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Abstract—The data stream mining has been studied ex-
tensively in recent years. This paper is introducing a novel
method to cluster high-dimensional data streams, based on
famous SVC method, named StreamSVC. SVC projects the
images of the data points in a high–dimensional feature space,
to search for the minimal enclosing sphere, then classifies
the points with respect to the distance between each point’s
image and the central of feature sphere. In StreamSVC, for a
single change in the data stream environment, the algorithm
redoes the classification part. The algorithm involves only the
parts of the data set which are affected during the change
of stream and updates the classes in an appropriate time
complexity order. Also, in order to update the clusters, in
the stream process, we used some new improvements in the
labeling piece of original SVC. These improvements are applied
to reduce the computational costs for classification part and the
cluster’s labeling piece. The experimental results show both time
efficiency and high accuracy for large data streams.

Index Terms—Data stream, Clustering, SVC, Labeling piece.

I. INTRODUCTION

THE process of grouping a set of data points into classes
of similar data is called clustering. Lately, advancing

on technology and communication systems, the data sets
in stream form are widely generated. They are temporally
ordered, fast changing, massive, and potentially infinite. It
may be impossible to store an entire data stream or to scan
through it multiple times due to its tremendous volume. The
critical issues are Data Stream Management Systems and
Stream Queries. Such queries and managements requires
accurate and time efficient stream analysis. Clustering and
cluster analysis are major ways to analysis the data sets.
Thus clustering of high dimensional data stream is now a
famous concept in mining of data streams.
There are some methodologies to deal with massive stream
processing and stream systems. In order to handle these data
types, some algorithm such as Random sampling, Sliding
window or Histogram schemes are provided [1]. All of them
get a part of total data set and reduces them into a abstracted
data set. To obtain the clusters in a stream process, lots of
researches have been performed [2], [3], [4], [5]. In the next
section we introduce some of the new clustering approaches
for data streams.
In (2001) Ben-Hur et al. [6] introduced SVC which is
a kernel-based method for clustering massive and high–
dimensional data sets. The algorithm applies a nonlinear
projection to the data points to map their image into a
high–dimensional data space, then searches for the minimal
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enclosing sphere in the feature space. After that, it classifies
the points due to their distance from the central of feature
sphere. There are two main bottlenecks here, first, pricy
computation and second, poor labeling performance in the
cluster’s labeling piece. Recently many improvements are
applied to solve the bottlenecks [7], [8], [9]. In this paper
we applied a improved form of SVC and exchanged it
into StreamSVC to achieve a strong and useful method for
clustering the data streams.
The improved form of SVC we applied is using SA algorithm
[8] to obtain an appropriate and time efficient algorithm.
In a quick review, StreamSVC applies SVC to initialize the
first clusters, then updates the parameters related to SVC,
cosequently updates the clusters. In an updating process, only
some parts of the data set are affected. It is the strategy to
reduce the time complexity order. As can be seen in the end
of paper, the experimental results show high accuracy for
large and high-dimensional data streams.

What we discuss in this paper: First we introduce SVC,
then we discuss about the required issues about stream
processing. At the third step we describe the lemmas which
are the foundations of StreamSVC algorithm. Forth step is
earmarked to the algorithm’s pseudo-code, next to it, the
experiential results are probed. The final step is conclusion.

II. RELATED WORKS

O’Chalaghan et al. [2] proposed the STREAM algorithm
to cluster data streams. STREAM is a k-means [10] based
algorithm for clustering the data streams. The algorithm only
makes a single pass over the data stream and uses small
space. It requires O(kN) time and O(N ϵ) space, where k is
the number of centers, N is the length of data stream, and
ϵ < 1.
Aggarwal et al. [11] introduced a new approach to cluster
the data streams called HPStream, a fading cluster structure,
and the projection based clustering methodology. A fading
cluster structure is a (2d + 1) tuple, where d is number of
dimensions, each tuple is an indicator of a micro-cluster.
There are two main sections in algorithm (offline process
and stream process). In the stream process, the algorithm
calculate the dimensions function for X and the micro-
clusters, then recisions the clusters and updates them. The
offline section uses variant clustering approach to cluster the
data set.
And also Aggarwal et al. [3] proposed CluStream algorithm.
It adopts micro-clusters introduced in BIRCH algorithm [1]
and uses micro-clusters to absorb arrived data points in online
step. The offline step is to use k-means to cluster the micro-
clusters into macro-clusters. The properties of micro-clusters
are subtractive, so that according to the two snapshots of
micro-clusters, clustering result can be got on every past
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time-horizon.
Tang et al. [12] introduced Movstream. The method focused
on the cluster’s shapes and the changes via definition of
Movement Event include dieout, shrink, expand, and drift
events, and operates on clusters which are the candidates to
change.

III. SVC METHOD

We look for the smallest sphere in the Hilbert space
that encloses the images of the data points [13], [14]. This
sphere is mapped back to data space, where it forms a set
of contours which enclose the data points. These contours
are interpreted as cluster boundaries.

A. Description

Given a nonlinear transformation ϕ for a d-dimensional
data point X ∈ Rd as ϕ(X), the distance between the
transformed data point and the center of the sphere at the
feature space is defined by:

∥ ϕ(Xj)− a ∥2≤ R2 + ξi, j = 1...N, ∀i, ξi ≥ 0. (1)

where ∥ . ∥ is the Euclidean norm, R is the radius, a is
the center of the feature sphere mapped by the data points
and ξi are the slack variables. To solve the Eq.(1) we apply
Lagrangian [14]:

L = R2 −
∑
j

(R2 + ξj− ∥ ϕ(Xj)− a ∥2)βj (2)

−
∑
j

ξjµj + C
∑
j

ξj

where βj ≥ 0 and µj ≥ 0 are Lagrange multipliers, C is
a constant, and C

∑
ξj is a penalty term. Setting to zero

the derivative of L with respect to R, a and ξj , respectively,
leads to ∑

j

βj = 1 (3)

a =
∑
j

βjϕ(Xj)

βj = C − µj so 0 ≤ βj ≤ C,

for j = 1...N .
The KKT complementarity conditions of Fletcher [15] result
in

ξiµi = 0 (4)
(R2 + ξj− ∥ ϕ− a ∥2)βj = 0 .

To obtain the βjs, we eliminate the the variables R, a and
µj , turning the Lagrangian into the Wolfe dual form that is
a function of the variables βj [14]

W = 1−
∑
i

∑
j

βiβjK(Xi, Xj), (5)

where K(a, b) = exp(−q ∥ a − b ∥2). K(a, b) is obtained
from the inner product of the two ϕs (ϕ(a).ϕ(b)) in the
Hilbert space where ϕ(a) = exp(−q ∥ x − a ∥2) [13].
Derivation with respect to βj and considering the condition
of Eq.(3) leads to

βn×1 = [A]−1
n×nBn×1, β = [β1..βn]

T , (6)

Fig. 1. Clustering of a data set containing 183 points using SVC with C
=1. Support vectors are designated by small circles, and cluster assignments
are represented by different gray scales of the data points. (a) q=1, (b) q=20,
(c) q=24, (d) q=48.

where

Aij =

{
1, i = 1
−2K(Xi, Xj), i ̸= 1

, Bi =

{
1, i = 1
0, i ̸= 1

At each point X , we define the distance of its image in
feature space from the center of sphere as

R2(X) =∥ ϕ(X)− a ∥2 . (7)

In view of quadratic equation and the definition of the kernel
[14], the following is got

R2(X) = 1− 2
∑
j

βjK(Xj , X) (8)

+
∑
i

∑
j

βiβjK(Xi, Xj).

The radius of the sphere is R = {R(xj)}, xj is support
vector. The contours enclosed the points in data space are
defined by the set {x|R(x) = R}.

B. Cluster Analysis
The number of outlier points are controlled by the pa-

rameter C. We have NBSV < 1/C , where NBSV is the
number of Bounded Support Vectors (BSVs) or outliers. As
1/(CN) is an upper bound on the fraction of BSVs, thus
1/(CN) ∈ (0, 1]. The value of the parameter C is related
to the number of the data points and the willing, how much
we want to avoid the outliers. The q of the K(x, y) is width
parameter of Gaussian kernel function. q and C influences
the tightness and number of clusters and also the outlier
points.
Fig.(1) shows an example of data points clustering with

different qs without BSVs (C = 1). The contour of cluster
is blur while q increases, and is fine while q decreases, but
it makes the contour of the cluster affix mutually or break
up if q is over-small or over-large. In Fig.(2a)without BSVs,
contour separation does not occur for the two outer rings for
any value of q. When some BSVs are present, the clusters
are separated easily Fig.(2b). So the two parameters q and
C are the identifier of the cluster’s accuracy and tightness.
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Fig. 2. Clustering with and without BSVs. The inner cluster is composed of
50 points generated from a Gaussian distribution. The two concentric rings
contain 150/300 points, generated from a uniform angular distribution and
radial Gaussian distribution. (a) The rings cannot be distinguished when C
=1.0 Shown here is q=3.5, the lowest q value that leads to separation of the
inner cluster. (b) Outliers allow easy clustering. The parameters are p=0.3
and q=1.0.

IV. STREAM CLUSTERING

A. Stream processing

We consider the problem of clustering a data stream in
the sliding window model [16]. The idea behind sliding
window is to perform detailed analysis over the most recent
data items and over summarized versions of the old ones.
Consider n data points Xi1 ...Xin of a d-dimensional data
space with time stamps Ti1 ...Tin , the Sliding window (Wi),
contains the last n income data points Xi1 ...Xin , the new
one overwrites on the oldest one (greatest time stamp) in
the array memory of data points [17].

1) Updating βs: For each point X we can write the Eq.(8)
as below

R2(X) = Rk(X) +Rk(X), (9)

where

Rk(X) = 1− 2
∑
j ̸=k

βjK(X,Xj) +
∑
i̸=k

∑
j ̸=k

βiβjK(Xi, Xj),

and

Rk(X) = 2βk

∑
i̸=k

βiK(Xi, Xk) + β2
k + 2βkK(X,Xk).

Consider the slide window W at time t0, the points
Xi1 ...Xin , are clustered by SVC method as Fig.(2) with
β1..βn obtained by Eq.(6). If the oldest point Xk is over-
written by a new point X ′

k at kth location in memory array
of data points, then for data points X(i+1)1 ...X(i+1)n in W ′

we have

R′2(X) = R′
k(X) +R′

k(X). (10)

where

R′
k(X) = 1− 2

∑
j ̸=k

β′
jK(X,Xj) +

∑
i̸=k

∑
i̸=k

β′
iβ

′
jK(Xi, Xj),

and

R′
k(X) = 2β′

k

∑
i̸=k

β′
iK(Xi, X

′
k) + (β′

k)
2 + 2β′

kK(X,X ′
k).

Remark 1: If n be an enough large number, β′
k can be

obtained as follows

β′
k = λβ′

k + (1− λ)βz, (11)

where

β′
k =

C∥X ′
k − az∥2

∥v∗ − a∗∥2
.

v∗ is a SV point in cluster ∗, with central point a∗, az
is the nearest cluster center point and βz is the lagrangian
coefficient of nearest point to X ′

k.
β′ is the updated value of β caused by Xk→X ′

k as W→W ′.
If the recent change, causes |P | changes in set βjs and |p|
changes in set R2(Xj)s, j=1..n, then we can define the sets
P = {j|βj ̸= β′

j} and p = {j|R2(Xj) ̸= R2(Xj)}.

Lemma 1: All β′
js, j ∈ P can be obtained in O(|P |3),

solving a linear system of form

β|P |×1 = [A]−1
|P |×|P |B|P |×1, β = [β′

j∈P ]
T . (12)

where

Ai,j = 2(β′
kK(X ′

k, Xj)−K(Xi, Xj)), i ∈ p. (13)

Proof: We have n−|p| values of ∆R2(Xj) = 0, where
∆R2(X) = R′2(X)−R2(X). Using Eqs.(9, 10, 11), we can
expand it as follows

∆R2(X) = −2
∑
j∈P

(β′
j − βj)K(X,Xj) (14)

+(β′
k)

2 − (βk)
2 + 2(β′

kK(X ′
k, X)− βkK(Xk, X))

+2β′
k

∑
j∈P

(β′
jK(Xj , X

′
k)− βjK(Xj , Xk))

+2βk

∑
j∈P−{k}

βj(K(Xj , X
′
k)−K(Xj , Xk)).

Using |P | of ∆R2(X)s from set p and factoring the coeffi-
cients related to β′s, we obtain the matrix A and B of linear
system (12) and Eq.(13).

Remark 2: To obtain |P | equations for linear system (12)
we must have: |P |, |p| < n/2.
As the matrix A is not symmetric, obtaining A−1 is of order
O(|P |3) [18].
Here, the critical issue is choosing an appropriate set P .
Fig.(3) shows an example. As can be seen in the figure, the
set P is composed by union of two sets, PX (the circle with
X as cental point) and PX′ (the circle with X ′ as cental
point). The updates are only happening around the deleted
and added points, thus, we use the points in the two circles
as sets PX and PX′ . Setting a prefixed radius the circles can
be obtained simply and finally the set P = PX ∪ PX′ .

2) Labeling piece: As mentioned before, labeling piece
is a bottleneck in SVC. Ping et al. [8] introduced iSVC a
novel approach, whose idea is to cluster the SVs firstly, then
construct a classifier based on labeled SVs, finally label
other data using the classifier. This algorithm is named as
SA in some books. The steps are as follows

1) Create affinity matrix H with respect to SVs where H is
a V×V matrix with Hi,j=K(vi, vj). vi and vj are SVs.
2) Normalize H , using cholesky decomposition [19], into
Hc = D−1/2HD−1/2 , with Dii =

∑
j Hi,j .
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Fig. 3. As X→X′, W→W ′, the data set is changed (including the
neighbors of X and X′), consequently the shape of the related clusters.

3) Find S1..Sκ, the κ largest eigenvectors (κ is specified
by the number of eigenvalues that are larger than 1 [20])
and form Matrix SV×κ = [S1V ×1

...SκV ×1
] then normalize

it: Si,j = S2
i,j/(

∑
j Si,j)

1/2.
4) Treating each row of S as a point in Rκ and cluster it
into κ clusters (using k-means [10]).
5) Label vi as the ith row’s cluster membership.
6) Label other data in terms of its nearest SV’s label.

Fig.(3) shows the changes of points position, with respect
to previous clusters as W→W ′.
Consider the set δ = {v′i|i ∈ P ∧ v′i is SV }. For data set P ,
we assume the matrix Hδ

i,j=K(v′i, v
′
j) with v′i, v

′
j ∈ δ and

apply above algorithm on it. After 6th step, we have parted
the dataset P , into its clusters.

Lemma 2: Cluster ζPX′ in P is a new cluster ζ ′ in W ′ if
and only if

∀ζ in W : ζ ∩ ζPX′ = ∅.

where ζs are the clusters of W and ζPX′ is a cluster in set
PX′ .

Proof: Fig(4.a) shows a data set which contains one
cluster and some outlier points. As X→X ′ we update the
βs, then some new points are adding to SVs in the set P
(the point in black circles are SVs). Applying SA algorithm
on the Set PX′ , two clusters are obtained (ζPX′

1 , ζPX′
2 ). As

can be seen in Fig(4.b), One of these clusters (ζPX′
1 ) has no

common point with the clusters in W , so it is assigned as new
cluster in W ′. In order to proof this lemma, this observation
can be applied: Suppose the cluster ζ

PX′
1 can not be a new

cluster in W ′, so it is either a part of cluster ζ in W or a
mistaken output of SA algorithm. Trusting the SA algorithm,
as the points in ζ

PX′
1 are outlier in W , clearly it is a new

cluster in W ′.
Lemma 3: Cluster ζPX′ in PX′ , unions with cluster ζ in

W and resize it, and lead it to cluster ζ ′ in W ′ if and only
if

(ζ ∩ ζPX′ ̸= ∅) ∧ (∀ζ in W : ζ ∩ ζP = ∅),

where ζ are the clusters of W except ζ.
Proof: In Fig(5.b), set PPX

′ contains one cluster ζPX′ .
The same reasoning of previous lemma can be applied to
proof. Because of ζPX′ ∩ ζ = ∅ the cluster ζ ′ can not be
joined with ζ.

Fig. 4. As X → X′, W → W ′, the data set is changed, adding X′,
some outlier points in W are now a new cluster in W ′.

Fig. 5. As X → X′, W → W ′, some reshaping in clusters are acquired
in the cluster ζ.

Lemma 4: Cluster ζ in W , splits into clusters ζ ′1...ζ ′S in
W ′, if and only if there be S clusters ζPX

1 ...ζPX

S in PX , such
that

(ζ ∩ ζPX
1 ̸= ∅) ∧ ... ∧ (ζ ∩ ζPX

S ̸= ∅).

Proof: Fig(6.a) shows one cluster ζ in W . As can be
seen in Fig.(6.b) the set PX parts into two clusters ζPX

1 and
ζPX
2 . By same observation of previous lemmas, the cluster

is splitting in W ′ environment.
Lemma 5: Clusters ζ1...ζM in W , merge into cluster ζ ′

in W ′, if and only if there be one cluster ζPX′ in PX′ , such
that

(ζPX′ ∩ ζ1 ̸= ∅) ∧ ... ∧ (ζPX′ ∩ ζM ̸= ∅).

Proof: Fig(7.a) shows two clusters ζ1 and ζ2. Adding
X ′, set PX′ (As can be seen in Fig(7.b)) contains one cluster,
thus the two clusters are merged. Same as previous lemmas
this observation can be applied: If the Clusters ζ1 and ζ2,
are not merged by adding the new point X ′, then set PX′ ,
can not be contains one cluster. If so, the Algorithm would

Fig. 6. As X → X′, W → W ′, the cluster ζ splits into two clusters.
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Fig. 7. As X → X′, W → W ′, two clusters ζ1 and ζ2 are merged and
composed on cluster.

be outputted a wrong cluster. Although the whole given
proofs for the lemmas were intuitive, As the lemmas and
the illustrations in examples are very clear, it is no needed
for more details and more mathematical definitions.

B. StreamSVC Algorithm

The algorithm of StreamSVC method for a data set N ,
containing n data points of d-dimensional is as follows

(1) using SVC, for sliding window W , label the clusters as
ζ1...ζκ;
(2) as X→X ′, for new sliding window W ′:
(2 - 1) obtain the β′ for X’, using Eq.(11);
(2 - 2) compose the sets P and p (IV-A1, IV-A1);
(2 - 3) update βs for set P using lem.(1);
(2 - 4) update ζ1...ζκ to ζ ′1...ζ ′κ′ :
(2 - 4 - 1) delete the clusters which has no BSVs;
(2 - 4 - 2) compose the new clusters using lem.(2);
(2 - 4 - 3) resize the clusters using lem.(3);
(2 - 4 - 4) split the clusters using lem.(4);
(2 - 4 - 5) merge the clusters using lem.(5);
(3) if the stream is not ending, goto step (2);

The most important issue to increase the algorithm’s
accuracy is to compose the sets P and p (Step 2 - 2).
Because of the time complexity order of (Step 2 - 3),
to achieve overall complexity of O(n), we must choose
|P | = 3

√
n. The appropriate points in set P and p, are

the points, such that the points in p have relatively far
distance from X and X ′. We can suggest variant ways to
achieve a good P and p. In the previous examples, simply
a radius is prefixed and P is composed by union of PX

and PX′ (see Fig.(3)). For the set p, we can simply choose
p = P . Introducing the other ways to obtain P and p, we
can observe following algorithm. Wang et al. [7] obtains a
similarity matrix as follows: A link is created between a
pair of points, r and s, if and only if r and s have each
other in the list of their k1 nearest neighbors, where k1 is a
user pre–specified parameter. The strength of a link between
two points is expressed by the number of nearest neighbors
that are shared by the two points, their similarity is defined
as

sim(r, s) = |NN(r) ∩NN(s)|,

where NN(r) and NN(s) are the nearest neighbor list of
r and s, respectively. Based on that we can introduce an

TABLE I
THE EXPERIMENTAL RESULTS OF IRIS DATA SET IN STREAM FORM. THE

INITIAL PARAMETERS FOR SVC ARE q = 4.2, C = 0.03 AND FOR
OBTAINING β′

k FROM EQ.(11), λ=0.5

Time 0.1 0.2 0.3 0.5 0.7 0.8 0.9

No. Clusters 3 3 3 3 3 3 3

Purity 0.97 0.95 0.95 0.94 0.93 0.93 0.93

Fig. 8. Experimental results of iris data set based on purity, from 3 different
methods. The Blocked SVC, StreamSVC, movStream with |W | = 60

algorithm as follows: obtaining the similarity matrix, we
choose |P | the number of points near X and X ′, the number
of ones which have a strength similarity (sim(X,Xi)) > α),
where α is a prefix number and composes set Pα.
Now choosing set p is quit simple. We just want the points in
p which have relatively far distance from X and X ′, simply
we can choose p = Pα.

V. EXPERIMENTAL RESULTS

This section evaluates the performance of our algorithm.
The following experiments are conducted on Microsoft
Windows XP Home Edition, with 1GB main memory and
2.4GHz CPU. The algorithm is tested with two different
data sets. First one is iris data set [21] in stream form.
The data set contains three clusters, and total 150 points (50
points for each cluster). We initialize the first sliding window
by 60 points, 20 points from each cluster, then after each
0.01 second, periodically, a single point from each cluster is
added.
Table I shows purity in timeline. Purity is average percentage
of the dominant class label in each cluster [1]. In Fig.(7) the
results are compared with movStream [12] (with MaxNum-
Cluster=3 and MinNumCluster=2) and Blocked SVC with
initial values of q and C, same as Table I. Blocked SVC,
reapplies the original SVC after every 10 points change.
Because of the order of SVC, it cannot be an appropriating
method for streams, but as it is good reference to examine
the accuracy of StreamSVC, Thus, we compared it with our
method. In this experience we choose set P as union of PX

and PX′ , where PX is the set of point in a circle with X as
central point and radius=1.
The second data set is KDD-CUP-99. The data set was

created by Lincoln Labs, U.S.A. The data set contains a
total of 24 attack types (connections) that fall into 4 major
categories: Denial of service (Dos), Probe, User to Root
(U2R), Remote to User (R2L). Each record is labeled either
as normal, or as an attack, with exactly one specific attack
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TABLE II
THE NUMBER OF EACH CASE IN THE PROBED SLIDING WINDOW.

W 10,001-11,000 80,001-81,000 100001-101000 210001-211000 310,030-311,029

sumrf 1000 0 0 345 0

snmpget 0 0 109 0 396

gsspass 0 8 10 0 0

nmap 0 0 1 0 0

portswp 0 0 12 0 0

satan 0 753 0 0 0

warezm 0 12 33 0 0

Fig. 9. Experimental results of KDD-CUP-99-corrected with Blocked SVC
and SVC with the same C and q. For StreamSVC λ=0.65.

type. To examine the StreamSVC, we used a subset of whole
data set named KDD-CUP-99-corrected. The dataset contains
311029 data points, and 42 dimensions. As in OCallaghan
et al. (2002) and Aggarwal et al. (2003), all 34 continuous
attributes will be used for clustering. We initialized the
parameters as follows: |W |=1000, q=2.1, C=1 and the set P
as union of two sets PX and PX′ , where set PX contains the
5 nearest point to X , so |P |=10. The initial sliding window,
contains two kinds of attacks (186 cases of smurf and 103
cases of snmpgetattack) and the normal connections (711
cases), while from data point 210001 to 211000 we have
345 cases of smurf and 655 cases of normal connections.
Table V, shows the number of each case in the probed W .
Fig.(9) shows the purity of the clusters in the process and
compared it with Blocked SVC. The result shows more than
93% accuracy for the method, and in the most areas, the
deviation of its curve relatively to Blocked SVC’s curve, is
averagely 5-6%. The results shows that, the accuracy of the
algorithm, is mostly equals to the original SVC algorithm for
non–stream data sets. As we choose P=10, then total time
is highly reduced, while the accuracy is still acceptable.

VI. CONCLUSION

In this paper we introduced StreamSVC, a novel algorithm
to cluster high-dimensional data streams based on SVC
method. StreamSVC applied SVC, to initialize the first
clusters, then based on the changes in data environment,
it takes a subsets of the dataset which are affected by the
change, and reobtains the SVC’s parameters to updates the
clusters. The most critical part is preparing a good subset of
the dataset which the complementary of it contains only the
parts of dataset which surely are not changed in any of their
parameters.
In the experimental result section, some real data sets are
applied. The first one was the famous iris data set. As iris
data set is a standard benchmark in the pattern recognition

literature, we applied it in stream formatting. The reason was
to assay the accuracy of the algorithm, and the second data
set, KDD-CUP-99, to test both time efficiency and accuracy
of clusters.
The experimental results shows high accuracy and time effi-
ciently of the presented method. As the strength of original
SVC is guaranteed, for every data sets, the accuracy and time
complexity order can be acceptable.
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