
On an Adaptive Filter based on Simultaneous
Perturbation Stochastic Approximation Method

Hong Son Hoang, Rémy Baraille

Abstract—In this paper, the simultaneous perturbation
stochastic approximation (SPSA) algorithm is used for seeking
optimal parameters in an adaptive filter developed for assimi-
lating observations in very high dimensional dynamical systems.
It is shown that the SPSA can achieve high performance similar
to that produced by classical optimization algorithms, with
better performance for non-linear filtering problems as more
and more observations are assimilated. The advantage of the
SPSA is that at each iteration it requires only two measurements
of the objective function to approximate the gradient vector
regardless of dimension of the control vector. This technique of-
fers promising perspectives for future developement of optimal
assimilation systems encountered in the field of data assimilation
in meteorology and oceanography.

Index Terms—adaptive filter, minimum prediction error,
Schur vector, stability, stochastic approximation

I. INTRODUCTION

DATA assimilation is a technique of (optimally) com-
bining numerical model with observations. Let us first

consider the standard 4dVar assimilation algorithm which is
formulated as follows [1]: Find the initial state x(0) := x(t0)
which minimizes the objective function

J [x(0)] = (1/2)(xb(0)− x(0))T B(0)−1(xb(0)− x(0)) (1)

+(1/2)
∑N

k=1[z(k) − Hx(k)]T R−1[z(k) − Hx(k)]

under the constraint

x(k + 1) = Φx(k) + w(k), k = 0, ... (2)

z(k) = Hx(k) + ε(k), k = 1, ... (3)

here x(k) is the n-dimensional system state at k := tk, Φ
is the (nxn) fundamental matrix, z(k) is the p-dimensional
observation vector, H is the (pxn) observation matrix, w, ε
are the model and observation noises. We assume w(k), ε(k)
are uncorrelated sequences of zero mean and time-invariant
covariance Q and R respectively.
Applying a gradient descent algorithm, at each iteration

the gradient ∇θJ, θ := x(0) is used to determine the
direction to search Jmin. The gradient computation requires a
forward integration of the numerical model over the period
[t1, tN ] and backward integration of the adjoint ΦT of Φ.
The development of a discrete adjoint solver for partial
differential equations by hand differentiation requires a long
development time and it involves the errors resulting from
necessary approximations used during the differentiation.
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Another approach for data assimilation is known as se-
quential. Consider (3) and the interval [tk−1, tk]. Then z =
z(k) and x̂(k/k − 1) := xb(k) represents the predicted
estimate for x(k). Taking the derivative of J(θ) and equal it
to zero leads to the equation for finding the optimal filtered
(or analysis) estimate x̂(k). One has now

x̂(k) = x̂(k/k − 1) + K(k)[z(k) − Hx̂(k/k − 1)] (4)

K(k) = B(k)HT [HB(k)HT + R]−1 (5)

in which K(k) represents the filter gain, ζ(k) = z(k) −
Hx̂(k/k − 1) is the innovation vector, B(k) := M(k)
represents the covariance of the prediction error (PE) e(k/k−
1) := x̂(k/k − 1) − x(k). The unbiased minimum variance
(MV) estimate for x(k) is obtained from the Kalman filter
(KF) (see [2]). The closed system of equations for the KF
includes Algebraic Riccati Equation (ARE). However solving
the ARE for the system with state dimensions 1012 − 1014

is impossible.
To deal with these difficulties in [3] the filter is assumed

to be of the form (4) with the gain K(k) := K(k; θ) being
given up to a vector of unknown parameters θ. The optimal
filter is obtained by minimizing the prediction error (PE) for
the system output

J(θ) = E[Ψ(ζ(k))] → minθ, Ψ[ζ(k)] = ||ζ(k)||2 (6)

where ||.|| denotes the l2 norm. As the use of estimated
parameters θ̂(k) can deviate the filter from its stable behavior,
in [5]-[6] the gain is proposed to be selected in order to
ensure a filter stability, independently on whatever are the
values of tuning gain parameters.
The purpose of this paper is to explore what potential

benefits may be achieved by using SPSA algorithm [8].
The essential feature of SPSA is its underlying gradient
approximation that requires only two measurements of ob-
jective function regardless of the dimension of θ. This feature
allows for a significant decrease of the cost of optimization,
especially without development of the adjoint code for the
tangent linear model (TLM) of the system dynamics.

II. SPSA ALGORITHM

A. Stochastic approximation [4]
Consider the problem of minimizing the objective function

Find θ∗that solves minθJ(θ) (7)

For an unconstrained optimization, many iterative algo-
rithms rely on the gradient vector g(.) of the objective
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function. The stochastic approximation (SA) algorithm has
the form

θk+1 = θk − akY (θk) (8)

where Yk = g(θk) + noise, ak is a non-negative gain
sequence that must satisfy certain conditions [8].
When only the measurements of the objective function

are available, yk = J(θk) + noise, one-sided or two-sided
gradient approximations, i.e. gki(θk) = y(θk+ckei)−y(θk)

ck
or

gki(θk) = y(θk+ckei)−y(θk−ckei)
2ck

are of common use where
ei denotes a vector with a one in the ith place and zeros
elsewhere. These approximations require nθ+1 (or 2nθ, nθ is
the dimension of θ) integrations of the numerical model. For
optimization problems with very large nθ , such algorithms
are expensive and in general they are inappropriate for
solving assimilation problems.

B. Simultaneous Perturbation Stochastic Approximation
(SPSA)
The difficulties due to high dimension of θ can be over-

come by applying the SPSA algorithm [8]. In such algorithm,
all elements of θk are randomly perturbed together to obtain
two measurements y(.), but each component of gk(θk) is
formed from a ratio involving the individual components
in the perturbation vector and the difference in the two
corresponding measurements. For two-sided SP, we have
gki(θk) = y(θk+ckΔk)−y(θk−ckΔk)

2ckΔki
where Δki can be chosen

as the random variable having the symmetric Bernoulli (+/-)
1 distribution. Two common distributions that do not satisfy
the conditions for Δki are the uniform and the normal.

III. ADAPTIVE FILTER
A. Adaptive filter
Consider the KF (4)(5) for solving a filtering problem in

the system (2)(3). Then B(k) := M(k) satisfies the Riccati
equation

M(k) = Φ(k)P (k−1)ΦT (k)+Q, P (k) = [I−K(k)H ]M(k)
(9)

Due to very expensive computational burden in time
stepping the prediction error covariance matrix (ECM) M(k)
in (9), the KF is impractical for solving data assimilation
problems. For suboptimal KFs for data assimilation, see
[1],[9]. One of possible ways to overcome these difficulties
is to choose a parametrized structure of the filter gain from
some criteria. In [5] this question is studied from the point
of view of the filter stability. The following time-invariant
structure of the gain is proposed

K = PrΘKe, Ke = HT
e [HeH

T
e + R]−1, He = HPr, (10)

Θ = diag [θ1, ..., θne
], θl ∈ (0, 2)

where Ke : Rp → Rne represents the gain mapping the
innovation vector from the observational space into the
reduced space Rne of dimension ne ≤ n; Pr is mapping
from the reduced space Rne to the full space Rn. The choice
of the reduced space plays an important role in assuring a

stability of the filter. As proved in [5], under detectability
condition, stability of the filter is ensured by forming
the columns of Pr from a subspace spanned by leading
eigenvectors (or Schur vectors) of the fundamental matrix
Φ. The AF is obtained by minimizing the objective function
(6). In the AF the gain K in (9) becomes time-varying.

IV. NUMERICAL PROCEDURE FOR CONSTRUCTION OF
THE PROJECTION SUBSPACE

A. Computation of projection subspace spanned by leading
Schur vectors [10]
The idea for construction of Pr based on stability criteria

is outlined as follows. Let L be an integer number satisfying
1 ≤ L ≤ n. Given an n×L matrix X0 with orthonormal
columns, the method of orthogonal iteration generates the
sequence of matrices Xi,

Si = ΦXi−1, XiGi = Si, i = 1, 2, ...,

where Xi is orthonormal. Thus, at i iteration, the columns
of Xi are orthonormal vectors which are derived by : 1)
integration of the model from each column of Xi−1 to
produce Si; 2) orthonormalization of L columns of Si. One
sees that the columns of Si belong to the space spanned by
the vectors of Xi.
Let

XT ΦX = T = diag(λi)+N̄, |λ1| ≥ |λ2| ≥ ... ≥ |λn| (11)

be a real Schur decomposition, X = [X1, X2], X1 is
n× L submatrix, N̄ is a block upper triangular. The blocks
on the diagonal of N̄ are of size 1x1 (in which case they
represent real eigenvalues) or 2x2 (in which case they
are derived from complex conjugate eigenvalue pairs). As
shown in [10] (section 7.3), under mild conditions, the
distance between DL(Φ) := R[X1] and R[Xi] is of order
O(|λL+1

λL
|i) where R[Xi] denotes the linear space spanned

by the columns of Xi. Considering the columns of Xi as
patterns for DScVs, the orthogonal iteration method allows
us to generate patterns for DScVs which can be used to
perform the operator Pr. This method constitutes a basis of
the procedure described in the next subsection for generating
PE samples which serve as a source for estimating the
statistics of PE and to approximate the filter gain (called a
PEF - Prediction Error Filter).

B. Procedure for generating dominant prediction error
(DPE) samples
Suppose that at the moment i := ti we are given xf (i) -

some estimate for the true system state x(i). The estimation
error is δx(i) = xf (i) − x(i). Integration of the model
from xf (i) produces the prediction xp(i + 1) = Φxf (i) at
ti+1 = ti + δt. Here Φ represents model integration over the
interval δt. The true system state at ti+1 is x(i+1) = Φx(i)
(for no model error case). We have then the PE ep(i + 1) =
Φxf (i) − Φx(i) = Φδx(i). Thus integrating δx(i) by the
model Φ yields the vector st+1 = Φδx(i) which can be
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considered as a PE pattern growing over the period of model
integration. If we apply this procedure to an ensemble of
orthogonal columns Xi = [δx1(i), ..., δxL(i)] instead of one
vector δx(i), the iteration Si = ΦXi−1, XiGi = Si, i =
0, 1, ... (see section 3.1) will produce the sequence {Xi}
approaching L dominant Schur vectors of Φ. The relation
XiGi = Si guarantees that the columns of Si belong to
the space spanned by the columns of Xi hence they will
approach a subspace spanned by DScVs. As the columns
of Si at the same time represent the PE samples, they will
be referred to in the future as DPE patterns (in the DScVs
subspace). These columns are thus not the patterns randomly
generated as done in the EnBF [11],[12] but selected to be
”representative” (in a DScV subspace) for the PE. These
DPE samples will be used in this paper to estimate the
elements or parameters of the ECM which plays an essential
role in computation of the filter gain K . We summarize this
DPESP for generating the ensemble of PE patterns in the
L-dimensional DScVs subspace as follows:
Suppose we want to simulate T patterns for each of the

first L Schur vectors of the system dynamics Φ. At i = 0, let
xf (i) be an initial estimate for x(i). Suppose we are given
the orthogonal matrix Xi, XT

i Xi = IL whose columns are
L orthonormal perturbations δxl

f (i), l = 1, ..., L.

Step 1. For i ≤ T : Let xf (i) and Xi be given. Integrate
the model L + 1 times for producing xp(i + 1) = Φ(xf (i))
and x

′l
p (i + 1) = Φ(xf (i) + δxl

f (i)), l = 1, ..., L. The new
matrix Si+1(L) := [δx1

p(i + 1), ..., δxL
p (i + 1)] is performed

whose columns are

δxl
p(i + 1) = Φ(xf (i) + δxl

f (i)) − Φ(xf (i)), l = 1, ..., L

Step 2. Apply the Gram-Schmidt orthogonalization pro-
cedure (see [10]) Xi+1Gi+1 = Si+1 to Si+1. The resulting
orthonormal perturbations {δxl

f (i + 1), l = 1, ..., L} are the
columns of the matrix Xi+1 = [δx1

f (i + 1), ..., δxL
f (i + 1)].

Step 3. If i + 1 > T : Stop the procedure. Otherwise set
i := i + 1 and go to Step 1 subject to xf (i + 1) and Xi+1.
Comment 4.1. The DPESP algorithm can be applied to a

nonlinear system dynamics where F (x) stays instead of Φx
with the modification Φδx(i) ≈ F [x(i) + δx(i)] − F [x(i)].
The columns of Xi then tend to DScVs of the TLM.

V. ESTIMATION OF PARAMETERS IN PERIODIC SIGNALS
A. Numerical model. Assimilation problem
In the observation model

z(tk) = f(tk) + ε(tk), f(t) =

N∑

i=1

αicos(ωit), k = 1, ..., M

(12)
let N be given and M > 2N , ε(tk) is a sequence of

zero mean and variance σ2. The experiment is performed
for estimating the parameters αi, ωi (see [13]) where ε(.)
represents the observation error.
Following [13], for ui(t) := αicos(ωit), we have

d2ui

dt2
= −ω2

i ui, ui(0) = αi,
dui

dt
(0) = 0 (13)

z(tk) =
∑N

i=1 ui(tk), k = 1, 2, ...

Fig. 1. The values of the objective functions resulting from three
algorithms: Newton, SA and SPSA

The vector of unknown parameters θ =
(α1, ..., αN , ω1, ..., ωN ) will be estimated by solving
the variational problem (for stationary ε(tk))

J(θ) → minθ, J(θ) =
1

M

M∑

k=1

[z(tk) − f(tk; θ))2] (14)

The system (13) can be reformulated in the form equiva-
lent to (2)(3) as

dx(t)

dt
= 0, x(0) = θ (15)

z(tk) = h[x(t)] =
∑N

i=1 αicos(ωit), k = 1, ..., M

The task is to estimate the initial system state x(0) by
minimizing (14) using the available observations. Comparing
(14) with (1) shows that the first term in the right hand side
of (1) does not participate in (14) which is equivalent to
assuming that there is no a priori information on θ. The
observation operator in the present case is non-linear.

B. Numerical results
The true values of the parameters (αi, ωi) are that given

in [13], i.e. α1 = 1, α2 = 0.5, α3 = 0.1, ω1 = 1.11, ω2 =
2.03, ω3 = 3.42. The corresponding initial values are:
α1(0) = 0.9, α2(0) = 0.6, α3(0) = 0.2; ω1(0) = 1, ω2(0) =
2, ω3(0) = 3; α1(0) = 0.9, α2(0) = 0.6, α3(0) = 0.2.
The measurements are contaminated by the Gaussian noise
N(./m, σ2) with m = 0 and σ2 = 0.01. To estimate θ
we will apply the well known Newton iterative algorithm
(see [10]) and two versions of the stochastic optimization
algorithm: SA (8) and SPSA (section 1, B).
From Fig. 1 one sees that the objective function, asso-

ciated with the Newton-algorithm, decreases most quickly.
Compared to the SA, the SPSA-algorithm works better in
minimizing the objective function. Globally, all three algo-
rithms are capable of well tuning the parameters to decrease
the objective function.
Fig. 2 shows the consistency of three algorithms in esti-

mating α. The SPSA-algorithm produces more efficient esti-
mate for α compared to the SA-algorithm. As to the estimates
for ω, Fig. 3 demonstrates that with noisy measurements, the
strategy to fit fast and exactly the output of the model to
measurements can lead to big biased estimate as it happens
in the Newton-algorithm.
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Fig. 2. Consistency of three algorithms in estimating α

Fig. 3. Estimation errors for ω in three algorithms

VI. ALGORITHM OF THE ROAF FOR ALTIMETRIC SSH
DATA ASSIMILATION

A. MICOM model and observations
The Miami Isopycnal Coordinate Ocean Model (MICOM),

used here for the twin experiment is identical to that de-
scribed in [7]. The model configuration is a domain situated
in the North Atlantic from 300 N to 600 N and 800 W to
440 W; for the exact model domain and some main features
of the oceanic current (mean, variability of the sea surface
height (SSH), velocity ...) produced by the model, see [7].
The observations are SSH taken from the control run every
10 days (ds), only at the grid points io = 1, 11, ..., 131,
jo = 1, 11, ..., 171 from the grid i = 1, 140; j = 1, 180.
They are noise-free.

B. Reduced-order filter and gain structures
The filter used for assimilating SSH observations is of the

form

x̂(k) = F [x̂(k − 1)] + KPoiζ(k), k = 0, 1, ... (16)

where x̂(k) is the filtered estimate for x(k), x(k) =
[h(k), u(k), v(k)] is the system state at k := tk, tk+1 − tk =
10 ds, F (.) represents integration of the MICOM nonlinear
model over 10 ds, K is the filter gain, ζ(k) is the innovation
vector. The operator Poi will interpolate the missing SSH
from observed points. The gain K is symbolically given by
K = (Kh, Ku, Kv)

T withKu, Kv representing the operators
which produce the correction for the velocity (u, v) from the
layer thickness correction KhPoiζ(k) using the geostrophy
hypothesis. As SSH observations are linear functions with
respect to h, the observation equation is given by (3) (see
[7]). By considering Poiz instead of z, the observation
operator H is of the form

H = [Ip, ..., Ip] (17)

where Ip is the unit matrix of dimension pxp (p = Nh is the
number of all horizontal grid points).

C. Structure of the ECM for PE and its estimation

The ECMM(k) is assumed to be constant and of the form

M(k) = Ω = [ωl,m]Nz

l,m=1 ⊗ Ip, (18)

where ⊗ denotes the Kronecker product; Nz is the number
of thickness layers in the model, ωlm is a scalar representing
the covariance of the PE between two layers l and m. The
elements ωlm can be chosen a priori from physical consider-
ations or estimated from error patterns. In the Cooper-Haines
filter (CHF, see [14], [7]), the elements ωlm are deduced from
several physical constraints like conservation of potential
vorticity, no motion at the bottom layer ... In the PEF ωlm

are estimated using the patterns of DScVs. Applying the
DPESP subject to L = 1 yields the ensemble of DPE patterns
δhp(i, j, lr; k), k = 1, ..., T from which one estimates ωlm

by

ωlm(T ) =
1

T

T∑

k=1

μk
l,m, (19)

μk
l,m = 1

p

∑
i,j δhp(i, j, l; k)δhp(i, j, m; k)

where i, j span all horizontal grid points whose number is
equal to p. The terms 1

T
, 1

p
should be replaced by 1

T−1 , 1
p−1

for T > 1, p > 1 to provide the unbiasedness of the
estimates. As the ensemble δhp(i, j, lr; k), k = 1, ..., T is
generated by the model alone, for fixed T , the matrix Ω is
constant.
We will apply the SA algorithms for seeking the

(sub)optimal filters in two class of parametrized filters based
on : 1) the CHF and 2) the PEF. The difference between the
PEF and CHF is lying in the way we estimate the elements
of Ω. Substituting Ω from (19) into (5) and for R = σ2

rIp

leads to

Kh = [k(1)Ip, ..., k(Nz)Ip]T , (20)

k(l) =
∑Nz

m=1
ωl,m

s
, s =

∑Nz

m,m′=1 ωm,m′ + σ2
r

hence k(l) is a scalar, l = 1, ..., Nz. The Cooper-Haines
filter (CHF) [14] is obtained from (20) under hypotheses [7]
on the conservation of linear potential vorticity and of no
correction for the velocity at the bottom layer. For the noise-
free observations, the parametrized gain in the CHF is of the
form [7]

Kchf = [(1−θ2α), (θ2−θ3)α, (θ3−θ4α), θ4α]T ⊗Ip (21)

For the present MICOM model, α = −184.965. The CHF
in [14] corresponds to θl = 1, l = 2, 3, 4 and has the form

Kchf = [185.965, 0, 0,−184.965Ip]
T ⊗ Ip (22)
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Fig. 4. Estimated gain coeffficients as functions of iteration. One sees a
quick convergence of the gain coefficients.

D. Parametrization of the gain for the PEF. Adaptive filter
Following the ROAF approach based on the gain structure

(10), the Cholesky decomposition method is used to decom-
pose M(k) = Ω as

Ω = DDT (23)

Subject to (23), the gain (10) is equal to

K = PrΘKe, Pr = D, θl ∈ (0, 2) (24)

with Ke defined as in (10). In the adaptive filter, the diag-
onal elements of Θ are adjusted to minimize the prediction
error for the SSH variable.
As the coefficient ωlm represents the covariance of the PE

between two layers l and m, they can be estimated using
the simulated DPE patterns obtained from the DPESP. In
the experiment to follow we will generate the ensemble of
T patterns δhp(i, j, lr; k), k = 1, ..., T by applying DPESP
subject to L = 1. The elements ωlm are estimated by (19).
In the adaptive PEF (APEF), the gain (23)(24) is

parametrized with

Θ = diag [θ1, θ2, θ3, θ4] ⊗ Ip, θl ∈ (0, 2), l = 1, l = 1, ..., 4

The initial values θl(0) = 1, l = 1, ..., 4 correspond to the
non-adaptive PEF. For the noisy-free observations, R = 0,
this leads to the gain

Kpef = [205.506,−62.919,−58.478,−83.107]T ⊗ Ip (25)

Figure 4 shows the gain coefficients computed in accor-
dance with (20) which are functions of iteration T . Compared
with the gain in the CHF (22) one sees that the gains in two
filters CHF and PEF are of nearly the same magnitude for
the 1st layer but the physical hypotheses (H2), (H3) ignore
the correction to be made for the intermediate layers l = 2, 3.
In the PEF these corrections remain important to maintain
the better performance of the PEF (see next sections).

E. Adaptive algorithms for the CHF and PEF
Consider two sets of filters with the gain (21) and

(23),(24),(25). The adaptive versions for the CHF and PEF
(denoted as ACHF and APEF) are obtained by varying the
vector of parameters θ to minimize the mean of the SSH
prediction error. Let the initial values for θ be θl = θl(0) =
1, l = 1, 2, 3, 4 which correspond to the non-adaptive CHF
and PEF.

Fig. 5. Sample objective functions resulting from three filters CHF,
ACHF(SP), ACHF(ADJ)

TABLE I
ERROR REDUCTION (IN PERCENTAGE) ACHIEVED BY ACHF(SP) AND

ACHF(ADJ)

ER1(%) ER2(%)
J 22,1 26,2

eu(p) 12,9 18,8
eu(f) 15,4 20,4
ev(p) 15,6 19,6
ev(p) 14,5 18,6
euv(p) 16,7 21,1
euv(f) 15 19,6

VII. NUMERICAL RESULTS

A. Adaptive CHF

In Table I the the error reductions by ACHF(ADJ) (using
gradient measurements computed by adjoint equation) and by
ACHF(SP) (SPSA using measurements of cost function) are
displayed where ER1(%), ER2(%), expressed in percentage,
show how the corresponding ACHF(SP) or ACHF(ADJ)
has reduced rms (root-mean square) of estimation errors
compared to that of CHF. For example, over the large
window k ∈ [5 : 72], the SPSA algorithm has reduced about
15 % rms errors whereas this percentage is of order 20 % if
the gradient is computed by the adjoint code. Figure 5 depicts
instantaneous values of the objective function resulting from
three filters.
To see in detail what happens really during the period

of last four months, i.e. k ∈ [61 : 72], Table II dis-
plays the RMS-PE and RMS-FE resulting from three filters.
As expected, the ACHF(SP) behaves now better than the
ACHF(ADJ), with the reduction of velocity error by more
than 10 %. As to the CHF, during this period one observes
an important increase of estimation error (see Fig. 5).

TABLE II
RMS OF ESTIMATION ERRORS AVERAGED OVER k ∈ [61 : 72]

Filter CHF ACHF(SP) ACHF(ADJ)
J(cm) 11.53 5.48 7.02

eu(p)(cm/s) 9.25 5.03 5.88
eu(f)(cm/s) 7.57 4.49 5.04
ev(p)(cm/s) 9.36 5.28 6.15
ev(f)(cm/s) 8.05 4.72 5.28
euv(p)(cm/s) 8.94 4.96 5.78
euv(f)(cm/s) 7.51 4.43 4.96
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TABLE III
RMS OF ESTIMATION ERRORS AVERAGED OVER k ∈ [5 : 72]

Filter PEF APEF(SP) APEF(ADJ) ER1 (%) ER2 (%)
J 6.36 5.90 5.88 7.2 7.5

eu(p) 5.69 5.42 5.34 4.7 6.2
eu(f) 4.77 4.48 4.45 6.1 6.7
ev(p) 5.74 5.43 5.36 5.4 6.6
ev(f) 5.10 4.83 4.79 5.3 6.1
euv(p) 5.57 5.24 5.20 5.9 6.6
euv(f) 4.90 4.62 4.59 5.7 6.3

TABLE IV
RMS OF ESTIMATION ERRORS AVERAGED OVER k ∈ [61 : 72]

Filter PEF APEF(SP) APEF(ADJ) ER1(%) ER2(%)
J 6.94 5.75 5.96 17.1 14.1

eu(p) 5.99 5.04 5.23 15.9 12.7
eu(f) 5.26 4.44 4.59 15.6 12.7
ev(p) 6.19 5.19 5.41 16.2 12.6
ev(f) 5.47 4.56 4.82 18.5 11.9
euv(p) 5.85 4.92 5.11 15.9 12.6
euv(f) 5.15 4.32 4.52 16.1 12.2

B. Adaptive PEF
Table III-IV show that the PEF is much more efficient

than the CHF and it slightly outperforms the ACHF(SP) and
ACHF(ADJ). Thus the statistics extracted from DPE samples
play the important role in correct estimating the filter gain
and in improving the filter performance.
As the errors in the PEF are much lower than those

produced by the CHF, there remains no great margin for
reducing the errors in the PEF by adaptation compared to
the case of optimizing the CHF structure. Even though,
as seen in Tables III-IV, the adaptation remains still as
advantageous tool for improving the performance of the
PEF. For the assimilation period, compared with the PEF,
the adaptation allows to reduce the rms estimation error by
about 5-6 % in the APEF(SP) and 6-7 % in the APEF(ADJ).
These reductions are less important than that achieved by
the ACHF(SP) and ACHF(ADJ) with respect to the CHF
(they are equal to 15 % and 20 % respectively, see Table
I). At the last 4 months of assimilation, the APEF(SP) again
outperforms the APEF(ADJ). Meantime, the error reduction
is achieved by 16-17 % in the APEF(SP) and by 12-13 %
in the APEF(ADJ) compared to the non-adaptive PEF. The
performance of the APEF presented here is based on the
gain parametrization consisting of each parameter for each
layer thickness. Due to space limit of this paper we cannot
present here the way to parametrize the gain in 3d space.
In this situation the number of parameters to be updated in
the gain is equal to 140x180x4 = 100800 elements. By this
way one can reduce more efficiently the filtered errors at
the same computational cost as shown in this paper for 4
parameters since the SPSA uses simultaneous perturbations
to approximate the gradient vector. We do hope to present
these interesting results in an expanded version of this paper.

VIII. CONCLUSIONS

The objective of this paper is to present a very simple
tool named as SPSA for optimization problems in very high
dimensional systems and to demonstrate its high efficiency
in state-parameter estimation problems which are typically

encountered in the field of data assimilation in meteorology
and oceanography. The SPSA algorithm is very simple to
implement since it requires only two integrations of direct
numerical model for estimating the gradient of objective
function. For meteorological and oceanic models with di-
mension of order 107 − 108, this method represents a great
advantage for future development of optimal assimilation
systems. As seen from the numerical experiments, due to
a random simultaneous perturbation of all parameters, the
SPSA requires more iterations, compared to the adjoint
method, to well determine descent direction and to minimize
the objective function. On the other hand, the SPSA method
seems to be more efficient as iteration progresses, especially
in optimizing non-linear systems since it calculates deriva-
tives using the difference between two non-linear integrations
of the model whereas the adjoint method approximates the
gradient by linearization technique. That is why we found
in all experiments the better performance of the AF based
on SPSA at the end of assimilation period, compared to that
based on the adjoint method.
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