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ABSTRACT - Bioinformatics emerged as a challenging new 
area of research and brought forth numerous computational 
problems. Here computers are used to gather, store, analyze 
and merge biological data. In this paper, the problem of 
clustering interval-scaled data and sequence data is 
analyzed in a new approach using Hierarchical Sequence 
Clustering. In Sequence clustering, it is necessary to find the 
similarity or distance between each pair of sequences. To 
find the similarity between sequences the data structure 
Probabilistic Suffix Tree can be used. An agglomerative 
algorithm is introduced based on UPGMA (Un weighted 
Pair wise Group Average Method) cluster analysis, that 
required O(n3) of total computing time. Then a new 
algorithm using the new approach is introduced with O(n2) 
computing time. The result of this new algorithm is 
compared with UPGMA cluster analysis.  
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I. INTRODUCTION 

Cluster analysis has received renewed attention within the 
last 10 years as a field of study within knowledge 
discovery and data mining. The massive amounts of data 
that have become available in a variety of fields have 
prompted new research in the use of traditional clustering 
algorithms and the development of new algorithms [1]. 
 
The studies of sequential pattern mining have been 
extended in several different ways [2] considered frequent 
episodes in sequences, where episodes are essentially 
acyclic graphs of events whose edges specify the 
temporal before-and-after relationship but without timing-
interval restrictions. Sequence pattern mining for plan 
failures,  the use of regular expressions as a flexible 
constraint specification tool that enables user-controlled 
focus to be incorporated into the sequential pattern 
mining process[3] [4]. The embedding of 
multidimensional, multilevel information into a 
transformed sequence database for sequential pattern 
mining [5] [6] studied issues regarding constraint-based 
sequential pattern mining. CLUSEQ is a sequence 
clustering algorithm [7], An incremental sequential 
pattern mining algorithm,  IncSpan [8], SeqIndex efficient 
sequence indexing by frequent and discriminative 
analysis of sequential patterns [9], A method for parallel 
mining of closed sequential patterns [10] and a new 
efficient incremental clustering algorithm using weighted 
distance metric. 
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A tutorial on suffix tree construction [11] [12] and other 
space-saving techniques for suffix trees that allow linear-
time construction [13], the PST (Probabilistic Suffix 
Tree) in detail to model the biological sequences [14] 
[15]. 
 
A PST is considered to have an enhanced memory 
efficient representation than the PSA (Probabilistic Suffix 
Automata). Since then, it has been used in several 
domains as an efficient approach for classifying 
sequences [16] [17]. 
 
Proposal of a suffix tree construction method with 
expected time complexity O (n log n) and it is well suited 
for the construction of large suffix trees in bioinformatics 
and other applications, as long as the main memory size is 
six times as big as the sequence length [18]. Another 
suffix tree construction algorithm over a wide spectrum 
of data sources and sizes [19] [20] constructed a PST that 
represents the probability of each system call given a 
finite-length sequence of previously observed system 
calls. 
 
A PST is considered to have an enhanced memory 
efficient representation than the PSA (Probabilistic Suffix 
Automata). Since then, it has been used in several 
domains as an efficient approach for classifying 
sequences. 
  
In Sequence clustering, it is necessary to find the 
similarity or distance between each pair of sequences. To 
find the similarity between sequences the data structure  
Probabilistic Suffix Tree can be used [21] [22] [23] 
proposed an algorithm to construct a Suffix Tree for a 
string of length n, in O(n) time. 
 

II. SEQUENCE CLUSTERING 

Let  = {s1,s2,…..sn} be the set of all possible symbols. 

A sequence is an ordered list of symbols in . The 
number of symbols in a sequence is referred to as the 
length of the sequence. Given a sequence, a segment is 
defined as a consecutive position of the sequence. For 
example, ‘bcd’ is a segment of ‘abcdef’ while ‘abd’ is 
not. Conventionally, we use the term ‘sequence’ to refer 
to a whole symbol sequence in the databases while the 
term ‘segment’ is used to denote a portion of some 
sequence. A sequence database is a set of sequences. 
Given a sequence database our objective is to categorize 
these sequences into clusters according to their sequential 
similarities. 
 
Proposal of a suffix tree construction method with 
expected time complexity O (n log n) and it is well suited 
for the construction of large suffix trees in bioinformatics 
and other applications [18], as long as the main memory 
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size is six times as big as the sequence length. Another 
suffix tree construction algorithm over a wide spectrum 
of data sources and sizes constructed a PST that 
represents the probability of each system call given a 
finite-length sequence of previously observed system 
calls[19][20]. 
 

III. UPGMA ALGORITHM 
 Given a set of n objects and each having number of 
characteristics (attributes) 

1. Find Euclidean distances d(i,j) for all 1<= i, j<=n 
and i!=j 

2. Form the dissimilarity matrix D. 
3. Repeat step 4 to step 7 n-1 times. 
4. Find the minimum value in the lower triangular 

of D Matrix and let the corresponding row and 
column be t1 and t2 respectively. 

5. a=count(objects(t1)) 
b= count (objects (t2)) 
r=a + b 

6. Rearrange the elements as: 
For each object i other than t1 and t2 
d(i,t2) = a/r * d(t2,i)+b/r*d(t1,i) 
d(t2,i)=d(i,t2) 
d(i,t1)=-1 
d(t1,i)=-1 

7. concatenate object(t2),object(t1) 
 

In the 4th step, consider only the lower triangular matrix 
for finding the minimum, and the corresponding row 
value is stored in t1 and the corresponding column value 
is stored in t2. In the next step, count the number of 
objects in t1 and t2. In the first time it will be 1 for t1 and 
t2. Thus a=1, b=1, and r=2. In the 6th step, the value of 
row and column corresponding to t1 is set to -1, and the 
values of row and column corresponding to t2 is equal to 
a/r*d(t2,i) + b/r*d(t1,i). In the next step, the names of 
objects t2 and t1 are concatenated and the resultant value 
is stored in t2. In the next iteration suppose the minimum 
is found in row, with row value t2, the new t1 is t2 and 
the number of objects in t1 is t2 and the number of 
objects in t1 is now 2, i.e. a=2. After n-1 iteration all 
become a single cluster. 
 

IV. COMPUTATIONAL STUDY 
For constructing dissimilarity matrix D, it requires O (n3) 
computing time. Instead of computing dissimilarity 
matrix D, we can also find similarity matrix. In this case, 
find the maximum instead of minimum in the 4th step. To 
find the minimum in step 4, the algorithm considers only 
the lower triangular matrix. So it needs O (nc2). 
Otherwise it requires O (n2) of time. For rearranging the 
matrix elements in step 6 require O (n). Since the steps 4 
to 7 are repeated utmost (n-1) times, the total computation 
time is utmost O (n3). The following table (1) shows the 
computing time in seconds when ‘n’ varies. 

 
Table 1:  Computing time in seconds when ‘n’ varies. 

 
N 10 50 100 200 300 500 1000 

Computin
g Time (s) 

0.54
9 

0.54
9 

0.60
4 

0.65
9 

0.82
4 

0.87
9 

1.37
3 

 

V. NEW APPROACH BASED ON PST 
The new algorithm is introduced to partition the object 
into group of clusters by using a new approach. The idea 
is: the algorithm starts with the choosing of two distantly 
related objects as a seed point. Let there be two clusters. 
Then it scans each object and for every object checks the 
distance between this object with the seeds. The object 
should be held into one of the clusters whose distance is 
minimum and it should be less than the calculated 
threshold [<= the average of all distances], and if 
otherwise marked that object as uncluster. The threshold 
is computed at the creation of each cluster [average 
distance metrics for all unclustered objects]. Then scan all 
unclustered objects and choose one object as a next seed 
which has the maximum distance for all existing clusters. 
This process should be continued until there is no more 
object to be clustered. 
 
In a particular iteration, after selecting the new seed point, 
if no objects are grouped into that cluster, then that seed 
point can be detected as an outlier. That means this new 
seed point is very distantly related to all other objects. So 
the proposed algorithm is also used to detect the outliers. 
 

VI. ALGORITHM 
Input: set of n objects and its distance with other objects 
(distance matrix) 
 
Output: Cluster of objects 
 
Find Threshold T: Sum of distance value between each 
pair of unclustered objects (initially all objects are 
unclustered) in the distance matrix divided by count. 
[Average of distant metrics] 
 
Cluster Formation: Let X be the set of all objects. 
 
Step 1: Choose two objects from X which has the 
maximum distance in the distance matrix. These two 
objects are the seed points of two initial clusters.Delete 
these two objects from X.  
 
Step 2: Uc = X  //Uc= set of un clustered objects 
 
For each object in X. 
 
Search among the existing cluster seed points, with which 
if the distance is minimum and if it  is also less than T, 
then  place the object in the corresponding cluster [and 
remove this object from Uc], otherwise mark this object 
as uncluster [do not remove this object from Uc]. 
 
Step 3: For each object in Uc 
 
Choose an object as a seed point of next cluster which is 
having maximum distance with more number of existing 
cluster seed points. 
 
Remove that object from X. 

 
Step 4: Repeat step 2 and step 3 until no more objects in 
Uc. 
 

 

Proceedings of the World Congress on Engineering 2011 Vol III 
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-5-2 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011



VII. TIME COMPLEXITY 
Finding Threshold T takes O(n2) at the maximum (if we 
consider only either upper or lower triangular matrix it 
will take only  nc2 time).  
 
For cluster formation, step 1 again takes O(n2) [or nc2] 
time in order to find the maximum distant value for initial 
seed point selection. Step 2 takes O(n x 2) for the first 
time and O(n x 3) for the second and so on, and finally it 
will take O(n x k), where n is the number of objects and k 
is the number of clusters that we will get. Step 3 takes 
O(p), where p is the number of unclustered objects in that 
time. Thus the total computing time is 
O(n2)+O(nk)+O(p). In general the proposed algorithm 
takes O(n2) at the maximum. 
 

VIII. COMPARISON ANALYSIS 

Unclustered objects are B and F. 
Here F has the highest distance for both the seeds. So 
choose the next seed as F. 
 

Table 2: F -The Highest Distance 
 

E D F 

d(A,E) d(A,D)=5 d(A,F)=7 

A - - 

d(B,E)=7 d(B,D)=8 d(B,F)=1 

- - B 

d(C,E)=10 d(C,D)=5 
d(C,F)=2 

 

- - C 

d(G,E)=4 d(G,D)=5 d(G,F)=2 

- - G 

 
Now the three clusters are: 
 
 {A,E}   {D}    {F,B,C,G}.  -------------- (A) 
 
Repeat this process until no more objects are marked as 
unclustered. 
 
UPGMA clustering algorithm works as follows:- 
 

Table 3: The Minimum Value -1 
 

 A B C D E F G 

A 0 2 3 5 4 7 6 

B 2 0 9 8 7 1 4 

C 3 9 0 5 10 2 3 

D 5 8 5 0 12 11 5 

E 4 7 10 12 0 9 4 

F 7 1 2 11 9 0 2 

G 6 4 3 5 4 2 0 

 

Here minimum value is 1, so that corresponding objects B 
and F are closely related and hence that objects are 
merged into a cluster. Then the distance metrics are 
changed as per the formula. 

 
Table 4:  The Minimum Value - 3 

 
  A {B,F}  C  D  E  G 

A 0 4.5 3 5 4 6 
{B,F} 4.5 0 5.5 9.5 8 3 

C 3 5.5 0 5 10 3 

D 5 9.5 5 0 12 5 
E 4 8 10 12 0 4 

G 6 3 3 5 4 0 
 

Now the minimum value is 3, so choose the 
corresponding objects C and G and merge these two 
objects. Then the distance metrics are changed as per the 
formula. 
 

Table 5: The Minimum Value - 4 
 

 A {B,F} C D E 
A 0 4.5 4.5 5 4 

{B,F}   4.5 0 4.25 9.5 8` 

{C,G} 4.5 4.25 0 5 7 

D 5 9.5 5 0 5 

E 4 8 7 5 0 

 
Now minimum value is 4, and that corresponding objects 
are A and E, so merge these two clusters. Then the 
distance metrics are changed as per the formula. 
 

Table 6: The Minimum Value – 4.25 
 

 {A,E} {B,F} {C,G} D 
{A,E} 0 6.25 5.75 5 
{B,F} 6.25 0 4.25 9.5 
{C,G} 5.75 4.25 0 5 
D 5 9.5 5 0 

 
Here the minimum value is 4.25. Now {C,G} and {B,F} 
clusters are merged. 
 
Now it will become 
 
{A,E}     {B, C, G,  F}     {D}    -----------   (B) 
 
The UPGMA clustering algorithm proceeds in this way 
until all the objects belong to one cluster. When it is 
stopped here, the result (B) is the same as (A) which we 
got using the new algorithm.  
     

 IX. CONCLUSION 
The new algorithm was introduced to get the partitioned 
clustering in hierarchical approach. Initially, two objects 
were chosen (based on their distance metrics or 
similarity) as seed points and two clusters were obtained. 
At each successive iterations, the correct object was 
chosen as a new seed point to increase the cluster quality 
so that, the number of clusters increased by one. The 
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algorithm terminates if no more objects are to be 
clustered. Also, the result obtained from the proposed 
algorithm is proved with the most popular clustering 
algorithm called UPGMA. The UPGMA method required 
O (n3) of computing time but the proposed algorithm 
required only O (n2) of computing time. Also, the newly 
developed algorithm can be used to detect the outliers.   
 

 

REFERENCE 

 [1]. Jain,  A. K., Murthy, M. N. and Flynn, P. J. 1999. Data clustering-          
a review. ACM computing Surveys, 31: 264 – 323.  

[2]. Mannila, H, Toivonen. H and Verkamo, A. I. 1997. Discovery of 
frequent episodes in event sequences. Data Mining and 
Knowledge Discovery, 1:259–289. 

[3]. Zaki, M. J. 1998. Efficient enumeration of frequent sequences. In. 
Proc. 7th Int. Conf. Information and Knowledge Management 
(CIKM’98), pages 68–75,  Washington, DC.  

[4]. Garofalakis, M., Rastogi, R. and Shim, K. 1999. SPIRIT: Sequential 
pattern mining with regular expression constraints. In. Proc. Int. 
Conf. Very Large Data Bases (VLDB’99). pages 223 – 234, 
Edinburgh, UK.. 

[5]. Pinto, H., Han, J., Pei, J., Wang, K., Chen, Q. and Dayal, U. 2001.  
Multi-dimensional sequential pattern mining. In Proc. 2001 Int. 
Conf. Information and Knowledge Management (CIKM’01), pages 
81–88, Atlanta, GA.  

[6]. Pei, J., Han, J. and Wang, W. 2002. Constraint-based sequential 
pattern mining in large databases. In Proc. 2002 Int. Conf. 
Information and Knowledge Management (CIKM’02), pages 18–
25, McLean, VA. 

 [7]. Yang, J. and Wang, W. 2003. CLUSEQ: Efficient and effective 
sequence clustering. In Proc. 2003 Int. Conf. Data Engineering 
(ICDE’03), pages 101–112, Bangalore, India. 

[8]. Cheng, H., Yan, X. and Han, J. 2004.  IncSpan: Incremental mining 
of sequential patterns in large database. In Proc. 2004 ACM 
SIGKDD Int. Conf. Knowledge Discovery in Databases (KDD’04), 
pages 527–532, Seattle, WA.   

[9]. Cheng, H., Yan, X. and Han, J. 2005. Seqindex: Indexing sequences 
by sequential pattern analysis. In Proc. 2005 SIAM Int. Conf. Data 
Mining (SDM’05), pages 601–605, Newport Beach, CA.  

[10]. Cong, S., Han, J. and  Padua, D. 2005. Parallel mining of closed 
sequential patterns. In. Proc. 2005 ACM SIGKDD Int. Conf. 
Knowledge Discovery in Databases (KDD’05), pages 562–567, 
Chicago, IL.  

[11]. Nelson, M. R. 1996. Fast String Searching with Suffix Trees. Dr. 
Dobb's Journal, Algorithm Alley. 

[12]. Gusfield, D. 1997. Algorithms on Strings, Trees, and Sequences-
Computer Science and Computational Biology. Cambridge 
University Press. 

[13]. Kurtz, S .1999.  “Reducing the Space Requirement of Suffix 
Trees,” Software–Practice and Experience, 29(13): 1149–1171. 

[14]. Yona, G and  Bejerano. G 1999. Modeling protein families using 
probabilistic suffix trees. In. Proceedings of the third annual 
international conference on Computational molecular biology. 
Pages 15 – 24, ACM press, New York, NY, USA. 

[15]. Bejerano, G. and Yona, G. 2001. Variations on probabilistic suffix 
trees: Statistical modeling and prediction of protein families. 
Bioinformatics, 17(1): 23–43. 

[16]. Yang, J. and Wang, W. 2002.  Towards Automatic Clustering of 
Protein Sequences. In.  Proceedings of the IEEE Computer Society 
Conference on Bioinformatics. pages. 175–186. IEEE Computer 
Society, Washington DC, USA.  

[17]. Sun, Z. and  Deogun, J. S. 2004. Local Prediction Approach for 
Protein Classification using Probabilistic Suffix Trees. In.  
Proceedings of the second conference on Asia-Pacific 

bioinformatics. Pages 357 – 362. Australian Computer Society 
Inc., Darlinghurst. 

[18]. Schürmann, K. B. and  Stoye, J. 2006.  Suffix Tree Construction 
and Storage with Limited Main Memory. Report 2003-06,  
Universitat Bielefeld 33501, Bielefeld, Germany. 

[19]. Tata, S., Hankin, R. A. and Patel, J. M. 2004. Practical Suffix Tree 
Construction.  In. Proc. Int. Conf. Very Large Data Bases 
(VLDB’04). Pages 36 – 47, Toronto,Canada. 

[20]. Mazeroff, G.,  Cerqueira,V. D.,  Michael Gregor, J. and 
Thomason, M. G. 2003. Probabilistic Trees and Automata for 
Application Behavior  Modeling.  In. Proc. 43rd Asian South east  
Conf., pages 435 440, Savannah, GA. 

[21]. Ukkonen, E. 1995. On-line Construction of Suffix Trees. 
Algorithmica, 14: 249 – 260. 

[22]. Mc Creight, E. 1976. A Space-economical Suffix Tree 
Construction Algorithm. Journal of the ACM, 23: 262–272. 

[23]. Farach, M. 1997. Optimal suffix tree construction with large 
alphabets. In. Proceedings of the 38th Annual Symposium on the 
Foundations of Computer Science (FOCS 97), pages 137-143 

 
 
 

Proceedings of the World Congress on Engineering 2011 Vol III 
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-5-2 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011




