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Abstract—Two symplectic numerical integration methods, of
mean-square order 1 and 2 respectively, for a linear stochastic
oscillator with two additive noises are constructed via the
stochastic generating function approach and investigated. They
are shown by numerical tests to be efficient and superior to
non-symplectic numerical methods.

Index Terms—stochastic numerical integration methods,
stochastic Hamiltonian systems, symplectic methods, generating
functions.

I. INTRODUCTION

THE linear stochastic oscillator with two additive noises

dq(t) = p(t)dt + σdW1(t), q(0) = q0,

dp(t) = −q(t)dt + γdW2(t), p(0) = p0,
(1)

where p(t), q(t) are scalar functions, σ, γ are constants,
and Wi(t) (i = 1, 2) are independent standard Wiener
processes, is a stochastic Hamiltonian system ([8]), for which
the Hamiltonian functions are

H =
1
2
(p2 + q2), H1 = σp, H2 = −γq. (2)

It is revealed that ([8]), the stochastic Hamiltonian systems
with m noises

dp = −∂H

∂q
dt−

m∑
r=1

∂Hr

∂q
◦ dWr(t), p(0) = p0,

dq =
∂H

∂p
dt +

m∑
r=1

∂Hr

∂p
◦ dWr(t), q(0) = q0,

(3)

which will be reduced to the deterministic Hamiltonian
systems if the diffusion coefficients vanish, possess the
symplectic structure

dp(t) ∧ dq(t) = dp(0) ∧ dq(0), ∀t ≥ 0, (4)

as their deterministic counterparts do. Note that the small
circle ◦ before dWr(t) in (3) denotes stochastic differential
equations of Stratonovich sense, and the differential d in (3)
is taken with respect to time t, while that in (4) is taken
in the phase space with respect to the initial phase point
(p(0), q(0)).
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Numerical discretization methods for Hamiltonian systems
that inherit the symplectic structure are called symplectic
methods, characterized by

dpn+1 ∧ dqn+1 = dpn ∧ dqn, ∀n ≥ 0, n ∈ Z. (5)

Such methods are shown to be superior to non-symplectic
ones in simulating both the deterministic ([1],[10],[11] etc.)
and the stochastic ([8],[9] etc.) Hamiltonian systems, owing
to their preservation of the qualitative property, the sym-
plecticity of the underlying continuous differential equation
systems. Stochastic symplectic methods, however, are far less
developed than deterministic ones for which one can refer to
[3] and references therein, where [2] is a pioneering work
on deterministic generating function theory.

In the present paper, we construct two symplectic methods
for the linear stochastic oscillator (1) via the stochastic
generating function approach proposed in [5] and [12], the
theory of which is based on the fact that, the phase flow
ϕt : (p(0), q(0)) 7→ (p(t), q(t)) of the stochastic Hamiltonian
systems, which is a symplectic mapping for every t > 0
almost surely ([8]), can be generated by certain generating
functions. Meanwhile, as an argument of the theory, the
generating function that generates the true solution of (1) is
given. Numerical experiments testify efficiency, mean-square
order of the generated numerical methods, and compare them
with the non-symplectic Euler-Maruyama method.

Section II constructs two numerical methods for the sys-
tem (1) via the stochastic generating function approach,
proves their symplecticity, and gives the generating func-
tion that produces the true solution of (1). Section III are
numerical experiments testing the behavior of the numerical
methods. The conclusion is in Section IV.

II. SYMPLECTIC METHODS FOR THE STOCHASTIC
OSCILLATOR

Applying the stochastic generating function theory given
in [5] and [12] to the stochastic Hamiltonian system (1),
the first kind of generating function S1(pn+1, qn, h) for this
system should have the form of series expansion

S1(pn+1, qn, h) = σpn+1∆nW1 − γqn∆nW2

+
h

2
(p2

n+1 + q2
n)

− σγ

∫ tn+1

tn

(W1(s)−W1(tn)) ◦ dW2(s)

− γpn+1

∫ tn+1

tn

(s− tn)dW2(s)

+ σqn

∫ tn+1

tn

(W1(s)−W1(tn))ds

+
h2

2
pn+1qn + · · · ,

(6)
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where h =: tn+1 − tn is the time step-size, ∆nWi =:
Wi(tn+1) −Wi(tn), (i = 1, 2), and this kind of generating
function can create the symplectic mapping (pn, qn) 7→
(pn+1, qn+1) via the relations

pn = pn+1 +
∂S1

∂qn
, qn+1 = qn +

∂S1

∂pn+1
. (7)

Approximating S1 by truncating the series after the fourth
term, i.e. the term in the third line of (6), and using the
relations (7) produces the scheme

pn+1 = pn + γ∆nW2 − hqn

qn+1 = qn + σ∆nW1 + hpn+1,
(8)

which is the symplectic Euler-Maruyama method given in
[8], but here reattained via the generating function approach.

Truncating the series of S1 after the seventh term, i.e. the
term in the sixth line of (6), with application of the relations
(7), gives the following scheme

pn+1 = pn + γ∆nW2 − hqn

− σ

∫ tn+1

tn

(W1(s)−W1(tn))ds− h2

2
pn+1

qn+1 = qn + σ∆nW1 + hpn+1

− γ

∫ tn+1

tn

(s− tn)dW2(s) +
h2

2
qn,

(9)

which is a new scheme that contains some additional higher
order terms than (8).

In principle, methods of higher mean-square order can
be obtained by involving sequentially and appropriately
more terms of the series into the truncated S1. It can be
proved that the mean-square order of (8) is 1, and that of
(9) is 2, for which we only give empirical evidence through
numerical tests in the next section, and leave the theoretical
investigation in another paper. For the implementation
methods of ∆nWi (i = 1, 2) and the stochastic integrals in
(8) and (9), refer to e.g. [4], [6] and [7].

Proposition 1. The numerical methods (8) and (9) for
the stochastic oscillator (1) are both symplectic.

Proof. Symplecticity of (8) is already assured by [8],
therefore we only prove that for (9). In fact, the proof for
(8) can just follow the same way.

Rewrite (9) into the following convenient form

pn+1 =
2

2 + h2
pn − 2h

2 + h2
qn +

2
2 + h2

β1,

qn+1 =
2h

2 + h2
pn +

4 + h4

2(2 + h2)
qn +

2
2 + h2

β2,
(10)

where

β1 = γ∆nW2 − σ

∫ tn+1

tn

(W1(s)−W1(tn))ds,

β2 = hβ1 + (1 +
h2

2
)α1,

(11)

with

α1 = σ∆nW1 − γ

∫ tn+1

tn

(s− tn)dW2(s). (12)

Consequently,

dpn+1 ∧ dqn+1 =
(

4 + h4

(2 + h2)2
+

4h2

(2 + h2)2

)
dpn ∧ dqn

= dpn ∧ dqn.
(13)

¤
For any t ∈ [0, T ], h > 0 such that t + h ≤ T , if we

denote X(t + h) = (Q,P )T , X(t) = (q, p)T , then the true
solution of (1) on the domain t ∈ [0, T ] can be expressed as
([8])

Q = q cos h + p sinh + u1,

P = −q sinh + p cos h + u2,
(14)

with X(0) =
(

q0

p0

)
, and

u1 = σ

∫ t+h

t

cos(t + h− s)dW1(s)

+ γ

∫ t+h

t

sin(t + h− s)dW2(s)

u2 = −σ

∫ t+h

t

sin(t + h− s)dW1(s)

+ γ

∫ t+h

t

cos(t + h− s)dW2(s).

(15)

It is not difficult to check that, the true solution (14) is a
symplectic mapping (p, q) 7→ (P, Q) which can be generated
by the function

S(q, Q, h) = (Q− u1)(u2 − q csc h)

+
1
2
(q2 + (Q− u1)2) cot h

(16)

via the relations

p = −∂S

∂q
, P =

∂S

∂Q
. (17)

Note that S and S1 are two different kinds of gen-
erating functions with different assignments of indepen-
dent variables. Actually, they can be transformed to each
other through coordinate transformation (see e.g. [2], [3],
[12]), and each of them satisfies a corresponding stochastic
Hamilton-Jacobi PDE, by solving which the series expansion
of them such as (6) can be obtained. For example, given the
stochastic Hamiltonian system (3), the stochastic Hamilton-
Jacobi PDE for S1(P, q, t) should be

dS1
t = H(P, q +

∂S1

∂P
)dt +

m∑
r=1

Hr(P, q +
∂S1

∂P
) ◦ dWr(t),

S1(P, q, 0) = 0,
(18)

Proceedings of the World Congress on Engineering 2011 Vol I 
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-18210-6-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011



the solution of which is assumed to be of the form

S1(P, q, t) =
m∑

r=1

Gr(P, q)Ir + G0(P, q)I0

+
m∑

v=1

m∑
r=1

Gv,r(P, q)Iv,r

+
m∑

i=1

m∑
v=1

m∑
r=1

Gi,v,r(P, q)Ii,v,r

+
m∑

r=1

G0,r(P, q)I0,r +
m∑

r=1

Gr,0(P, q)Ir,0

+ G0,0(P, q)I0,0

+ · · · ,

(19)

where

Ii1,··· ,ij
=

∫ t

0

∫ u1

0

· · ·
∫ uj−1

0

◦dWi1(uj) · · · ◦ dWij
(u1),

(20)
in which j ≥ 1, j ∈ Z+, ik (k = 1, · · · j) takes value from
the set {0, 1, · · · ,m}, and if ik = 0, dWik

(us) := dus. The
functions containing the character G are to be determined by
substituting the series (19) into the equation (18). The series
S1 in (6) is just obtained in this way.

More details about the stochastic generating function
theory were given in [5] and [12].

Proposition 2. The second moment of the solution of (1)
grows linearly with respect to time t, that is,

E(p(t)2 + q(t)2) = E(p2
0 + q2

0) + (σ2 + γ2)t. (21)

Proof. A straightforward calculation of the second moment
on the true solution (14) yields

E(P 2 + Q2) = E(p2 + q2) + (σ2 + γ2)h, (22)

which is equivalent to (21) by assigning t = 0 and substitut-
ing the notation h by t in (14). ¤

In the next section, we use the linear growth property (21)
as a criterion of evaluating the numerical methods.

III. NUMERICAL TESTS

To compare the symplectic methods with non-symplectic
ones, we take the non-symplectic Euler-Maruyama method
applied to (1) as an example, which reads

pn+1 = pn + γ∆nW2 − hqn

qn+1 = qn + σ∆nW1 + hpn.
(23)

The numerical tests examine the behavior of the numerical
methods from three aspects: first, closeness between the os-
cillation curves produced by the numerical (qn) and the true
solution (q(tn)), to which Fig. 1, 2, and 3 are contributed;
second, ability of preserving the linear growth property (21),
as shown by Fig. 4, 5, and 6; and third, the empirical mean-
square order of the methods illustrated by Fig. 7 and 8.

Both Fig. 1 and 2, produced by the methods (8) and (9)
respectively, exhibit good coincidence between the numerical
(blue dotted) and the true solution (red solid) curves, while
obviously larger and larger deviation of the numerical curve
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Fig. 1. A Sample Trajectory arising from the Numerical Method (8) (blue
dotted) and the True Solution (14) (red solid)
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Fig. 2. A Sample Trajectory arising from the Numerical Method (9) (blue
dotted) and the True Solution (14) (red solid)
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Fig. 3. A Sample Trajectory arising from the Euler-Maruyama Method
(23) (blue dotted) and the True Solution (14) (red solid)

created by the Euler-Maruyama method (23) from the true
solution is observed in Fig. 3, which indicates the effective-
ness of the symplectic methods (8) and (9), as well as the
invalidity of the non-symplectic Euler-Maruyama method in
solving the stochastic oscillator.

Fig. 4, 5, and 6 show the evolution of the numerical second
moment E(p2

n + q2
n) (blue solid) by the methods (8), (9)

and (23), respectively, compared with the reference line (red
dotted) indicating the theoretical path of the linear growth,
from which it can be seen that the method (9) preserves the
linear growth property (21) more accurately than (8), though
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Fig. 4. Evolution of the Sample Average (over 500 samples) of p2
n + q2

n
by the Numerical Method (8) (blue solid) and the Exact Second Moment
(red dotted)
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Fig. 5. Evolution of the Sample Average (over 500 samples) of p2
n + q2

n
by the Numerical Method (9) (blue solid) and the Exact Second Moment
(red dotted)
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Fig. 6. Evolution of the Sample Average (over 500 samples) of p2
n + q2

n
by the Euler-Maruyama Method (23) (blue solid) and the Exact Second
Moment (red dotted)

both of them behave fairly well in this aspect. The Euler-
Maruyama method, however, fails to reproduce the linear
growth of the second moment. The expectation E in these
tests is approximated by taking average over 500 sample
solutions.

The data for the tests are: (p0, q0) = (0, 0), σ = γ = 1,
t ∈ [0, 200], and the time step-size h = 0.02.

The log-log plot between the step-sizes h and the
corresponding mean-square error at t = 200, i.e.
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Fig. 7. Logarithm of the Mean-Square Error at Time t = 200 by the
Numerical Method (8), versus the Logarithm of the time step-size h, for
h=0.01, 0.02, 0.05, 0.1, 0.2 (blue solid), and the Reference Line of Slope 1
(red dotted)
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Fig. 8. Logarithm of the Mean-Square Error at Time t = 200 by the
Numerical Method (9), versus the Logarithm of the time step-size h, for
h=0.01, 0.02, 0.05, 0.1, 0.2 (blue solid), and the Reference Line of Slope 2
(red dotted)

[
E[(pN − p(200))2 + (qN − q(200))2]

] 1
2 , where N =

200/h, arising from the numerical schemes (8) and (9) are
exhibited in Fig. 7 and 8 respectively. Five different values
of h, i.e. 0.01, 0.02, 0.05, 0.1, 0.2 are chosen for the test,
corresponding to the five circle markers on the blue solid
lines. The red dotted straight lines are of slope 1 in Fig. 7
and 2 in Fig. 8. It is indicated by the parallelism between
the numerical plot and the corresponding reference lines that,
the mean-square order of (8) is 1, and that of (9) is 2.

IV. CONCLUSION

Symplectic methods are very important in the simulation
of stochastic Hamiltonian systems, especially in long time
simulation problems. The paper applies the stochastic gen-
erating function approach, which is a systematic way of
constructing symplectic scheme for stochastic Hamiltonian
systems, to a concrete stochastic Hamiltonian system, the
linear stochastic oscillator (1), to build symplectic schemes
for it, which might serve as a demonstration of the applica-
tion of the stochastic generating function approach. Although
only two schemes are given here, many others, in fact, can
be produced, by different truncations of the same generating
function series, or different choices of generating functions,
such as S, S2 or S3 ([12]). Construction and implementation
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of symplectic schemes with even higher orders, however, are
still subject to further investigation.
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