 
Fractional FT of a number of common signals such as 

)2/exp( 2t− , )(tδ  , and tkje  were computed before [1]. It 
was proved that fractional FT also exist for certain functions 
which are not square integrable (for example: etc,,,1 2tt  ) [1] 
( as in Z transform using r causes having this feature, here 
being α  causes this effect). Fractional FT has attracted a 
great attention. Some researchers try to discover its features 
more [6], and some try to use it in application. 
Conventionally, the filtering systems are based on the FT, 
though the frequency of the noise and that of the signal 
usually overlap with each other, so it is very difficult to filter 
the noise completely. So it may conclude that filtering in the 
optimal fractional domain is significantly better than filtering 
in the conventional frequency domain. For further application 
of the fractional FT analysis, it is important to study its 
effects on different types of signals. It means that obtaining 
the central moment and explore their behavior are important 
topic for design an optimum filter in rotated domain or 
fractional FT. In this section, we will obtain the fractional FT 
for three different type functions which can be considered as 
a model for additive noise. We consider Gaussian function, 
One sided Gaussian function, and Rayleigh function and their 
fractional FT are written in Tabel. I. Obviously, it is easy to 
show that )()(

2
ωπαα jXuX =

=
, this result prove the 

computed procedure has done correctly. 

IV. CONCLUSIONS 
The fractional Fourier transform moment may be helpful in 
the search for the most appropriate fractional domain to 
perform a filtering operation. In this paper we have derived 
the relation between central moment in time, frequency, and 
fractional domain by employing the ambiguity function. In 
addition, we have obtained the fractional Fourier transform 
for different signals directly. Implementation will be our 
future work. 
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Table I: Analytically computed the fractional FT. 
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