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Abstract-Simultaneous spectrophotometric methods are 
described for the determination of oleic, linoleic, and linolenic 
fatty acids in vegetable oil samples using neural network 
(NN), principal component regression (PCR), partial least 
squares (PLS1 and PLS2), and K-matrix (KM) algorithms. 
The assay used to obtain the absorbance spectrum unique for 
each fatty acid is selective to the -CH=CH-CH2 that reaches 
spectral maturity after 15 minutes. Results show that the root 
mean square error of prediction (RMSEP) compared quite 
equally well for PCR, PLS1, and PLS2 algorithms for the 
three components, with these algorithms outperforming NN 
and KM. In sunflower and vegetable oil unknown samples, 
PLS2 mostly yielded a better performance than PLS1 and 
PCR algorithms when validated with the USDA database.  
This paper shows how the novel assay coupled with 
chemometric algorithms might provide faster and cheaper 
methods for simultaneously quantitating oleic, linoleic, and 
linolenic fatty acids in vegetable oil samples. 
 
Index Terms-Partial least squares, mixture models, 
chemometrics, vegetable oils, spectrophotometry 
 

I. INTRODUCTION 
 

     Vegetable oils are a group of natural products consisting 
largely of triacylglycerols (TAGs) that find widespread uses 
as sources of edible oils and surfactants. High performance 
liquid chromatography (HPLC), gas chromatography (GC), 
or hyphenated methods such as HPLC/mass spectrometry 
(MS), and GC/MS are classical methods of determining the 
fatty acid composition and levels in vegetable oils [1], [2]. 
For the determination of the fatty acid composition, the 
TAGs are transesterified to give the methyl esters prior to 
analysis because the esters are less polar than the 
corresponding fatty acids, and, thus, are more compatible 
with the various chromatographic systems [3]. Though 
these procedures have been successfully used in various 
chemical analyses, they, however, do suffer from the 
disadvantages of being time, labor, and resources 
consuming. 
 
 
     Manuscript received January 25, 2011; revised January 29, 2011. This 
work was supported in part by the Oklahoma State University (OSU) 
Technology Business Assessment Group (TBAG). 
     Gerard G. Dumancas is with the OSU Chemistry Department, 002 
Physical Science Building, Stillwater, OK 74078, USA (Phone: 405-744-
5948; fax: 405-744-6007; email: gerard.dumancas@okstate.edu). 
      Mary Muriuki is with the OSU Chemistry Department, 002 Physical 
Science Building, Stillwater, OK 74078, USA (email: 
marywm@okstate.edu). 
     Neil Purdie is with the OSU Chemistry Department, 018 Physical Science 
Building, Stillwater, OK 74078, USA (email: neil.purdie@okstate.edu)  
     Lisa Reilly is with the Department of Physical Sciences, Bethany College, 
Bethany, WV 26032, USA (email: LReilly@bethanywv.edu) 

     The analysis of fatty acid levels is a continuing concern 
for workers in the lipid field. Originally carried out by 
titration, the need for speed and/or increased sensitivity led 
to the development of a number of procedures for the 
determination of such analytes [4]. Oleic, linoleic, and 
linolenic fatty acids are among the most abundant fatty acid 
analytes found in vegetable oils.  
     The degree of oil’s unsaturation determines its stability. 
This is of particular importance in determining whether oils 
are of good quality. Oils that are more unsaturated are 
oxidized more quickly than less unsaturated oils, and, thus, 
are of low quality [5]. As the degree of unsaturation 
increases, both the rate of formation and the amount of 
primary oxidation compounds accumulated at the end of the 
induction period increase [6]. Oxidation of unsaturated 
lipids not only produces offensive odors and flavors but can 
also decrease the nutritional quality and safety by the 
formation of secondary reaction products in foods after 
cooking and processing [7]. 
     This study is aimed at simultaneously quantitating oleic, 
linoleic, and linolenic fatty acids in vegetable oil samples 
using faster and cheaper methods. The methods are based 
on the application of a mature, patented reagent system 
selective to the -CH=CH-CH2- group in various fatty acids. 
Various chemometric models consisting of K-matrix (KM), 
neural network (NN), principal component regression 
(PCR), and partial least squares (PLS1 and PLS2) were 
utilized for the deconvolution of the spectrophotometric 
data. The most robust chemometric models were then 
compared against each and their regression coefficients 
applied for the molar concentration determination of oleic, 
linoleic, and linolenic fatty acids in olive and sunflower oil 
samples. The obtained concentrations were then validated 
with the existing USDA database concentrations [8]. 
 
Chemometric algorithms 
     Theoretical background of the different chemometric 
techniques are discussed below. 
     The KM approach can be expressed in a matrix 
notation: 

                                CKA              (1) 
where A is the n x p matrix of absorbances, C is the n x m 
matrix of concentrations of constituents, K is the m x p 
matrix of absorptivities, n (=128) is the number of samples, 
p (=101) is the number of wavelengths, and m (=7) is the 
number of components. Calibration is based on a set of n 
samples of known concentrations for which the spectra are 
measured. By means of the calibration sample set, 
estimation of absorptivities is possible by solving for the 
matrix K according to the general least squares solution: 
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ACCCK TT )(                    (2) 
     The analysis is based on the spectrum a0 (1 x p) of the 
unknown sample by use of: 

              1
00 )(  TT KKKac                  (3) 

where c0  is the (1 x m) vector of sought-for concentrations 
[9]. 
     PCR is best performed by means of SVD (singular value 
decomposition). This method involves the decomposition of 
the absorbance matrix A into two orthogonal matrices U 
and V joined by a diagonal matrix W of singular values:  

                       TUWVA                           (4) 
     Estimation of the matrix of regression coefficients B is 
performed column-wise by use of: 

                      cAb                                      (5) 
with A+ being the pseudo-inverse of the absorbance matrix 
A [9]. 
     Details of the PLS method can be referred to Otto [9]. It 
involves the decomposition of A and C according to: 

                ETPA T                               (6) 
                FUQC T                            (7) 

where T and U are the n x d scores matrices containing 
orthogonal rows; P are the p x d loadings of the A matrix; E 
is the n x p error (residual) matrix of A matrix; Q is the m x 
d loading matrix of the C matrix; and F is the n x m error 
(residual) matrix for the C matrix. 
     Computation of the B-coefficients for the general model 
gives: 

              TT QWPWB 1)(                             (8) 
with W as d x p matrix of PLS-weights.   
     Neural network on the, other hand, is divided into three 
layers comprised of input, hidden layers, and output. The 
input parameters are the absorbance at specified 
wavelengths. The parameters are connected to neurons in 
the hidden layer. The number of hidden layers and the 
number of neurons in each layer is flexible and is 
determined by the examination of errors in the results in the 
output layer in terms of concentrations. A basic network 
design is show in Fig. 1. More detailed information about 
neural network can be found in Hagan et al [10]. 
 

 
Fig. 1.  Example of a basic neural network design. 
      
     The theories behind the various chemometric algorithms 
will not be discussed further in this study and can be 
referred in various bibliographic references [11]-[16]. 
     Table I lists the fatty acid composition for the TAG oils 
of interest. Monounsaturated fatty acids such as palmitoleic 
(C16:1), gadoleic (C20:1), and erucic (C22:1) exist in 
traces, and, thus, are not taken into account in this study 
[17]-[19]. 
     Oleic, linoleic, and linolenic fatty acids, are known to 
give unique absorbance spectra allowing the possibility of 
deconvolution by using various chemometric models [20]. 
 
 
 

TABLE I.  FATTY ACID COMPOSITION RANGES FOR THE TAG 
OILS UNDER STUDY (% WEIGHT COMPOSITION)  
Fatty  
Acid 

Sun- 
flower 

Soy- 
bean 

Saf- 
flower 

Corn Flax 
seed 

18:1  
(oleic) 

14-65 19-30 8.4-21.3 19-49 19 

18:2  
(linoleic) 

20-75 44-62 67.8-83.2 34-52 24.1 

18:3  
(linolenic) 

<0.7 4.0-11 0-0.1 Trace 47.4 

 
II. MATERIALS AND METHODS 

Training, prediction, and unknown sets 
     Oleic, linoleic, and linoleic fatty acid methyl esters 
should be as much as possible in concentration ranges of 
0.0025 to 0.02 M in chloroform solutions in order to 
maintain the absorbance units from 0 to 1.2. It should be 
noted that the linolenic acid discussed all throughout in this 
paper refers to the alpha form. Tables II and III show the 
actual molar concentrations of the training and prediction 
set standards prepared. All samples were obtained from 
Sigma-Aldrich. 
 
    TABLE II.  OLEIC, LINOLEIC, AND LINOLENIC FATTY ACID    
    METHYL ESTERS (FAME) TRAINING MATRIX BY CENTRAL  
    COMPOSITE AND SIMPLEX LATTICE DESIGNS IN   
    CHLOROFORM SOLUTIONS. 

 Oleic Linoleic Linolenic 
Mixture 1 8.31E-03 2.42E-03 1.92E-02 
Mixture 2 1.91E-02 1.90E-02 2.33E-03 
Mixture 3 8.31E-03 1.90E-02 2.33E-03 
Mixture 4 8.31E-03 2.42E-03 2.33E-03 
Mixture 5 1.91E-02 2.42E-03 2.33E-03 
Mixture 6 1.72E-02 1.71E-02 1.74E-02 
Mixture 7 8.31E-03 2.42E-03 1.92E-02 
Mixture 8 8.31E-03 1.90E-02 1.92E-02 
Mixture 9 1.37E-02 1.07E-02 2.33E-03 

Mixture 10 1.37E-02 1.07E-02 1.92E-02 
Mixture 11 1.37E-02 1.90E-02 1.08E-02 
Mixture 12 1.37E-02 2.42E-03 1.08E-02 
Mixture 13 1.91E-02 1.07E-02 1.08E-02 
Mixture 14 8.31E-03 1.07E-02 1.08E-02 
Mixture 15 1.37E-02 1.07E-02 1.08E-02 
Mixture 16 1.37E-02 1.07E-02 1.08E-02 
Mixture 17 1.37E-02 1.07E-02 1.08E-02 
Mixture 18 1.37E-02 1.07E-02 1.08E-02 
Mixture 19 1.37E-02 1.07E-02 1.08E-02 
Mixture 20 1.37E-02 1.07E-02 1.08E-02 
Mixture 21 1.43E-02 2.42E-03 2.33E-03 
Mixture 22 9.55E-03 1.90E-02 2.33E-03 
Mixture 23 9.55E-03 2.42E-03 1.92E-02 
Mixture 24 1.24E-02 6.67E-03 2.33E-03 
Mixture 25 8.31E-03 1.24E-02 2.33E-03 
Mixture 26 1.24E-02 2.42E-03 6.65E-03 
Mixture 27 8.31E-03 2.42E-03 1.24E-02 
Mixture 28 8.31E-03 1.24E-02 6.65E-03 
Mixture 29 8.31E-03 6.67E-03 1.24E-02 
Mixture 30 8.31E-03 6.67E-03 2.33E-03 

    
 
 

Spectrum 
parameters 

Hidden 
layer 

Concentrations 
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    TABLE III. OLEIC, LINOLEIC, AND LINOLENIC FATTY ACID    
    METHYL  ESTERS PREDICTION MATRIX BY AN INDEPENDENT   
    SIMPLEX LATTICE DESIGN IN CHLOROFORM SOLUTIONS. 

 Oleic Linoleic Linolenic 
Mixture 1 1.24E-02 3.45E-03 3.50E-03 
Mixture 2 8.42E-03 1.73E-02 3.50E-03 
Mixture 3 8.42E-03 3.45E-03 1.75E-02 
Mixture 4 1.40E-02 7.48E-03 3.50E-03 
Mixture 5 1.01E-02 1.44E-02 3.50E-03 
Mixture 6 1.40E-02 3.45E-03 8.16E-03 
Mixture 7 1.01E-02 3.45E-03 1.34E-02 
Mixture 8 1.01E-02 1.44E-02 8.16E-03 
Mixture 9 1.01E-02 7.48E-03 1.34E-02 

Mixture 10 1.01E-02 7.48E-03 3.50E-03 
 
Analysis of FAME standards and vegetable oils using the 
assay and validation 
     The procedure for the acetyl chloride/perchloric acid 
(AC/PA) color assay reaction is conceptually simple. It 
entails placing a 10 microL aliquot of the fatty acid methyl 
esters (FAME) standards or vegetable oils into a 13 x 100 
mm borosilicate disposable test tube followed immediately 
by the careful addition of 1.0 mL AC then 40 microL of 
PA. The test tube is sealed tightly with parafilm and gently 
shaken for 20 seconds. The supernate is then transferred by 
pipette to a 10 mm pathlength optical glass cuvette and 
placed in the sample holder of a diode-array 
spectrophotometer (HP8452A). Analysis is done after 15 
minutes from 350-550 nm at every 2 nm and 5 s integration 
time. Using the developed calibration matrix, the FAME 
standard concentrations in prediction sets and vegetable oils 
will be determined using the chemometric techniques 
mentioned in the first project. 
     The obtained chemometric molar concentrations were 
then validated with the existing USDA database 
concentrations [8]. 
 
Chemometric techniques 
     The training, prediction, and unknown set spectra were 
deconvoluted using various chemometric algorithms. KM, 
NN, PCR, and PLS algorithms were utilized in this study. 
Mean centering was performed prior to the chemometric 
analyses. Chemometric analyses were performed in 
MATLAB using Chemometric Toolbox [21]. Neural 
network was performed using the JMP Software Package 
[22]. 
     Determining the number of factors (rank) to be used in 
the calibration is a key step in both PCR and PLS. To select 
the number of factors for PLS and PCR methods, the cross 
validation, leaving out one sample at a time, was used. This 
process was repeated 29 times, until each sample had been 
left out once. The Predicted Residual Error Sum of Squares 
(PRESS) was used to determine the optimum number of 
factors in both algorithms. To calculate the PRESS we 
computed the errors between the expected and predicted 
concentrations for all of the samples, square them, and sum 
them together as given by Eq. (9) [21]:  

            
)'(

1
ii

N

i
yyPRESS 



                                                          (9) 

 where y and y’ are the predicted and actual concentrations 
and N is the number of samples. The plot of the PRESS 

values as a function of the number of factors indicates the 
rank to be used in the calibration. The root mean square 
error (RMSE) is also calculated for each algorithm. The 
general equation is:   

         N
RMSE

N

i
ii yy 

 1

2)'(
                           (10) 

     The model with the minimum values for the RMSE 
indicated the appropriate model. 
 

III. RESULTS AND DISCUSSIONS 
    
     The molar absorbance spectra for oleic, linoleic, and 
linolenic fatty acid methyl esters obtained using the training 
set are shown in Fig. 2. Central composite design and 
simplex lattice design training sets were used because they 
have demonstrated to be a useful method in formulations of 
experiments, fits nicely into the sequential experimentation 
that is involved with the experimental design, requires 
fewer experiments, and provides convenience and high 
accuracy [23]-[25]. It is readily apparent that linoleic and 
linolenic molar absorbance spectra are six times greater 
than that of the oleic. Oleic is characterized by two smooth 
valley type peaks found at 368 and 442 nm. Linoleic, on the 
other hand has maxima that both occur at 376 and 426 nm. 
Linolenic has two maximum peaks, also occurring at 376 
and 426 nm, with the latter peak about 1000 molar 
absorbance more than the 426 nm peak of the linoleic. It is 
also apparent from Fig. 2, a small shoulder found at 444 
nm for linolenic.  
     Oleic fatty acid is a monounsaturated fatty acid with a 
double bond occurring at carbon 9 relative to the -COOH 
terminal. Linoleic, on the other hand has two double bonds 
occurring at carbons 9 and 12; while linolenic has three 
double bonds found at carbons 9, 12, and 15 all relative to 
the -COOH terminal (Fig. 3). The most probable reason 
why the molar absorbance of oleic is buried under that of 
linoleic and linolenic fatty acids is due to its 
monounsaturated property. 
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Fig. 2.  Molar absorbance spectra of oleic, linoleic, and linolenic fatty acids 
obtained by the K-matrix chemometric approach. 
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Fig. 3.  Structures of oleic, linoleic, and linolenic fatty acids. 
 
     The first attempt of deconvoluting the spectra is by the 
KM model. However, the KM approach yielded RMSEP 
high enough that the regression coefficients may yield high 
errors in the actual sample sets. The RMSEP is especially 
useful in comparing the prediction errors of the different 
regression models [26]. A high RMSEP (greater than 10 
µM) as in this study simply means the regression model 
will give high errors in the unknown set samples. It is 
observed that there are less samples (n=30) in the training 
sets than the number of variables (p=101). In such case, the 
KM calibration model has limited applicability, yielding 
high RMSEP [27]. Although KM approach offers the 
advantage of estimating the true constituent spectra of the 
components in the training sets, it has, however, the 
disadvantage of requiring the knowledge of the 
concentrations of all interfering chemical constituents with 
a spectral profile in the training set and that the calibration 
and analysis are connected to the inversion of the matrix 
[28], [29].  
     NN was next attempted in the study using 3 hidden 
nodes and 200 maximum iterations. NN improved the 
RMSEP over the KM approach yet not low enough to be 
used for the unknown sets (Fig. 4). NN offers the 
disadvantage of requiring a large amount of data to ensure 
that the results are statistically accurate and the networks 
adapt their analysis of data in response to the training 
which is connected to the network [30].   
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Fig. 4.  RMSEP of oleic, linoleic, and linolenic fatty acid methyl esters compared 
against the different  algorithms. 
 
     PCR and PLS algorithms were then attempted to obtain 
their RMSEPs, and the results are satisfying over the KM 
and NN models. A quite equal performance for PCR, PLS2, 
and PLS1 algorithms were obtained for their respective 
RMSEPs (Fig. 4). PLS differs from PCR in that it uses the 

concentration data from the training set and the spectral 
data in modeling, whereas PCR only uses the spectral data 
[31]. However, the solutions and hence the performance of 
PLS and PCR tend to be quite similar in most situations, 
largely because they are applied to problems involving high 
collinearity [29]. 
     A decision about the number of suitable PLS/PCR 
factors is necessary. Too few factors lead to underfitting 
leading to inadequate predictions, since the information 
extracted by the model is not enough to explain the data. 
On the other hand, too many factors leads to overfitting, 
that is, the model cannot be generalized to new data that 
did not contribute to the model construction [32]. 
     For PCR, 6 factors were used for the model while 18 
factors were used for PLS2. For PLS1, 5, 6, and 12 factors 
were used for oleic, linoleic, and linolenic, respectively 
(Fig. 5).  These factors were chosen based on the plot of 
PRESS vs number of factors/rank chart as shown in Fig. 5. 
 

 
Fig. 5.  PRESS chart for oleic, linoleic, and linolenic fatty acid methyl esters. 
5, 6, and 12 factors were chosen for oleic, linoleic, and linolenic, respectively 
in PLS1. 
 
     The plot with the lowest PRESS indicated the number of 
factors to be used for PLS1. After choosing the number of 
factors for each algorithm, the RMSEP was calculated to 
indicate the appropriate model. The model(s) with the lowest 
RMSEP indicated to be the appropriate model to be tested for 
the unknown samples. 
     After choosing the number of factors for PCR, PLS2, 
and PLS1 algorithms (Fig. 5), the obtained regression 
coefficients were applied to determine the molar 
concentrations of olive and sunflower oil samples. In Table 
IV, PLS2 yielded the lowest % error for oleic but not so 
much difference with PLS1 and PCR. For linoleic, PLS2 
also yielded the lowest % error compared to PLS1 and PCR 
algorithms. In Table V, PLS2 also yielded the lowest % 
error for oleic while PCR yielded the lowest % error for 
linoleic. Based on the obtained results, PLS2 mostly yielded 
a better performance than PLS1 and PCR algorithms.      
     Normally we expect PLS1 to give a better model than 
PLS2. However, PLS2 gives better results than PLS1 
especially if the analyte concentrations are strongly 
correlated [27]. Noticeable zero concentrations were 
obtained for linolenic fatty acid using the USDA database 
for the primary reason that it exists in low quantities in 
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vegetable oil samples relative to both oleic and linoleic [8], 
[17]-[19].  
     Expanding the training and prediction sets and testing 
the PLS and PCR algorithms to other types of vegetable oil 
samples would probably improve the differentiation as to 
which algorithm would be the most appropriate one to be 
employed in this study. 

 
 
 
 
 

TABLE IV

 
TABLE IV. MOLAR CONCENTRATIONS OF OLEIC LINOLEIC, AND LINOLENIC FATTY ACID METHYL ESTERS IN OLIVE OIL SAMPLES   
 COMPARED USING THE THREE MOST ROBUST ALGORITHMS. 

Component PLS2 Database % 
Error 

PLS1 Database % 
Error 

PCR Database % 
Error 

Oleic 1.50E-02 2.37E-02 36.7 1.49E-02 2.37E-02 37.2 1.46E-02 2.37E-02 38.3 
Linoleic 1.06E-03 1.05E-03 -1.3 9.17E-04 1.05E-03 12.7 9.99E-04 1.05E-03 4.9 
Linolenic 1.50E-03 0 - 1.47E-03 0 - 1.50E-03 0 - 
 

 TABLE V. MOLAR CONCENTRATIONS OF OLEIC LINOLEIC, AND LINOLENIC FATTY ACID METHYL ESTERS IN SUNFLOWER OIL SAMPLES  
COMPARED USING THE THREE MOST ROBUST ALGORITHMS. 

Component PLS2 Database % 
Error 

PLS1 Database % 
Error 

PCR Database % 
Error 

Oleic 2.08E-03 2.30E-03 9.6 6.88E-03 6.10E-3 -12.7 1.09E-03 2.30E-03 52.5 
Linoleic 4.41E-03 3.84E-03 -14.9 1.27E-02 1.06E-2 -19.9 4.20E-03 3.84E-03 -9.4 
Linolenic 8.59E-04 0 - 1.11E-03 0 - 5.85E-04 0 - 
 

IV. CONCLUSIONS 
 

The most important aspect of this work is the possibility of 
simultaneous determination of oleic, linoleic, and linolenic 
fatty acids in vegetable oil samples using the patented assay 
developed. No extraction step is required, and hence the use 
of organic solvents for separation, which are generally toxic 
pollutants, is avoided. It has been shown in this study that 
PCR, PLS2, and PLS1 algorithms compared quite equally 
well in the prediction sets and that PLS2 mostly yielded a 
better performance than PLS1 and PCR algorithms in the 
unknown samples. Compared to most other existing 
methods, the proposed methods are very simple, cheap, 
rapid and especially selective. 
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