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Abstract : In this paper, a new method called general 

variational iteration method (GVIM) has been presented for 
deriving accurate/approximate analytical solution to strong 
nonlinear oscillators. Oscillator problems are frequently 
encountered in many major fields of science and engineering. 
Only one iteration leads to high accuracy of the solutions and 
the relative error for the approximate period is less than 1.6% 
for amplitudes as high as 130◦. Furthermore, it is shown that a 
large class of linear or nonlinear differential equations can be 
solved without the tangible restriction of sensitivity to the 
degree of the nonlinear term, adding that the method is quite 
convenient due to reduction in size of calculations. Results 
obtained by General variational iteration method (GVIM) are 
compared with Homotopy Perturbation Method (HPM) and 
Energy Balance Method (EBM) and it is shown that, simply 
one term is enough to obtain a highly accurate result. 
The results are valid not only for weakly nonlinear systems, 
but also for strongly nonlinear ones. We believe that the 
present study may be a suitable and fruitful exercise for 
teaching and better understanding of analytical techniques in 
advanced undergraduate courses on classical mechanics. 
 
 

Keywords : General variational iteration method, strongly 
nonlinear systems, nonlinear pendulum 
 

I. INTRODUCTION 

 
here are several methods used to find approximate 
solutions to nonlinear problems, such as perturbation 
techniques [4,9–12] or harmonic balance based methods 

[13–15]. A review of some asymptotic methods for strongly 
nonlinear equations can be found in detail in [16]. And it is 
well known that the perturbation method is one of the 
commonly used quantitative methods for analyzing 
nonlinear problems. Nayfeh [1] has presented an account of 
various perturbation techniques, pointing out their 
similarities, differences and advantages, as well as their 
limitations. The perturbation method is valid in principle 
only for problems containing small (or large) parameters.  
Its basic idea is to transform, by means of small parameters, 
a nonlinear problem into an infinite number of linear sub- 
problems, or a complicated linear problem into an infinite 
number of simpler ones. Therefore, the small parameter 
plays a very important role in the perturbation method. It  
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determines not only the accuracy of the perturbation 
approximations but also the validity of the perturbation 
method itself. Therefore, it is the small parameter that  
greatly restricts the applications of the perturbation method. 
However, in science and engineering, there exist many 
nonlinear problems which do not contain any small 
parameters, especially those with strong nonlinearity.  Thus, 
it is necessary to develop and improve some nonlinear 
analytical techniques which are independent of small 
parameters.[5,6] 
 In this paper, for removing the demerits of the perturbation 
method we propose Generalization of the variational 
iteration technique to obtain an approximate expression for 
the period of the nonlinear pendulum. While in HPM (as one 
of best method for solving nonlinear problems), which 
requires neither a small parameter nor a linear term in the 
differential equation, an artificial perturbation equation is 
constructed by embedding an artificial parameter [0,1]  , 

which is used as an expanding parameter [13]. This 
technique yields a very rapid convergence of the solution 
series; in most cases only one iteration leads to high 
accuracy of the solution. An important advantage of this 
method is that it can be applied to nonlinear oscillatory 
problems for which the nonlinear terms are not ‘small’, i.e., 
no perturbation parameter needs to exist [13]. For this type 
of oscillators—the nonlinear pendulum is one of them—the 
traditional perturbation methods such as the Lindstedt–
Poincar´e method cannot be applied because a linear term 
and a perturbation parameter are not present [7, 10,13]. The 
use of General variational iteration method (GVIM) is of 
great interest for students, since this technique can be 
applied to solve differential equations that could not be 
solved using standard perturbation methods. In our opinion, 
students of physics must at least once analyze a nonlinear 
differential equation by using perturbation techniques, since 
these ones represent a relatively easy way of solving this 
type of equations without the use of complex mathematics. 
 

II. DESCRIPTION OF THE NOVEL METHOD 

 
    To illustrate the basic ideas of the proposed method in 
[1,2,8], the following differential equation is considered 
 

f(t)=N[u(t)]+Lu(t)               (1) 

 
Where L  is a linear operator, N  a nonlinear operator and 

)t(f  an inhomogeneous term. Eq. (2) which can be written 

as operator from as follows 
 

))t(u(h=)]t(u[ψ→)t(f=]u[χ           (2) 
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where ψ  is a nonlinear operator that embraces the nonlinear 

source and the rest of linear operator of the Eq. (1); 
therefore, considering initial conditions to be zero with 
regard to the independent variable and by taking Laplace 
transform of both sides of Eq. (2) in the usual manner (since 

0u  is chosen so that 0=Lu0 ) and also by taking inverse 
Laplace transform, the following iteration formulation can 
be obtained: 
 

1 0

0

( ) ( ) ( ( )) ( )
t

n nu t u t h u b t d                 (3)           

 
provided that 0u  is an initial solution with or without 

unknown parameters, )s(Ρ  is a polynomial with the degree 

of the highest derivative in Eq. (1) and Η=))]t(u(h[L   ,   

 
),s(Β=)]t(b[L),s(Ρ/1=)s(Β                    (4) 

 
In this method, the problems are initially approximated with 
possible unknowns and, till here, there has been no 
dependence on small parameters; therefore, it can be applied 
in non-linear problems without linearization or small 
perturbation. The approximate solutions obtained by the 
proposed method rapidly converge to its exact solution. 
 

III. NONLINEAR PENDULUM 

 
In this section, We consider the simple mathematical 

nonlinear pendulum which can be written in the form [3]: 
 

,0=θsinΩ+
dt

θd 2
2

2

              (5) 
 
where θ is the angular displacement, t is the time, 

2 /g L   is the natural frequency of the small oscillations 

of the pendulum,  L is the length of the pendulum and g is 
the acceleration due to gravity. The oscillations of the 
pendulum are subjected to the initial conditions ,A=)0(θ  

and (0) 0,  , A being the amplitude of the oscillations. 

 

 
 

Fig. 1. The simple pendulum 

 The periodic solution )t(θ of equation (1) and the period 

depend on the amplitude A. Equation (1), although 

straightforward in appearance, is in fact difficult to solve 
because of the nonlinearity of the trigonometric function. 
To solve Eq. (2) by the GVIM method, it can be rewritten as   
 

2( ) ( ) ( ( )),t t F t                                     (6) 

 
where 
 

2 2( ( )) ( ) sin ,F t t                    (7) 

 
By applying the GVIM, the following recursive iteration 
will be constructed. 
Now the GVIM is applied to solve the Eq. (6) and the 
following recursive iteration is constructed  

               (8) 

1 0

0

1
( ) sin( ( )) ( ( )) ,

t

n nt t F d      
     

 
The trial function was used for determining the angular 
frequency  , i.e., the first approximation to Eq. (5) was 
assumed to be 
 

0 ( ) cos( ),t A t                         (9) 

 
To obtain and eliminate secular terms in equation (8) we 
need to obtain contributions proportional to cos( )t  due to 

sin( cos( ))A t . To do this, we can consider the following 

Taylor series expansion: 
 

2 1 2 1

0

( 1)
sin( cos ) cos ,

(2 1)!

n
n n

n

A t A t
n

 


 






      (10) 

 
The formula that allows us to obtain the odd power series of 
the cosine is 
 

 2 1
2

0

2 11
cos cos 2 1

2

n
n

n
k

n
t k t

n k
 



 
      

    (11) 

 
Substituting equation (11) into equation (10) gives 
 

 
2 1

2
0 0

2 1( 1)
sin( cos ) cos 2 1 ,

2 (2 1)!

n n n

n
n k

nA
A t k t

n kn
 



 

 
       
   

                     (12) 
 
By using the Eq. (7) and consider three term of Eq. (12)  we 
have 
 

2 3 2 2 5 2
0

2 5 2 3

2 5

1 1
( ( )) cos( )

8 192

1 1
cos(3 ) cos(3 )

384 24
1

cos(5 )
1920

F t A A A A t

A t A t

A t

  

 



       
 

   

 

  

                     (13) 
 
Since no secular terms should be present in Eq.(13), the 
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coefficient of )tωcos(  was set equal to zero which yielded 

the corresponding approximate period of the oscillation as: 
 

2 4
0

1
72 576 3

24
A A                (14) 

 
therefore the first approximation to the periodic solution of 
the nonlinear oscillator was given by the following equation 
 

1

2

2 3
2

2

2

( ) cos( )

16cos( ) 240cos( )

15cos(3 ) 240cos(3 )
46080

cos(5 )

t A t

t A t
A

t A t

A t

 

 

 






  
 

   
      (15)

 

 
and so on the second order approximation of frequency of 
oscillator is obtained by setting the coefficient of )tωcos( in  

F( 1 ) in Eq.(16) equal to zero.  

 

2 3 5 2
1

1 1
( ( ))

6 120
F t           

 
    (16) 

 
Where 

2

2 3
2

2

2

16cos( ) 240cos( )
1

cos( ) 15cos(3 ) 240cos(3 )
46080

cos(5 )

t A t
A

A t t A t

A t

 

   




  
 

    
  

                     (17) 
 
Then, after getting the first approximation to the frequency  
one can reach to the second approximation to the periodic  

solution of the nonlinear oscillator (5) by using the iteration 
formula in Eq. (8). Obtained numerical results are illustrated 
in Figs. 2, 3 and Table (1). In order to have a comparison 
between the approximate and exact frequency expressions of 
the oscillation amplitude, the relative error is analytically 
obtained for GVIM and EBM and HPM in this section. 
 

IV. CONCLUSION 

 
Analytical approach was successfully applied to strong 

nonlinear equations such as pendulum problems to obtain an 
approximate expression for the period of the pendulum. In 
addition, in Table (1) the accuracy of the method was 
investigated by a comparison which was made between 
HPM and energy balance method. It was shown in Table (1) 
that the accuracy of our method by using three terms in 
Taylor’s series solution of sine function and only one 
iteration is higher than HPM. The method is useful to obtain 
analytical solution for all oscillators and vibration problems, 
such as in the fields of civil structures, fluid mechanics, 
electromagnetics and waves, etc. These provide a simple 
and pedagogical example for introducing this technique by 
means of an example. On the other hand, undergraduate 
students can easily see that the method considered in this 
paper is extremely simple in its principle, quite easy to use, 
and gives a very good numerical accuracy to the periodic 
solutions. 
Results in Tables 1 and Figs. 2, 3 reveal that this method can 
be considered as a viable alternative for conventional 
methods which can solve highly nonlinear oscillatory 
systems. 
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Fig. 3. Comparison of the GVIM and the exact 
solution for A=1 
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