
Extraction of Method Signatures from Ontology
Towards Reusability for the Given System

Requirement Specification

S. Sagayaraj and Gopinath Ganapathy

Abstract - Software reuse improves productivity, quality, and
maintainability of software products. Only few completed
projects are achieved and documented. The method signatures in
a completed project are stored in the Ontology and the source
code components are stored in Hadoop Distributed File System
(HDFS). Methods are needed for the new project can be
extracted from the Ontology using Software Requirement
Specification (SRS) document. UML design document will evolve
after many phases from SRS and hence this work proposes a new
framework to extract keywords from SRS and estimate the
number of new methods to be developed and count the number of
methods that can be reused from the Ontology. The SRS
document for the project consists of purpose, scope, system
requirements, functional requirements and non-functional
requirements as metadata. The SRS document is given as input
and the keywords are extracted. The keywords are searched in
Ontology for the similar method prototypes and the appropriate
code components would be extracted from the HDFS. These
methods are integrated in the new project with a review process.
The implementation is provided with the sample SRS text. The
keywords are extracted and matched with the Ontology. The
reusability is measured using reuse metrics, quality, and
knowledge growth.

Index Terms - Metadata, Knowledge Management, Ontology,
Reusability, WordNet.

I. INTRODUCTION
NTOLOGIES are built to represent generic knowledge
about a target world [1]. Ontologies increase the
efficiency and consistency of describing resources, by

enabling more sophisticated functionalities in development of
knowledge management and information retrieval
applications. Software companies make use of the already
developed code to build up a knowledge management system
the software companies make use of prebuilt code base. In
order to develop new software projects with reusable codes.
Systematic reuse of previously written and tested code is a
way to increase software development productivity as well as
the quality of the software [2, 3, 4]. Software Reuse has
been cited as the most effective means for improving the
productivity in software development projects [5, 6]. Some
general reusability guidelines, include ease of understanding,
functional completeness, reliability, error and exception
handling, information hiding, high cohesion and low coupling,
portability and modularity [7]. For each new project, software

 Date of paper submission is March 6th 2011. Revised on April 18th 2011.
 S. Sagayaraj is with Department of Computer Science, Sacred Heart
College, Tirupattur, India. (+91 9443035624; fax: +91 4179 225060; e-mail:
sagi_sara@yahoo.com).
 Gopinath Ganapathy is with the Department of Computer Science,
Bharathidasan University, Trichy, India. (e-mail: gganapathy@gmail.com).

teams design new components and code by employing new
developers. If the firm archives the completed code and
components, they can be used with no further testing. To reuse
the code, a tool can be created to extract the metadata such as
function, definition, type, arguments, brief description, author,
and so on from the source code and store them in Ontology.
For a new project, the developer can search for components in
the Ontology and retrieve them at ease. The Ontology
represents the knowledgebase of the company for the reuse
code. The Ontology can be used to search [8], retrieve,
maintain and view informations. The projects are stored in
Ontology and the source code is stored in the HDFS [9]. The
UML class diagram is a design document considered as the
input. The method metadata is extracted from the UML and
passed to the SPARQL to extract the available methods from
the Ontology. By selecting appropriate method from the list
the code component is retrieved from the HDFS [10]. But for
this paper SRS is used as input. After extracting the keywords
from the SRS document these keywords are matched with the
Ontology. From the retrieved methods, the developer can
account for how many are already available in the repository
and how many to be developed. By uploading projects in
Ontology and HDFS the corporate knowledge grows and the
developers can reuse code than developing newly.

The paper begins with a note on the related technology and
precedent work is in section 2. The detailed features and
framework for Source Code Retriever is found in section 3.
The Keyword Extractor for SRS Text file is in section 4. The
Method Retriever by Jena framework and Source Retriever
from the HDFS are in section 5. The implementation Scenario
is in section 6. The software measures of metrics, quality and
knowledgebase growth is explained in section 7. Section 8
deals with the findings and future work of the paper.

II. RELATED WORK
A. Hadoop AND HDFS
Hadoop is a framework for the development of highly scalable
distributed computing applications [11]. It supports the
processing of large data sets in a distributed computing
environment. Hadoop is designed to efficiently process large
volumes of information [12]. It is a simplified programming
model, which allows the user to write and test distributed
systems quickly. The monitoring system re-replicates the
data in response to system failures, which can result in partial
storage. Even though the file parts are replicated and
distributed across several machines, they form a single
namespace, so their contents are universally accessible. Map

O

Proceedings of the World Congress on Engineering 2011 Vol III
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-5-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

mailto:sagi_sara@yahoo.com

Reduce [13] is a functional abstraction, which provides an
easy-to-understand model for designing scalable, distributed
algorithms.

B. Ontology
The key component of the Semantic Web is the collections of
information called ‘ontologies’. Gruber defines ontology as a
specification of a conceptualization. Ontology defines the
basic terms and their relationships comprising the vocabulary
of an application domain and the axioms for constraining the
relationships among terms. This definition explains what an
ontology looks like [14].The most typical kind of ontology for
the Web has taxonomy and a set of inference rules. The
taxonomy defines classes of objects and relations among them.

C. Ontology Construction
After the completion of a project, all the project files are sent
to source code extraction framework that extracts metadata
from the source code. Only java projects are used for this
framework. The java source file or folder that consists of java
files is passed as input along with the project information like
description and version. The framework extracts the metadata
from the source code using QDox code generators and stores it
in the Ontology using Jena framework. The source code is
stored in the HDFS [15].

D. Source Code Retriever for UML
Source Code Retriever is a framework that takes UML class
diagram or XMI (XML Metadata Interchange) file as an input.
The Source Code Retriever consists of three components:
Keyword Extractor for UML, Method Retriever and Source
Retriever. The Keyword Extractor for UML extracts the
metadata from the UML class diagram. Method Retriever
component retrieves the matched methods from the repository.
Method Retriever constructs SPARQL query to retrieve the
matched results. The user should select the appropriate method
from the list of methods and retrieve the source code by
Source Retriever component, which interacts with HDFS and
displays the source code.

III. SOURCE CODE RETRIEVER
The Source Code Retriever [10] assumes that the Ontology is
constructed for the project and the source code of the project is
stored in the HDFS. Source Code Extractor form Ontology is a
framework that takes SRS document as an input from the user
and suggests the reusable methods for the given extracted
keywords. The Source Code Retriever process flow is shown
in Figure 1. The Source Code Retriever consists of three
components: Keyword Extractor for SRS, Method Retriever
and Source Retriever. The Keyword Extractor for SRS
extracts the keywords from the SRS document. The SRS
document is stored as a word file. The Keyword Extractor for
SRS retrieves keywords from the Word file. The keywords
extracted by the Keyword Extractor for SRS are passed to the
Method Retriever component. Method Retriever component
retrieves the methods matched from the repository. Method
Retriever construct SPARQL query to retrieve the matched
results. The user should select the appropriate method from
the list of methods and retrieve the source code by Source

Retriever component, which interacts with HDFS and displays
the source code.

Figure 1. Process of Source Code Extractor from Ontology

IV. KEYWORD EXTRACTOR FROM SRS

The SRS document can have different types of formats out of
which the following two types are used for extraction:

• Use Cases model
• Description model

A. Use Case Model
SRS document contains the keywords as Use Cases, which
relate to the method names of the project. There is no built-in
API in sun JDK to read or write word document. The
contents of the SRS document is converted to simple text
format using Apache Poor Obfuscation Implementation (POI)
API’s and it is given to java API’s for text extraction. This
POI API is capable of manipulating different types of
Microsoft office suite. A major use of the Apache POI API is
for Text Extraction applications. The Apache POI project is
the master project for developing pure Java ports of file
formats based on Microsoft's Object Linking and Embedding
(OLE) 2 Compound Document Format. OLE 2 Compound
Document Format is used by Microsoft Office Documents, as
well as by programs using Microsoft Foundation Class
(MFC) property sets to serialize their document objects. The
Text extraction identifies the use cases and extracts the name
of the use case as the keywords. The Apache POI project
contains many subcomponents out of which Horrible Word
Processor Format (HWPF) aims to read and write Microsoft
Word 97 format files. HWPF is a port of Microsoft Word file
format for Java. It supports read and limited write
capabilities. The SRS source document is given as input
using the absolute path or a file name or a workspace related
URL. The process checks for the respective path and return
the URL. A constructed input stream is passed to the POIFS
is to read the word file.
org.apache.poi.hwpf.extractor.WordExtractor class is used to
extract the basic text such as lines or paragraphs. The word
extractor of Apache POI API accepts POIFS or a
HWPFDocument to read the text. The getText() method of
word extractor can be used to get the text from all the
paragraphs, or getParagraphText() can be used to fetch the
text from each paragraph in turn. The extracted texts from
the word file using Apache POI API is given as input text to
java.util.regex API. The Keyword Extractor for SRS
component workflow is shown in figure 2. In the SRS
document the keywords are available as the Use cases.
Keyword Extractor for SRS is going to match the word “Use
Case” till the end of the line.

Proceedings of the World Congress on Engineering 2011 Vol III
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-5-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

Figure 2. Process of Keyword Extractor for SRS

Regular Expression matching is a crucial task in several
applications. Research interest has recently moved toward
designing data structures, algorithms and architectures to
support regular expression, which are more expressive than
exact-match string and therefore able to describe a wide
variety of pattern signatures [16][17]. The regular expression
is a string which has to be compiled as a pattern. The matcher
class attempts to match the entire input sequence against the
pattern. The find() method of the matcher class scans the
input sequence looking for the next subsequence that matches
the pattern. The group() method returns the input
subsequence matched by the previous match. The string use
case is removed and the rest of the sentence is taken to form
the keywords. From the use case name, each character is
taken and checked for three conditions. The first one is
whether it is a letter; if so it is concatenated to form a word.
The second one is whether it is a whitespace; if so the
concatenated word is stored in the keyword array. The last one
is for the formatting characters; if so go for the next match.
Finally the extracted keywords from the input text are stored
in an array.

B. Description Model
Description model takes SRS text, which is pasted into the
text box and extracts the necessary keywords to match the
methods in the Ontology file. The process replaces all the non
alphabetic characters by a white space. To remove the non
alphabetic characters from the SRS text, a regular expression
is used like “[^a-zA-Z]”. The meaning of the regular
expression is all characters except alphabets of small and caps
to be removed. So the removeAll(String regex, String
targetString) method of the String Class will remove all the
match of the regular expression found in the SRS text with the
target String that is white space. Next, the SRS text is
compared with the irrelevant words. The words are listed in
the “skip words” text file. Each word of the SRS text is
compared with the words listed in the skip words file. If the
word in the SRS text is matched with any unwanted words, the
SRS word will be removed from the text. Finally the words in
the SRS text will be checked for the existence in the Wordnet
database. To check for the existence of the words in the SRS
text a third party java library called RiWordnet is used[18].
RiWordnet provides library support for application and applet
access to Wordnet. The exists(String) method of the
RiWordnet takes a word and checks for the existence in the
wordnet database. If the word is not found in the wordnet
database, the SRS word will be removed from the SRS text.
So the remaining words in the SRS text are considered as
qualified keywords.

IV. METHOD DEFINITION SOURCE RETRIEVERS

Method Retriever component interacts with the Ontology and
returns the available methods for the given keywords. The
extracted information from the SRS document by the
Keyword Extractor for SRS is passed to the Method Retriever
component. It interacts with Ontology and retrieves matched
method information using SPARQL query. Source Retriever
component retrieves the appropriate source code of the user
selected method from the HDFS. The source code file location
of the Hadoop repository path is obtained from the Ontology
and retrieved from the HDFS by the
copyToLocal(FromFilepath,localFilePath) method. QDox is
a high speed, small footprint parser for extracting
class/interface/method definitions from source files. QDox
finds the methods from the source code. The file that is
retrieved from the HDFS is stored in the local temporary file.
This file is passed to the QDox addSource() method for
parsing. Using QDox each method is retrieved one by one.
The retrieved methods are compared with the user requested
methods. In Hadoop repository, the files are organized in the
same hierarchy of java folder. So, it is easy to get the source
location from the Ontology and store the java source file to a
temp file. The temporary file is loaded into QDox to identify
methods. Each method is compared with method to be
searched. If it matches; the source code of the method is
retrieved by getMethodSourceCode() method.

There are two processes in code reuse: Impression and Reuse.
For a requested method, some methods are matched and listed.
The user visits each method before deciding on reuse is called
Impression. After going through the method code, a particular
method’s code is used that is called ‘Reuse’. To keep track of
these two processes whenever method is used as Impression or
Reused, a record is created using MySQL. The structure of the
record pertaining to the methods is the project, package and
class from which the method is originated, the developer
name, the data and time of development, whether the method
is used as Impression or Reuse and the comment or review of
the user about the method. The database structure will help to
identify the usage of the method. The review of the record can
help the users to further identify the credibility of the method.

V. CASE STUDY

The two variants of Keyword Extraction from SRS are
implemented. But to curtail the length of the paper the
implementation of the Description model of SRS is presented
in this section. The Sample SRS input is given below:
The CISWAAD web site will be operated from the departmental server. When an Alum connects to the
University Web Server, the University Web Server will pass the Alum to the Departmental Server. The
Departmental Server will then interact with the Alumni Database through BDE, which allows the
Windows type program to transfer data to and from a database.
2.2. Functional requirements definitions
Functional Requirements are those that refer to the functionality of the system, i.e., what services it will
provide to the user. Nonfunctional (supplementary) requirements pertain to other information needed to
produce the correct system and are detailed separately.
2.3. Use cases
The system will consist of CIS Alumni Home page with five selections. The first selection is to fill out a
survey. The questions on the survey will be created by a designated faculty member. The survey will
ask the Alum questions concerning their degree, job experience, how well their education prepared them
for their job, and what can the CIS department do to improve itself. This information will be retained on
the departmental server and an e-mail will be sent to the designated faculty member.

The second selection is to the Entries section. There are two choices on this page. One choice is to add
a new entry. A form is presented to the Alum to be filled in. Certain fields in the form will be required,
and list boxes will be used where appropriate. A password typed twice will be required of all new
entries. The second selection of the Entries page is to update an Alum entry. A form will be presented

Proceedings of the World Congress on Engineering 2011 Vol III
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-5-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

allowing the Alum to enter their year of graduation and then to select themselves from a list. A
password will be required before the information will be presented to the Alum to be updated.

The third selection is to search or e-mail an Alum. A form will be presented requiring the requested
Alum’s year of graduation. The requesting Alum will search a table to see if the requested Alum is in
the database, and if so non-sensitive information will be returned. At this time the Alum can select to e-
mail the Alumnus or search for another Alumnus. If the Alum chooses to e-mail the Alumnus a form
will be presented for the message to be entered with the sending Alum’s name and e-mail. The message,
with all necessary information will be forwarded to the requested Alum. The e-mail address of the
requested Alum will not be seen by the sending Alum as a privacy measure. All pages will return the
Alum to the CIS Alumni Home Page.

The entire SRS text is copied from the source file and pasted
in the text box of the interface tool as shown in Figure 3.

Figure 3. User Interface for SRS Text input.

TABLE I
METHODS MATCHED FOR THE KEYWORD PROGRAM

 The number of keywords extracted by the process is 124. The
Extracted Keywords are given below:
filled time correct created refer page search selections year connects information transfer services form
privacy questions job windows table third requested system separately ask faculty home choice data
operated use alum graduation twice allowing nonfunctional detailed entries alumnus sensitive member
site cases requesting choices pages return web supplementary seen selection sending new degree
interact returned produce provide second functional entered requiring used type password sent updated
survey required concerning presented fields retained departmental appropriate consist select designated
enter forwarded definitions program prepared update other measure can department one pertain well
improve education add requirements chooses typed another allows name cis experience mail
functionality university five boxes fill list section database needed pass message two see address entry
there server necessary certain first user out

The initial test is done with Liturgy Information management
System project, 108 methods are matched for the above
keywords from the Ontology. The output of Keyword
Extractor from SRS is given to the Method Extractor and
generates the SPAQL query and extracts the matched
methods. For the keyword Program more than ten methods
are matched, but only one matched method detail is presented
in Table I. It has matched ten methods in various projects.
From the list, the appropriate method will be selected and the
QDox retrieves the source code from the HDFS and displays

e method definition. th

d Growth of the
nowledgebase are used in this paper.

pment cost
ill come down if the reuse percentage is higher.

 get increased. Figure 4 shows the relationships
between

VII. MEASURING THE CODE REUSE
This section deals with the metrics and models of software
reuse. A metric is a quantitative indicator of an attribute of a
thing. A model specifies relationships among metrics. Many
measurable impacts of software reuse are available, out of
which Reuse Density, Quality an
K

A. Reuse Metrics
Many software reuse metrics are available such as reuse level,
reuse frequency and reuse density. Reuse Level is a metric
[19] that calculates the number of methods reused in the
project related to the total number of methods in the
knowledgebase. It is one of the simplest and well-known reuse
metric. For every new project the matched methods from
Ontology are retrieved and related to the total number of
methods to be developed. If a new project needs 100 methods
to be developed, all are matched with the repository and
matches for 30 methods. The reuse level will be (30/100) =
0.30. Also Reuse percentage can be calculated by multiplying
the reuse level by hundred. From the above reuse level value
0.30 * 100 give 30 percent. The reuse percentage shows the
amount of reuse in the new project. When the reuse percentage
goes higher and higher the resources are used more from the
knowledgebase. It shows that the software develo
w

Reuse Frequency is a metric that calculates the number of
references to reused items related to the total number of
references. Reuse frequency is highly correlated to the Reuse
Level metric [20]. In a project, a method matches with
repository and lists 50 methods for the user’s choice. The
number of methods visited for a given method is 7. Reuse
Frequency is (7/50) = 14. The reuse frequency shows the
strength of the knowledgebase. If the reuse frequency is more
for the given method many retrieved methods are relevant.
Reuse Density is a metric [21] that measures the number of
reused method related to the total number of instructions.
Reuse Density, Reuse Level and Reuse Frequency all are
related so the Reuse Density metric alone is used in Table II.
To test the performance of this framework, the reusable
Ontology files are created by uploading the completed
projects. The first Ontology file is uploaded with first java
project. The second Ontology file is uploaded with first and
the second java projects. The third Ontology file is uploaded
with first, second and third java projects. Similarly five
Ontology files are constructed. The purpose of creating
Ontology is to show how Reuse Density increases when the
knowledgebase grows. The first entry in Table II shows the
worst case scenario where only 32 lines of code is reused
compared to the 1320 of total lines of code gives the
0.02878787 as reuse density. The average case has 372 lines
of reuse code to the 6740 total code that gives the reuse
density as 0.5519287. In the same way, the best case reuse
density is 0.6159695 for 972 lines of reuse code to 15780 total
lines of code. When the reuse code is more the reuse density
will also

S.No Information

 Keyword : program

Project Name LIMS 1.0

Package com.lims.beans

Class Name Memberbean

Method

Name setProgram

Parameters program

1

Return Type void

Proceedings of the World Congress on Engineering 2011 Vol III
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-5-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

TABLE II
REUS

Knowle
dge
Base

E D R US K ED S

e

ENSITY FO
Searched
Methods

 THE VARIO
Searched
Methods
Lines of

NOWL
Total
Lines
of

GE BASE
Reuse
Density

Cod Code
1 2 38 1320 0.02878787
2 5 137 2890 0.04740484
3 11 372 6740 0.05519287
4 13 688 11340 0.06067019
5 16 972 15780 0.06159695

searched methods lines of code, total lines of code and reuse
density. The Ontology knowledgebase is shown in X-axis and
the lines of code in the Y-axis. The graph and the table show
that the reuse density increases when more number of projects
re uploaded in to the Ontology. a

Fig. 4. Reuse Density

B. Quality
The fundamental cause of “software bottleneck” is that new
software systems are usually developed from the scratch.
Software Reuse not only improves productivity: it also has a
positive impact on the quality and maintainability of software
products [22]. It is generally assumed that the reuse of existing
software will enhance the reliability of a new software
application. Potential quality attributes include: reusability,
maintainability, accuracy, clarity, replaceability,
interoperability, scalability, performance, flexibility,
adaptability, and reliability. The Quality of the software can be
measured using the following formula:
 Quality = 100 – Defect Density * New Code
To calculate the quality expected, quality is always hundred
percent. The Defect density is a measure of the total known
defects divided by the size of the software entity being
measured. Normally for the MNC’s it will be 5% to 10%.
Normal companies will have 20% defect density. Table III
shows how the quality gets increased when using reusable
code. The first entry in that table shows the worst case
scenario where there is no code is reused so the quality
percentage is 80 percent. It is because of the 20 percent defect
density considered for all the entries. The average case has
1000 lines of new code and the 1000 lines of reuse code that
makes the 90 percent quality. The best case quality
percentage is 100 percent for the no new code. This 100
percent for the best case is possible because the reuse code

will not have the defect density. So, more usage of reuse code
will bring better quality to the software process.

TABLE III

 QUALITY WITH REUSE
Project
Code

Defect
Density
Percentage

New
Code

Reuse
Code

Quality
Percentage

1000 20 1000 0 80
2000 20 1600 400 84
2000 20 1000 1000 90
3000 20 1000 2000 93.33
4000 20 0 4000 100

The Quality of software reuse for the various scenarios is
presented diagrammatically in Figure 5. The graph shows the
quality percentage progresses with the higher reuse code. The
X-axis represents the various projects and the Y-axis
represents the lines of code. To have better quality in the
software the reuse will become inevitable.

Fig. 5. Quality percentage for New and Reuse code

C. Knowledgebase Growth
Five completed projects are uploaded in to Ontology and a
new project is going to be uploaded. Using this framework,
the number of methods already available in the repository is
counted and it is going to be redundant method but, with
different process. So these remaining methods are going to
add knowledge to the repository. By uploading many new
projects to Ontology the knowledgebase grows. Ontology
consists of five projects and five new complete projects are
going to be uploaded. The knowledge strength is shown in
Table IV. The first entry in the table shows the worst case
scenario where 100 methods are going to get uploaded out of
which only 15 methods are matched with the exiting methods.
They become the redundant methods with different process
which are stored in the repository. In the same way the
remaining 85 methods become the new to the Ontology. The
knowledge growth for this scenario is 85 percent. The average
case has 80 methods are to be uploaded out of which 42
methods are already available and 38 methods are new to the
Ontology. The knowledge growth for this case is 47.5 percent.
The best case knowledge growth is 43.33 percent when the
total methods are 180, the number of methods in Ontology is
102 and the number of new methods to Ontology is 78. When

Proceedings of the World Congress on Engineering 2011 Vol III
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-5-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

many new projects are uploaded in to the storage the
knowledge growth will get reduced. It shows evidently that
most of the requested methods are already in the storage. The
knowledge growth for the various scenarios is shown
diagrammatically in Figure 6. The continuous upload of the

TABLE IV
 KNOWLEDGE GROWTH IN OWL

New
Project

Number of
Methods in
Project

Number of
Methods in
OWL

Number of
Methods New
to OWL

1. 100 15 85
2. 150 34 116
3. 80 42 38
4. 120 54 66
5. 180 102 78

projects to the repository decreases the knowledge growth
percentage. The X-axis represents the various projects and the
Y-axis represents the number of methods. The knowledge
growth will tend to decrease because most of required
methods are already available in the storage. By these three

Fig. 6 Knowledge Growth for various Projects

measures, the software reuse claims that how the reuse code
can perform better than the developed code.

VIII. CONCLUSION
The paper presents a framework to extract the method code
components from the Ontology using the SRS document.
After developing Ontology and storing the source code in the
HDFS, the code components can be reused. With these sample
tests the paper shows that it is indeed possible to extract code
from Ontology using the SRS document. This paper has taken
SRS from the user as input, extracted the method signature,
searched and matched in the Ontology. The keywords can be
used to search and match with the Ontology and the required
method definition can be retrieved from the HDFS. The
purpose of storing the metadata in Ontology is to minimize the
factors like time of development, time of testing, time of
deployment and developers. By creating Ontology using this
framework can reduce these factors. The purpose of the paper
is to achieve the code reusability for the software
development. Using this tool, developer’s progress and worth
fullness can be assessed. Reuse could provide improved
profitability, higher productivity and quality, reduced project

costs, quicker time to market and a better use of resources.
The software reuse considered in this paper deals only with
the entire code of the method. The future work can take the
partial usage and code modification in the extracted method’s
code in to account. A batch process can be created to monitor
the completed project from the server to upload to the
Ontology. After the method matching the list of methods are
listed and chosen by the developer manually can be
automated.

REFERENCES
 [1]. Bung. M, Treatise on Basic Philosophy. Ontology I. The
 Furniture of the World. Vol. 3, Boston: Reidel.
[2]. Gaffney Jr., J. E,, Durek, T. A., “Software reuse - key to enhanced
 Productivity: Some quantitative models”, Information and Software
 Technology 31(5): 258-267.
[3]. Banker, R. D., Kauffman, R. J., “Reuse and Productivity in Integrated
 Computer-Aided Software Engineering: An Empirical Study”, MIS
 Quarterly 15(3): 374-401.
[4]. Basili, V. R.,Briand L. C., Melo, W. L., “How Reuse Influences
 Productivity in Object-Oriented Systems”, Communications of the ACM
 39(10): 104-116.
[5]. Boehm B.W., Pendo M., Pyster A., Stuckle E.D., and William R.D., “An
 Environment for Improving Software Productivity”, In IEEE Computer,
 June 1984.
[6]. Paul R.A., “Metric-Guided Reuse”, In proceedings of 7th International
 Conference on tools with artificial Intelligence (TAI’95), 5-8 November,
 1995, pp. 120-127.
[7]. Poulin Jeffrey S., “Measuring Software Reusability”, In proceedings of
 3rd International Conference on Software Reuse, Brazil, 1-4 November
 1994, pp. 126-138.
[8]. Gopinath Ganapathy and S. Sagayaraj, “Studies on Architectural Aspects
 of Searching using Semantic Technologies”, in International Journal of
 Research and Reviews in Computer Science,Vol.1, No. 2, June 2010,
 pp.119-126.
[9]. Gopinath Ganapathy and S. Sagayaraj, “Automatic Ontology Creation
 by Extracting Metadata from the Source code”, in Global Journal of
 Computer Science and Technology,Vol.10, Issue 14(Ver.1.0) Nov.
 2010, pp.310-314.
[10]. Gopinath Ganapathy and S. Sagayaraj, “Extracting Code Resource from
 OWL by Matching Method Signatures using UML Design Document”,
 in International Journal of Advanced Computer Science and
 Applications(IJACSA), Volume 2 No 2, February 2011, pp. 90-96.
[11]. Jason Venner, Pro Hadoop : Build Scalable, distributed
 Applications, in the cloud, Apress, 2009.
[12]. Gopinath Ganapathy and S. Sagayaraj, “Circumventing Picture
 Archiving and Communication Systems Server with Hadoop
 Framework in Health Care Services”, in Journal of Social Science,
 Science Publication 6 (3) , pp.310-314.
[13].Tom White, Hadoop: The Definitive Guide, O’Reilly Media, Inc., 2009.
[14]. Bugaite, D., O. Vasilecas., “Ontology-Based Elicitation of Business
 Rules”, In A. G. Nilsson, R. Gustas, W. Wojtkowski, W.G. ojtkowski,
 S. Wrycza, J. Zupancic Information Systems Development: Proc. of the
 ISD’2004. Springer- Verlag, Sweden, 2006, pp. 795-806.
[15]. Gopinath Ganapathy and S. Sagayaraj, “To Generate the Ontology
 from Java Source Code”, in International Journal of Advanced
 Computer Science and Applications(IJACSA), Volume 2 No 2,
 February 2011, pp. 111-116.
[16]. R. Sommer and V.Paxson, “Enhancing byte-level network intrusion
 detection signatures with context”, in CSS 2003.
[17]. J. Newsome et al., “Polygraph: Automatic Signature Generation for
 Polymorphic worms”, in IEEE Security & Privacy Symp. 2005.
[18]. Daniel C. Howe., RiTa: Creativity Support for Computational
 Literature, in CHI 2008, Florence, Italy, 2008.
[19]. William Frakes, Carol Terry, Software Reuse and Reusability Metrics
 and Models", 1995.
[20]. W Curry, G Succi, M Smith, E Liu, R Wong, Empirical Analysis
 of the Correlation between Amount-of-Reuse Metrics in the C
 Programming Language. 1999.
[21]. Benedicenti, L., G. Succi, T. Vernazza, Guidelines to Determine
 the Impact of Code Reuse on Productivity, 1997.
[22]. Poulin Jeffrey S, “Measuring Software Reusability”, In proceedings of
 3rd International Conference on Software Reuse, Brazil, 1-4 November
 1994, pp. 126-138.

Proceedings of the World Congress on Engineering 2011 Vol III
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-5-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011

	I. INTRODUCTION
	II. RELATED WORK
	2.2. Functional requirements definitions
	2.3. Use cases
	[16]. R. Sommer and V.Paxson, “Enhancing byte-level network intrusion
	 detection signatures with context”, in CSS 2003.
	[17]. J. Newsome et al., “Polygraph: Automatic Signature Generation for
	 Polymorphic worms”, in IEEE Security & Privacy Symp. 2005.

