
Hierarchical Sequence Clustering Algorithm for
Data Mining

 V. Umadevi Chezhian1, Thanappan Subash2, M. Ragavan Samy3

ABSTRACT - Bioinformatics emerged as a challenging new
area of research and brought forth numerous computational
problems. Here computers are used to gather, store, analyze
and merge biological data. In this paper, the problem of
clustering interval-scaled data and sequence data is
analyzed in a new approach using Hierarchical Sequence
Clustering. In Sequence clustering, it is necessary to find the
similarity or distance between each pair of sequences. To
find the similarity between sequences the data structure
Probabilistic Suffix Tree can be used. An agglomerative
algorithm is introduced based on UPGMA (Un weighted
Pair wise Group Average Method) cluster analysis, that
required O(n3) of total computing time. Then a new
algorithm using the new approach is introduced with O(n2)
computing time. The result of this new algorithm is
compared with UPGMA cluster analysis.

Key words: Data Mining, Hierarchical Clustering, Sequence
Clustering, Probabilistic Suffix Tree, UPMGA.

I. INTRODUCTION

Cluster analysis has received renewed attention within the
last 10 years as a field of study within knowledge
discovery and data mining. The massive amounts of data
that have become available in a variety of fields have
prompted new research in the use of traditional clustering
algorithms and the development of new algorithms [1].

The studies of sequential pattern mining have been
extended in several different ways [2] considered frequent
episodes in sequences, where episodes are essentially
acyclic graphs of events whose edges specify the
temporal before-and-after relationship but without timing-
interval restrictions. Sequence pattern mining for plan
failures, the use of regular expressions as a flexible
constraint specification tool that enables user-controlled
focus to be incorporated into the sequential pattern
mining process[3] [4]. The embedding of
multidimensional, multilevel information into a
transformed sequence database for sequential pattern
mining [5] [6] studied issues regarding constraint-based
sequential pattern mining. CLUSEQ is a sequence
clustering algorithm [7], An incremental sequential
pattern mining algorithm, IncSpan [8], SeqIndex efficient
sequence indexing by frequent and discriminative
analysis of sequential patterns [9], A method for parallel
mining of closed sequential patterns [10] and a new
efficient incremental clustering algorithm using weighted
distance metric.

1Lecturer,, Department of Computer Science, College of Business and
Economics, State of Eritrea. Email: yazh1999@gmail.com
2Lecturer,, Department of Civil Engineering, Eritrea Institute of
Technology, State of Eritrea. Email: thanappansubash@gmail.com
3Senior System Engineer, Singapore Refinery Company Pvt. Ltd.,
Singapore. Email: ragavansamy@gmail.com

A tutorial on suffix tree construction [11] [12] and other
space-saving techniques for suffix trees that allow linear-
time construction [13], the PST (Probabilistic Suffix
Tree) in detail to model the biological sequences [14]
[15].

A PST is considered to have an enhanced memory
efficient representation than the PSA (Probabilistic Suffix
Automata). Since then, it has been used in several
domains as an efficient approach for classifying
sequences [16] [17].

Proposal of a suffix tree construction method with
expected time complexity O (n log n) and it is well suited
for the construction of large suffix trees in bioinformatics
and other applications, as long as the main memory size is
six times as big as the sequence length [18]. Another
suffix tree construction algorithm over a wide spectrum
of data sources and sizes [19] [20] constructed a PST that
represents the probability of each system call given a
finite-length sequence of previously observed system
calls.

A PST is considered to have an enhanced memory
efficient representation than the PSA (Probabilistic Suffix
Automata). Since then, it has been used in several
domains as an efficient approach for classifying
sequences.

In Sequence clustering, it is necessary to find the
similarity or distance between each pair of sequences. To
find the similarity between sequences the data structure
Probabilistic Suffix Tree can be used [21] [22] [23]
proposed an algorithm to construct a Suffix Tree for a
string of length n, in O(n) time.

II. SEQUENCE CLUSTERING

Let  = {s1,s2,…..sn} be the set of all possible symbols.

A sequence is an ordered list of symbols in . The
number of symbols in a sequence is referred to as the
length of the sequence. Given a sequence, a segment is
defined as a consecutive position of the sequence. For
example, ‘bcd’ is a segment of ‘abcdef’ while ‘abd’ is
not. Conventionally, we use the term ‘sequence’ to refer
to a whole symbol sequence in the databases while the
term ‘segment’ is used to denote a portion of some
sequence. A sequence database is a set of sequences.
Given a sequence database our objective is to categorize
these sequences into clusters according to their sequential
similarities.

Proposal of a suffix tree construction method with
expected time complexity O (n log n) and it is well suited
for the construction of large suffix trees in bioinformatics
and other applications [18], as long as the main memory

Proceedings of the World Congress on Engineering 2011 Vol III
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-5-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

size is six times as big as the sequence length. Another
suffix tree construction algorithm over a wide spectrum
of data sources and sizes constructed a PST that
represents the probability of each system call given a
finite-length sequence of previously observed system
calls[19][20].

III. UPGMA ALGORITHM
 Given a set of n objects and each having number of
characteristics (attributes)

1. Find Euclidean distances d(i,j) for all 1<= i, j<=n
and i!=j

2. Form the dissimilarity matrix D.
3. Repeat step 4 to step 7 n-1 times.
4. Find the minimum value in the lower triangular

of D Matrix and let the corresponding row and
column be t1 and t2 respectively.

5. a=count(objects(t1))
b= count (objects (t2))
r=a + b

6. Rearrange the elements as:
For each object i other than t1 and t2
d(i,t2) = a/r * d(t2,i)+b/r*d(t1,i)
d(t2,i)=d(i,t2)
d(i,t1)=-1
d(t1,i)=-1

7. concatenate object(t2),object(t1)

In the 4th step, consider only the lower triangular matrix
for finding the minimum, and the corresponding row
value is stored in t1 and the corresponding column value
is stored in t2. In the next step, count the number of
objects in t1 and t2. In the first time it will be 1 for t1 and
t2. Thus a=1, b=1, and r=2. In the 6th step, the value of
row and column corresponding to t1 is set to -1, and the
values of row and column corresponding to t2 is equal to
a/r*d(t2,i) + b/r*d(t1,i). In the next step, the names of
objects t2 and t1 are concatenated and the resultant value
is stored in t2. In the next iteration suppose the minimum
is found in row, with row value t2, the new t1 is t2 and
the number of objects in t1 is t2 and the number of
objects in t1 is now 2, i.e. a=2. After n-1 iteration all
become a single cluster.

IV. COMPUTATIONAL STUDY
For constructing dissimilarity matrix D, it requires O (n3)
computing time. Instead of computing dissimilarity
matrix D, we can also find similarity matrix. In this case,
find the maximum instead of minimum in the 4th step. To
find the minimum in step 4, the algorithm considers only
the lower triangular matrix. So it needs O (nc2).
Otherwise it requires O (n2) of time. For rearranging the
matrix elements in step 6 require O (n). Since the steps 4
to 7 are repeated utmost (n-1) times, the total computation
time is utmost O (n3). The following table (1) shows the
computing time in seconds when ‘n’ varies.

Table 1: Computing time in seconds when ‘n’ varies.

N 10 50 100 200 300 500 1000

Computin
g Time (s)

0.54
9

0.54
9

0.60
4

0.65
9

0.82
4

0.87
9

1.37
3

V. NEW APPROACH BASED ON PST
The new algorithm is introduced to partition the object
into group of clusters by using a new approach. The idea
is: the algorithm starts with the choosing of two distantly
related objects as a seed point. Let there be two clusters.
Then it scans each object and for every object checks the
distance between this object with the seeds. The object
should be held into one of the clusters whose distance is
minimum and it should be less than the calculated
threshold [<= the average of all distances], and if
otherwise marked that object as uncluster. The threshold
is computed at the creation of each cluster [average
distance metrics for all unclustered objects]. Then scan all
unclustered objects and choose one object as a next seed
which has the maximum distance for all existing clusters.
This process should be continued until there is no more
object to be clustered.

In a particular iteration, after selecting the new seed point,
if no objects are grouped into that cluster, then that seed
point can be detected as an outlier. That means this new
seed point is very distantly related to all other objects. So
the proposed algorithm is also used to detect the outliers.

VI. ALGORITHM
Input: set of n objects and its distance with other objects
(distance matrix)

Output: Cluster of objects

Find Threshold T: Sum of distance value between each
pair of unclustered objects (initially all objects are
unclustered) in the distance matrix divided by count.
[Average of distant metrics]

Cluster Formation: Let X be the set of all objects.

Step 1: Choose two objects from X which has the
maximum distance in the distance matrix. These two
objects are the seed points of two initial clusters.Delete
these two objects from X.

Step 2: Uc = X //Uc= set of un clustered objects

For each object in X.

Search among the existing cluster seed points, with which
if the distance is minimum and if it is also less than T,
then place the object in the corresponding cluster [and
remove this object from Uc], otherwise mark this object
as uncluster [do not remove this object from Uc].

Step 3: For each object in Uc

Choose an object as a seed point of next cluster which is
having maximum distance with more number of existing
cluster seed points.

Remove that object from X.

Step 4: Repeat step 2 and step 3 until no more objects in
Uc.

Proceedings of the World Congress on Engineering 2011 Vol III
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-5-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

VII. TIME COMPLEXITY
Finding Threshold T takes O(n2) at the maximum (if we
consider only either upper or lower triangular matrix it
will take only nc2 time).

For cluster formation, step 1 again takes O(n2) [or nc2]
time in order to find the maximum distant value for initial
seed point selection. Step 2 takes O(n x 2) for the first
time and O(n x 3) for the second and so on, and finally it
will take O(n x k), where n is the number of objects and k
is the number of clusters that we will get. Step 3 takes
O(p), where p is the number of unclustered objects in that
time. Thus the total computing time is
O(n2)+O(nk)+O(p). In general the proposed algorithm
takes O(n2) at the maximum.

VIII. COMPARISON ANALYSIS

Unclustered objects are B and F.
Here F has the highest distance for both the seeds. So
choose the next seed as F.

Table 2: F -The Highest Distance

E D F

d(A,E) d(A,D)=5 d(A,F)=7

A - -

d(B,E)=7 d(B,D)=8 d(B,F)=1

- - B

d(C,E)=10 d(C,D)=5
d(C,F)=2

- - C

d(G,E)=4 d(G,D)=5 d(G,F)=2

- - G

Now the three clusters are:

 {A,E} {D} {F,B,C,G}. -------------- (A)

Repeat this process until no more objects are marked as
unclustered.

UPGMA clustering algorithm works as follows:-

Table 3: The Minimum Value -1

 A B C D E F G

A 0 2 3 5 4 7 6

B 2 0 9 8 7 1 4

C 3 9 0 5 10 2 3

D 5 8 5 0 12 11 5

E 4 7 10 12 0 9 4

F 7 1 2 11 9 0 2

G 6 4 3 5 4 2 0

Here minimum value is 1, so that corresponding objects B
and F are closely related and hence that objects are
merged into a cluster. Then the distance metrics are
changed as per the formula.

Table 4: The Minimum Value - 3

 A {B,F} C D E G

A 0 4.5 3 5 4 6
{B,F} 4.5 0 5.5 9.5 8 3

C 3 5.5 0 5 10 3

D 5 9.5 5 0 12 5
E 4 8 10 12 0 4

G 6 3 3 5 4 0

Now the minimum value is 3, so choose the
corresponding objects C and G and merge these two
objects. Then the distance metrics are changed as per the
formula.

Table 5: The Minimum Value - 4

 A {B,F} C D E
A 0 4.5 4.5 5 4

{B,F} 4.5 0 4.25 9.5 8`

{C,G} 4.5 4.25 0 5 7

D 5 9.5 5 0 5

E 4 8 7 5 0

Now minimum value is 4, and that corresponding objects
are A and E, so merge these two clusters. Then the
distance metrics are changed as per the formula.

Table 6: The Minimum Value – 4.25

 {A,E} {B,F} {C,G} D
{A,E} 0 6.25 5.75 5
{B,F} 6.25 0 4.25 9.5
{C,G} 5.75 4.25 0 5
D 5 9.5 5 0

Here the minimum value is 4.25. Now {C,G} and {B,F}
clusters are merged.

Now it will become

{A,E} {B, C, G, F} {D} ----------- (B)

The UPGMA clustering algorithm proceeds in this way
until all the objects belong to one cluster. When it is
stopped here, the result (B) is the same as (A) which we
got using the new algorithm.

 IX. CONCLUSION
The new algorithm was introduced to get the partitioned
clustering in hierarchical approach. Initially, two objects
were chosen (based on their distance metrics or
similarity) as seed points and two clusters were obtained.
At each successive iterations, the correct object was
chosen as a new seed point to increase the cluster quality
so that, the number of clusters increased by one. The

Proceedings of the World Congress on Engineering 2011 Vol III
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-5-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

algorithm terminates if no more objects are to be
clustered. Also, the result obtained from the proposed
algorithm is proved with the most popular clustering
algorithm called UPGMA. The UPGMA method required
O (n3) of computing time but the proposed algorithm
required only O (n2) of computing time. Also, the newly
developed algorithm can be used to detect the outliers.

REFERENCE

 [1]. Jain, A. K., Murthy, M. N. and Flynn, P. J. 1999. Data clustering-
a review. ACM computing Surveys, 31: 264 – 323.

[2]. Mannila, H, Toivonen. H and Verkamo, A. I. 1997. Discovery of
frequent episodes in event sequences. Data Mining and
Knowledge Discovery, 1:259–289.

[3]. Zaki, M. J. 1998. Efficient enumeration of frequent sequences. In.
Proc. 7th Int. Conf. Information and Knowledge Management
(CIKM’98), pages 68–75, Washington, DC.

[4]. Garofalakis, M., Rastogi, R. and Shim, K. 1999. SPIRIT: Sequential
pattern mining with regular expression constraints. In. Proc. Int.
Conf. Very Large Data Bases (VLDB’99). pages 223 – 234,
Edinburgh, UK..

[5]. Pinto, H., Han, J., Pei, J., Wang, K., Chen, Q. and Dayal, U. 2001.
Multi-dimensional sequential pattern mining. In Proc. 2001 Int.
Conf. Information and Knowledge Management (CIKM’01), pages
81–88, Atlanta, GA.

[6]. Pei, J., Han, J. and Wang, W. 2002. Constraint-based sequential
pattern mining in large databases. In Proc. 2002 Int. Conf.
Information and Knowledge Management (CIKM’02), pages 18–
25, McLean, VA.

 [7]. Yang, J. and Wang, W. 2003. CLUSEQ: Efficient and effective
sequence clustering. In Proc. 2003 Int. Conf. Data Engineering
(ICDE’03), pages 101–112, Bangalore, India.

[8]. Cheng, H., Yan, X. and Han, J. 2004. IncSpan: Incremental mining
of sequential patterns in large database. In Proc. 2004 ACM
SIGKDD Int. Conf. Knowledge Discovery in Databases (KDD’04),
pages 527–532, Seattle, WA.

[9]. Cheng, H., Yan, X. and Han, J. 2005. Seqindex: Indexing sequences
by sequential pattern analysis. In Proc. 2005 SIAM Int. Conf. Data
Mining (SDM’05), pages 601–605, Newport Beach, CA.

[10]. Cong, S., Han, J. and Padua, D. 2005. Parallel mining of closed
sequential patterns. In. Proc. 2005 ACM SIGKDD Int. Conf.
Knowledge Discovery in Databases (KDD’05), pages 562–567,
Chicago, IL.

[11]. Nelson, M. R. 1996. Fast String Searching with Suffix Trees. Dr.
Dobb's Journal, Algorithm Alley.

[12]. Gusfield, D. 1997. Algorithms on Strings, Trees, and Sequences-
Computer Science and Computational Biology. Cambridge
University Press.

[13]. Kurtz, S .1999. “Reducing the Space Requirement of Suffix
Trees,” Software–Practice and Experience, 29(13): 1149–1171.

[14]. Yona, G and Bejerano. G 1999. Modeling protein families using
probabilistic suffix trees. In. Proceedings of the third annual
international conference on Computational molecular biology.
Pages 15 – 24, ACM press, New York, NY, USA.

[15]. Bejerano, G. and Yona, G. 2001. Variations on probabilistic suffix
trees: Statistical modeling and prediction of protein families.
Bioinformatics, 17(1): 23–43.

[16]. Yang, J. and Wang, W. 2002. Towards Automatic Clustering of
Protein Sequences. In. Proceedings of the IEEE Computer Society
Conference on Bioinformatics. pages. 175–186. IEEE Computer
Society, Washington DC, USA.

[17]. Sun, Z. and Deogun, J. S. 2004. Local Prediction Approach for
Protein Classification using Probabilistic Suffix Trees. In.
Proceedings of the second conference on Asia-Pacific

bioinformatics. Pages 357 – 362. Australian Computer Society
Inc., Darlinghurst.

[18]. Schürmann, K. B. and Stoye, J. 2006. Suffix Tree Construction
and Storage with Limited Main Memory. Report 2003-06,
Universitat Bielefeld 33501, Bielefeld, Germany.

[19]. Tata, S., Hankin, R. A. and Patel, J. M. 2004. Practical Suffix Tree
Construction. In. Proc. Int. Conf. Very Large Data Bases
(VLDB’04). Pages 36 – 47, Toronto,Canada.

[20]. Mazeroff, G., Cerqueira,V. D., Michael Gregor, J. and
Thomason, M. G. 2003. Probabilistic Trees and Automata for
Application Behavior Modeling. In. Proc. 43rd Asian South east
Conf., pages 435 440, Savannah, GA.

[21]. Ukkonen, E. 1995. On-line Construction of Suffix Trees.
Algorithmica, 14: 249 – 260.

[22]. Mc Creight, E. 1976. A Space-economical Suffix Tree
Construction Algorithm. Journal of the ACM, 23: 262–272.

[23]. Farach, M. 1997. Optimal suffix tree construction with large
alphabets. In. Proceedings of the 38th Annual Symposium on the
Foundations of Computer Science (FOCS 97), pages 137-143

Proceedings of the World Congress on Engineering 2011 Vol III
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-5-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

