
 
 

 

 
Abstract—The flow of a stream coming out of a pipe and 

hitting a horizontal wall is considered. Both cases of rising and 
falling flows are studied. First, for the rising flow, depending on 
the length of the wall L and the Froude number F, the wall can 
either divert the stream or lead to its detachment. The problem 
is reformulated using conformal mappings and the resulting 
problem is then solved by a collocation Galerkin method. A 
particular form is assumed for the solution, satisfying 
Bernoulli’s equation on the free surfaces at certain discrete 
points. The resulting equations are solved by Newton’s method. 
Solution profiles are presented for particular values of F and 
the question of the lift exerted on the wall is addressed. Then, 
the falling flow case is studied in the presence of a horizontal 
wall of infinite length. Depending on the elevation H of the pipe 
relative to the horizontal wall and F, the flow can either leave 
the pipe tangentially or detach from the edge of the pipe. 
Results are presented showing either a tangential departure 
from the pipe and no squeezing, or a tangential departure from 
the pipe followed by squeezing of the liquid. Finally, the cases of 
flows in the presence of stagnation points are discussed. 

 
Index Terms—free-surface flow, impact, jet, stagnation.  

 

I. INTRODUCTION 

In general, the numerical computation of free-surface 
flows in the presence of gravity is a notoriously difficult 
problem. One important case of such flows is the case of 
rising and falling flows. Rising flows occur in numerous 
applications, as steady jets rising and falling under gravity 
(see, for example, [1]), water fountains [2], bow flows with a 
jet in front of the ship [3], flows emerging from a nozzle and 
falling under gravity [4]–[5]. On the other hand, the problem 
of falling flows finds applications in such problems as jets 
falling from nozzles and funnels [6]–[7], rising bubbles 
[8]–[10], bubbles rising in an inclined pipe [11]–[12], the 
emptying or the filling of a closed pipe and surf-skimmer 
planing hydrodynamics [13]–[15]. For more related studies 
see [16]–[17]. 

The present paper, which is basically a review of [16]–[17], 
gives insight to two realistic cases: (i) the case where a wall 

 
Manuscript received March 4, 2010. This work has been supported by 

ANR HEXECO, Project no BLAN07-1_192661 and by the 2008 Framework 
Program for Research, Technological development and Innovation of the 
Cyprus Research Promotion Foundation under the Project 
AΣTI/0308(BE)/05. 

Paul Christodoulides is with the Faculty of Engineering and Technology, 
Cyprus University of Technology, Cyprus (corresponding author, phone: 
+357 25002611; fax: +357-25002635; e-mail: paul.christodoulides@ 
cut.ac.cy).  

Frédéric Dias is with the School of Mathematical Sciences, University 
College Dublin, Ireland, on leave from CMLA, Ecole Normale Supérieure de 
Cachan and CNRS, France (e-mail: frederic.dias@ucd.ie). 

Lazaros Lazari is with the Department of Mechanical Engineering, 
Higher Technical Institute, Cyprus (e-mail: LLazari@hti.ac.cy). 

 

diverts the jet emerging from a pipe pointing upward, and (ii) 
the case where an infinite wall diverts the jet falling from a 
pipe pointing downward. Several limiting cases are discussed 
as well.  

When a stream of fluid flows up and out of the top of a 
long two-dimensional vertically-sided pipe of width 2W and 
meets a horizontal wall of length 2L set at a height H above 
the top of the pipe, the flow splits into two jets that reach a 
maximum height on each side of the wall and then fall under 
gravity. The solution depends on H/W, L/W and on the 
dimensionless Froude number 

 

,
gW

U
F                                    (1) 

 
where g is the acceleration due to gravity and U the velocity 
of the fluid far inside the pipe. 

The problem is formulated in §II. Conformal mappings 
lead to a formulation of the problem that is well-suited for 
discretization. A system of N nonlinear equations in N 
unknowns is then derived and is solved numerically through 
a collocation Galerkin method explained in §III, where the 
numerical results and computed profiles of the free surfaces 
are presented as well. A study of the lift force exerted on the 
horizontal wall and of the pressure distribution along the wall 
is performed in §IV.  

Then, based on a similar formulation, we consider a stream 
of fluid flowing down and out of the bottom of a long 
two-dimensional vertically-sided pipe of width 2W. The 
downwardly directed flow meets a horizontal wall of infinite 
extent set at a distance H below the bottom end of the pipe. 
The flow splits into two jets on each side of the pipe 
following a path along the horizontal wall. Again, the 
solution of the problem depends on the ratio H/W and on the 
Froude number F. The numerical results of computed 
profiles and a study of the pressure along the horizontal wall 
are presented in §V.  

Finally, in §VI we study related flows, where the 
detachment point along the wall is a stagnation point. 
 

II. RISING STREAMS: FORMULATION OF THE PROBLEM 

We consider the steady irrotational flow of an 
incompressible inviscid fluid emerging from a pipe of width 
2W directed upward, hitting a horizontal wall of length 2L 
placed at a vertical distance H from the edges of the pipe and 
falling symmetrically under gravity. As shown in Fig. 1, the 
stream coming from far inside the pipe (see point I) hits the 
horizontal wall, centered at point A, and forms two jets – one 
on each side – detaching at points B (B) and S (S) and 
forming free surfaces BJ (BJ) and SJ (SJ) to the 
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right (left). 
Due to symmetry, the formulation of the problem is based 

on the ‘right’ half of the flow. The results presented in the 
sequel are simply obtained by superposition of the ‘left’ and 
‘right’ flows. The coordinate system to be used is (x, y), x 
being horizontal and y vertical. The point B is taken as the 
origin (see Fig. 1). The mass flux emerging from the ‘right’ 
pipe is 
 
Q = UW.                                  (2) 

 
Let u and v denote the x- and y-components of the fluid 

velocity. The system is assumed to be governed by 
irrotationality and incompressibility. This leads to (u, v) = , 
with Laplace’s equation 2 = 0 holding for the velocity 
potential . Bernoulli’s equation then follows as a first 
integral of the Euler (momentum) equations of motion and 
reads 

 

,constant)( 22
2
1 


p

gyvu                     (3) 

     
which is valid everywhere inside the fluid and where p is the 
pressure and  the fluid density. Assuming that the pressure 
has the same constant value p = 0 on all free surfaces, and 
taking W and U as the unit length and unit velocity 
respectively, Q becomes unity and Bernoulli’s equation on 
the free surfaces becomes, in dimensionless form, 
 

.
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Here the same symbols are kept for the dimensionless 
variables for the sake of simplicity. The constant on the 
right-hand side has been evaluated at point B, where the 
velocity is purely vertical and y = 0.  
 

 
Fig. 1. Sketch of the flow and of the coordinates. The 
free-surface profile is a computed solution for F = 2.0 and    
(xS, yS) = (0, 2.6). Special points are labeled on the boundary.  
 

The problem under consideration can be solved with the 
use of conformal mappings. Hence, we introduce the 
complex variable z = x + iy, the complex potential f =  +  
(velocity potential  (x, y), streamfunction (x, y)), and the 
hodograph variable 

 

.)( ivu
dz
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z                                (5) 

 
The domain of the fluid in the f-plane is then transformed into 
the upper half of the unit disk in a t-plane. The transformation 
from the f-plane to the t-plane can be written as 
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Note that the free surfaces in the t-plane are described by the 
points t = eiσ, σ[0, π]. 
 

The problem now reduces to finding the hodograph 
variable ζ as an analytic function of t, satisfying Bernoulli’s 
equation (4) on the free surfaces. Considering the 
singularities present, it turns out [16] that  
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where |ζ(tI)| = 1. The value of ζ does not depend on c. The 
function Ω(t) here is analytic for |t|<1 and continuous for |t|  
1, and can be expanded in a power series of the form 
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III. NUMERICAL METHODS AND RESULTS 

   The coefficients an in the power series (8) can be 
determined by using a collocation Galerkin method. We 
truncate the infinite series after N – 2 terms and introduce on 
the free surfaces the mesh points 
 

),(
2 2

1


 M
NM

    M = 1, … , N – 2.             (9) 

 
To compute the values of y in Bernoulli’s equation (4), use is 
made of the equation 
 

,
1

dt

df

dt

dz


                               (10) 

 
which is integrated numerically. Substituting the expressions 
of y and ζ into equation (4) at the mesh points σM, we obtain   
N – 2 nonlinear algebraic equations for the N unknowns a1, 
…, aN–2, tI and tA. The last two equations are obtained by 
imposing the position of point S (xS, yS). 

The solutions we consider form a three-parameter family 
of solutions. The three parameters are the Froude number F, 
the offset parameter xS (= L/W – 1), and the aperture 
parameter yS (= H/W). When the offset is negative one 
obtains underhanging configurations, while for positive 
offsets one obtains overhanging configurations. When xS = 0, 
the edge of the wall is on the same vertical line as the side of 
the pipe. Of course, if the elevation of the wall is too high, the 
flow may not reach the wall, so there is an upper bound on yS. 
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   In order to study systematically the three-parameter family 
of solutions, we let the offset of the wall and the aperture 
between wall and pipe vary for given values of the Froude 
number F. Imagine that the Froude number F is fixed and that 
one varies the size and the position of the wall. If the wall is 
short enough and not too high, then the flow will continue as 
two rising jets after hitting the wall. If the wall is long 
enough, the flow will follow the wall without rising any 
longer. It will eventually develop into two downward jets. If 
the wall is neither short nor long, the flow will look like a 
fountain (see Fig. 1). 
   We now present results, covering all cases, for F = 2.0. 
Note that the general behavior is the same for all Froude 
numbers. 
   (a) ‘Rising’ jet. In this case, the stream is weakly diverted 
by the horizontal wall when hitting it, then continues to rise 
in the form of jets before eventually falling down under 
gravity. This is shown in Fig. 2 for (xS, yS) = (–0.4, 1.0). 
   (b) ‘Overhanging’ jet. In this case, the stream is strongly 
diverted by the horizontal wall when hitting it, then follows 
an almost horizontal trajectory in the form of jets before 
eventually falling down under gravity. This is shown in Fig. 3 
for (xS, yS) = (1.3, 1.1). The solution shown here is 
reminiscent of the limiting no-gravity case (F  ∞, xS  ∞). 
   (c) ‘Intermediate’ jet. In this case the stream rises slightly 
after hitting the wall, but then quickly falls down under 
gravity. An example was already shown in Fig. 1(a) for (xS, 
yS) = (0, 2.6). The flow looks like a fountain and the wall has 
only a small effect on the flow. 
 

 
Fig. 2. Same as Fig. 1 for F = 2.0 and (xS, yS) = (–0.4, 1.0). We 
refer to such flows as ‘rising’ jets. 

 
Fig. 3. Same as Fig. 1 for F = 2.0 and (xS, yS) = (1.3, 1.1). We 
refer to such flows as ‘overhanging’ jets. 
 

IV. UPLIFT FORCE EXERTED ON THE HORIZONTAL WALL 

   One of the most interesting features of the present 
application is the study of the lift FL exerted on the wall. It is 
equal to the vertical component of the pressure force exerted 

on the wall. Using Bernoulli’s equation (3), one obtains the 
following expression for the lift coefficient CL: 
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where uS is the velocity at point S. Since the flows depend on 
three independent parameters it is not possible to perform a 
full parametric study. Fixing the Froude number we let the 
elevation of the wall yS vary for a discrete set of values of the 
offset xS. The results are presented in Fig. 4. For some 
parameters, the lift coefficient was found to be negative (see 
the middle and right plots). In other words, the wall is being 
sucked down by the flow rather than lifted up.  

This somewhat counterintuitive result can be explained as 
follows. Along the wall SAS Bernoulli’s equation simply 
reads .2

2
12

2
1

Supu   At the centre of the wall (point A) the 

pressure is maximum since the velocity u is 0. At the edges of 
the wall (points 'S  and S) the pressure is 0 (atmospheric 
pressure). In the limit as point S becomes a stagnation point 
(see §VI), the velocity uS becomes identically 0 and therefore 
the pressure must be negative everywhere along the wall 
( 2

2
1 up  ). On the middle and right plots, the upper bound 

for yS indeed corresponds to the formation of a stagnation 
point at the edge of the wall S. 
 

 
Fig. 4. Lift exerted on the wall. Plot of the lift coefficient (11) 
as a function of the wall-elevation yS, for three different 
values of the offset xS, for F = 2. Left: xS = –0.4; middle: xS = 
0; right: xS = 1.3. 
 

V. FALLING JETS 

   We now consider the ‘inverted’ case of a steady irrotational 
flow of an incompressible inviscid fluid falling from a pipe of 
width 2W under gravity, hitting a horizontal wall of infinite 
length placed at a vertical distance H from the bottom edges 
of the pipe and splitting symmetrically into two jets one on 
each side of the pipe. As shown in Fig. 5, the stream coming 
from far inside the pipe (see points J, J) hits the horizontal 
wall, centered at point C, and forms two jets – one on each 
side – detaching at points A, A and forming free surfaces 
AI, AI. 
   Following the formulation in §II, the corresponding 
transformation from the f-plane to the t-plane can be written 
as 
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Fig. 5. Sketch of the flow and of the coordinates. The 
free-surface profile is a computed solution for H = 1.5 and F 
= 1.5. Special points are labeled on the boundary.  
 
In this case, the hodograph variable is 
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where ζ(0) = i and Ω(t) is given as in (8). The parametrization 
t = eiσ, σ[0, π], of the free surface in the t-plane and 
differentiation of Bernoulli’s equation (4) with respect to σ 
yields 
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Substituting the expression of ζ into equation (14), at N mesh 
points σM we obtain N nonlinear algebraic equations for the N 
unknowns a1, …, aN. Given F and H, this system is solved by 
Newton’s method, giving a two-parameter family of 
solutions.  
   In Fig. 5, we have already shown a computed solution 
where the distance of the horizontal wall from the end of the 
pipe is H = 1.5 for a relatively large value of the Froude 
number F = 1.5. One can see that the flow leaves the pipe at A 
(A) tangentially at an angle of 180o and gradually moves to 
the right (left) forming a single-free-surface jet that moves 
along the horizontal wall to + (–). Keeping F fixed at 1.5 
and letting H vary has the following effect in the behavior of 
flow. As shown in Fig. 6 for ‘small’ H = 0.2 the flow, after 
detaching, moves to the right (left) almost immediately and 
continues along the horizontal wall to + (–). For ‘large’ H 
= 3.0 (see Fig. 7) the jet becomes thinner (i.e. the fluid is like 
being squeezed) after detaching, then is gradually diverted 
and finally moves along the horizontal wall to + (–). 
 

 
Fig. 6. Same as Fig. 5 for H = 0.2 and F = 1.5. 

 
Fig. 7. Same as Fig. 5 for H = 3.0 and F = 1.5 (N = 400). 
 
   Increasing the Froude number to ‘large’ values has no 
effect on the behavior of the flow for small to medium 
heights H. This behavior though, persists even for large 
values of H, as demonstrated in Fig. 8, where F = 10 and H = 
3.0. One can observe that there is no squeezing of the free 
surfaces. In fact, for H = 3.0, the transition value of F 
(separating the regions with and without squeezing) is 3.3. 
   On the other hand, decreasing the Froude number to 
relatively low magnitude has the effect that the squeezing of 
the free surfaces occurs regardless of the magnitude of the 
height H. For instance, n fact, for H = 1.5, the transition value 
of F (separating the regions with and without squeezing) is 
0.93. 
 

 
Fig. 8. Same as Fig. 5 for H = 3.0 and F = 10. 
 
   The curve along which the transition between squeezing 
and no-squeezing occurs is shown in Fig. 12 (see §VI). It is 
the curve that separates region I from region II. 
 

VI. FLOWS WITH A STAGNATION POINT  

 
   A. RISING FLOWS 
 
   For the case of rising flows, if one wishes to impose the 
condition that the edges of the horizontal wall S and 'S  are 
stagnation points, then – following the formulation in §II – 
the hodograph variable is 
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where |ζ(tI)| = 1 and Ω(t) is given as in (8). Substituting the 
expressions of y and ζ into equation (4), at N – 2 mesh points 
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σM we obtain N – 2 nonlinear algebraic equations for the N 
unknowns a1, …, aN–3, F, tI and tA. The last two equations are 
obtained by imposing the position of S. Again, this system of 
N nonlinear equations in N unknowns is solved by Newton’s 
method. 
   We first study the effect of the position of the stagnation 
point S on the Froude number F. For three ‘extreme’ values 
of xS, namely –0.95, 0 (the wall length and the pipe width are 
equal) and 1, i.e. letting the horizontal wall vary from very 
short to long, the resulting relation F vs yS is demonstrated in 
Table 1. It turns out that the x-coordinate of the stagnation 
point has very little effect on the relation F vs yS. Of interest is 
the fact that when xS = 1 (long wall), there is a limiting wall 
elevation at about yS = 0.42. If the wall is lowered below that 
value, the flow will not be able to reach the end of the wall 
and will detach before the edge of the wall. This limiting 
behavior occurs for all positive values of xS.  
 
Table 1. Values of the Froude number F as a function of xS  
and yS for flows with a stagnation point. 
 

    xS 

yS 
–0.95 0 1 

0.1 0.019 0.018 - 
0.2 0.053 0.052 - 

0.42 0.159 0.155 0.205 
0.6 0.267 0.261 0.338 
1.0 0.547 0.538 0.636 
1.4 0.852 0.841 0.923 
1.8 1.155 1.145 1.201 
2.0 1.302 1.293 1.337 
2.4 1.583 1.577 1.600 
2.8 1.844 1.840 1.849 
3.0 1.966 1.963 1.959 

 
   Fig. 9 shows the computed solution for a long horizontal 
wall with (xS, yS) = (1.0, 3.0), yielding F = 1.96. Finally Fig. 
10 shows the computed solution for a very short horizontal 
wall with (xS, yS) = (–0.99, 1.64), yielding F = 1.04. This can 
be compared with the limiting case of no horizontal wall. In 
fact solutions of this kind (in the absence of horizontal wall) 
were computed in [5].  
 

 
Fig. 9. Free-surface profiles with stagnation point at (xS, yS) = 
(1.0, 3.0). The Froude number F = 1.96 comes as part of the 
solution. 
 
   Solutions have been found to exist only for values of F 
greater than a certain critical value F0. For example, with     
(xS, yS) = (–0.68, 1.20), the critical value F0 is roughly 0.70. 

The free-surface profiles are shown in Fig. 11 and are 
reminiscent of the weir flows [18]–[19]. The effect of the 
stagnation point is so local that it barely influences the whole 
flow.  
 

 
Fig. 10. Same as Fig. 9 for (xS, yS) = (–0.99, 1.64). The 
Froude number F = 1.04 comes as part of the solution. The 
wall is so small (total length of 0.02) that it cannot be seen on 
the figure. Points A (centre of the wall) and S (edge of the 
wall) are both stagnation points but they have different 
singular behavior. 
 

 
Fig. 11. Same as Fig. 9 for (xS, yS) = (–0.68, 1.20) and F = 
0.70, and the blow-up of the upper right free surface near the 
stagnation point S. 
 
   B. FALLING FLOWS 
 
   For the case of falling flows, if one wishes to impose the 
condition that the flow exhibits stagnation points at the ends 
of the pipe A and 'A , As in the simplified configuration of a 
falling jet in the absence of the horizontal wall [10], the only 
possible values for the angles between the vertical side of the 
pipe and the free surface are 90o and 120o. The 90o case 
corresponds to the free surface leaving the side of the pipe 
horizontally, while the 120o case corresponds to the free 
surface leaving the side of the pipe at a 60o angle from the 
vertical. Following the formulation in §II, the hodograph 
variable is 
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where ζ(0) = i and Ω(t) is given as in (8) Substituting the 
expressions of ζ into equation (14), at N mesh points σM we 

- - - 0 2 4
-

-

0

1

2

3

4

x

y

- - - - 0 1 2

-

0

1

2

x

y

-4 -2 0 2
-1

0

1

x 

y

-0.7 -0.6 -0.5 -0.4

1.15

1.2

1.25

x 

y

Proceedings of the World Congress on Engineering 2011 Vol I 
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-18210-6-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011



 
 

 

obtain N nonlinear algebraic equations for the respectively N 
unknowns a1, …, aN–1, F, giving a one-parameter (for H) 
family of solutions (120o-case), or a1, …, aN, giving a 
two-parameter (for F and H) family of solutions (90o-case). 
Once more, these systems of equations are solved by 
Newton’s method. 
 

 
Fig. 12. The two plotted curves divide the (F, H/W) plane into 
three regions. In region I, the jet emerges from the pipe 
without a stagnation point and is immediately deflected. In 
region II, the jet emerges from the pipe without a stagnation 
point but experiences squeezing before being deflected by 
the horizontal wall. In region III, the jet emerges from the 
pipe with a stagnation point. 
 
   It turns out that flows exhibiting a stagnation point of 120o 
exist only for ‘small’ Froude numbers, Fs  0.50 = Fcr. 
Actually, this critical value Fcr corresponds exactly to the one 
found in [10] (note that by definition the Froude number of 
the present paper is equal to 2  times the Froude number in 
that paper). The curve that gives Fs as a function of the 
elevation H is given in Fig. 12. It is the boundary between 
regions II and III. As H increases, Fs approaches the limiting 
value of 0.5, which corresponds to the configuration in the 
absence of the horizontal wall. A typical flow is shown in 
Fig. 13 for H = 1.01, corresponding to a Froude number of F 
= 0.35. One can see that the flow detaches at A (A) at an 
angle of 120o and gradually turns to the right (left) and moves 
along the horizontal wall to + (–). Note that the same 
results can be obtained through the formulation in §V but the 
convergence is not as good. The reason is that the singularity 
is so local that it does not affect much the rest of the solution. 
 

 
Fig. 13. Free-surface profiles with 120o stagnation points at 
A, A for H = 1.01. The Froude number F = 0.35 comes as part 
of the solution. 
 

   On the other hand, flows exhibiting a stagnation point of 
90o exist for ‘small’ Froude numbers (F < Fcr, see the 120o 
case) for values of H larger than the value of H corresponding 
to the 120o case. For instance, for F = 0.35 such solutions 
exist for 1.01  H, where 1.01 is the corresponding H for the 
120o case. An example of a flow with 90o stagnation points is 
demonstrated in Fig. 14 for H = 0.5 and F = 0.1. Such 
solutions fall into region III of Fig. 12 above. 
 

 
Fig. 14. Free-surface profiles with 90o stagnation points at A, 
A for H = 0.5 and F = 0.1 (N = 400). 
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