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Abstract—A method is presented to construct computation-
ally efficient reduced order models (ROMs) of three dimensional
aerodynamic flows around commercial aircraft components.
The method is based on the proper orthogonal decomposition
(POD) of a set of steady snapshots, which are calculated using
an industrial computational fluid dynamics (CFD) solver. The
POD-mode amplitudes are calculated minimizing a residual
defined from the Euler equations, which makes the ROM
independent of the peculiarities of the CFD solver. Also, both
POD modes and the residual are calculated using only a limited
number of points in the computational mesh. In spite of these
simplifications, the method provides quite good approximations
of the flow variables distribution in the whole computational
domain, including the boundary layer and the wake. The
method is tested considering the aerodynamic flow around a
horizontal tail plane in the transonic range and proves to be
robust and efficient.

Index Terms—Reduced order models, proper orthogonal
decomposition, aerodynamic flows.

I. INTRODUCTION

AERODYNAMIC design and certification are crucial
steps in product development. Improving designs and

reducing cost and time to market are increasingly needed
in aeronautics to survive in increasingly competitive global
market scenarios. Although, a trend is observed to substitute
wind tunnel tests by computational fluid dynamics (CFD)
simulations, the huge computational resources and CPU time
required to calculate a single simulation (about two CPU
days for a commercial aircraft) makes this solution imprac-
tical. Thus, reducing computational time of CFD solvers is
becoming the key step to facilitate their industrial use. ROMs
are good candidates to fulfill this objective.

Broadly speaking, fluid dynamics ROMs are constructed
expanding the flow variables in terms of the most ener-
getic POD modes, calculated from a set of representative
CFD computed snapshots. The associated mode amplitudes
are calculated either solving a set of ordinary differential
equations obtained upon Galerkin projection, or minimizing
a predefined residual error. Examples of the former can be
found in, e.g., the articles by Galletti et al [1], Sirisup and
Karniadakis [2], Burkhard et al [3], and Rapun and Vega [4],
and examples of the latter, in the articles by LeGresley and
Alonso [5], Alonso et al [6], and Rouizi et al [7], and Bache
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Fig. 1. Three dimensional views of the whole computational mesh (left)
and the HTP with the O-mesh (rigth).

et al [8]. In both cases, the CPU time needed to compute the
ROM is much smaller than the CPU time required to run the
CFD solver.

In this paper we present a robust ROM of multiparameter,
three dimensional, steady, aerodynamic flows based on the
minimizaction of a properly defined residual. For illustration,
the method will be applied to calculate the aerodynamic flow
around a HTP, which will be kept in mind in the description
of the method.

II. CFD CALCULATION OF THE SNAPSHOTS AND POD
MODES

The ROM that will be derived in the paper will be
illustrated considering the aerodynamic flow around a three-
dimensional HTP (Fig.1, right), depending on two parame-
ters, the angle of attack and the Mach number, in the range
−3.0◦ ≤ AoA ≤ 3.0◦ and 0.4 ≤ M ≤ 0.8; see Fig.2 below.
The flow around the HTP in such range presents strong shock
waves that move only slightly as the parameters are varied.
This means that no special shock wave treatment is needed,
unlike the case studied by Alonso et al. [9]

Snapshots will be calculated using the ELSA code [10],
[11], developed by ONERA and CERFACS, which is a finite
volume discretization [12] of the compressible continuity,
momentum, and energy equations, with viscous terms modi-
fied according to an Edwards-corrected [13] Spalart-Almaras
turbulence model [14] and some extra stabilizing terms added
for numerical reasons. Further details of the numerical solver
itself will not been needed below to develop the ROM.

The HTP has a span length 1.5 times its root chord, c. The
position and orientation of the Cartesian coordinate frame is
sketched in Fig.1. The complete computational mesh (Fig.1,
left) is structured, with a total number of 3,053,744 mesh
points in a parallelepipedic computational domain of sides
−5c < x < 10c, 0 < y < 10c, and −10c < z < 10c. Those
blocks that are adjacent to the HTP surface build what will
be called the O-mesh (Fig. 1, right), whose wall normal size
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is comparable to the HTP thickness. Mesh points concentrate
in the O-mesh, which contains 840,825 mesh points. In fact,
the ROM will be constructed using only a part of the O-mesh
(to both calculate the POD modes and project the governing
equations) and a few points in the plane x = −5c plane (to
impose the upstream boundary conditions), which are

BC1 ≡ ρu−M cosAoA = 0,

BC2 ≡ ρw −M sinAoA = 0,

BC3 ≡ ρv, BC4 ≡ ρ− 1 = 0, (1)
BC5 ≡ p− 1 = 0.

in terms of the flow variables, which (after substituting
substituting the equation of state for ideal gases) are the
mass fluxes in the x, y, and z directions, ρu, ρv, and ρw,
the density, and the pressure, nondimensionalized using their
respective upstream values.

The flow variables q = (ρu, ρv, ρw, ρ, p) are written as
expansions in the POD-modes, as

q(x, y, z;AoA,M) =
n∑

j=1

Aj(AoA,M)Qj(x, y, z), (2)

where the POD-modes are the eigenfunctions of the covari-
ance matrix, which is defined here as

Rij = 〈qi,qj〉 (3)

in terms of the following inner product, which is consistent
with the residual (10),

〈qi,qj〉 =
NC∑
k=1

∫∫
Γk

qi dA

∫∫
Γk

qj dA

 . (4)

Here, Γk are the boundaries of NE elementary cells in the
computational domain. If the expansion (2) is truncated to
n ≤ N0 terms, then the root mean square (RMS), relative
error in reconstructing all snapshots, in terms of the norm
associated with the inner product (4), is

RMS error =

√√√√∑N0

i=n+1 γi∑N0

i=1 γi
, (5)

where γ1 ≥ . . . ≥ γN0 ≥ 0 are the eigenvalues of the
matrix (3). This gives an a priori estimate for truncation of
the expansions (2).

III. DERIVATION OF THE REDUCED ORDER MODEL

The still unknown POD amplitudes are calculated min-
imizing a positive definite residual of the governing equa-
tions and boundary conditions, H, which will be a positive
functional of the flow variable distributions that only van-
ishes when both the equations and boundary conditions are
identically satisfied. Proceeding in this way involves several
difficulties, which will be dealt with in the following sections.
In particular:

1) Deciding what equations (either the exact equations, a
simplified version of these, or those that are implicit in
the CFD solver) should be used to define the residual.

2) Defining the residual using all mesh points in the com-
putational mesh is quite computationally expensive.

Instead, a much fewer amount of them, concentrated
in a projection window can be used.

3) Dividing the computational domain into subdomains,
and applying the method to each subdomain separately,
can be convenient when the flow topology in the
subdomains is somewhat decoupled.

4) Defining the POD manifold locally in the parameter
space decreases the number of POD mode amplitudes.

A. Using the Euler equations in conservative form to calcu-
late the residual

The safest strategy would be to define the residual using
the approximate Reynolds averaged Navier Stokes (RANS)
equations that are implicit in the CFD solver. But this would
make the derivation of the ROM quite involved and the ROM
itself dependent of the CFD solver. Instead, we shall take
advantage of the fact that the Reynolds number is large to
define the residual in terms of the conservative form of the
Euler equations. Unlike ROMs based on snapshots calculated
by the Euler equations, the ROM is intended to provide the
correct vorticity within an approximation comparable to that
of the RANS equations. This is because the possible vorticity
distributions are already contained in the RANS calculated
snapshots. As already noticed by us in a related problem
[9],such combined use of the RANS and Euler equations is
justified in two steps:

i. RANS equations differ from the exact equations in the
turbulence modeling terms and the numerical stabilizers,
which are expected to have a small effect on the larger
scales. These are accounted for by the most energetic
POD modes. Thus, if only the latter are retained, the
effect on the unphysical terms in the RANS equations
should be small.

ii. Both calculating POD modes and the residual is made
adding contributions from the pointwise values of the
flow variables in many points in the computational
mesh, which involves a spatial averaging. Thus, if the
Reynolds number is large, the effect of viscous and
thermal conductive terms in both the calculation of the
covariance matrix and the residual is small because
viscous effects are localized in small spatial regions
(boundary layers, shear layers, and shock waves).

In order to maintain the validity of the use of the Euler
equations, some care will be taken in subsection III-B below,
where a residual will be defined that is based on a few points
in a projection window.

A further increase of the computational efficiency will
result using the following conservative of the Euler equations
in a generic domain Ω,

EQ1 ≡ A−1

∫∫
Γ

ρv · n dS = 0, (6)

 EQ2

EQ3

EQ4

 ≡ A−1

∫∫
Γ

[
ρv

ρ
ρv + pI

]
· n dS = 0,(7)

EQ5 ≡ A−1

∫∫
Γ

[eρv · n] dS = 0, (8)

where Γ is the boundary of the domain Ω, A is the area of
Γ, I is the identity matrix, n = (nx, ny, nz) is the outward

Proceedings of the World Congress on Engineering 2011 Vol III 
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-5-2 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011



unit normal to Γ, and e is the modified mechanical energy
per unit mass, defined as

e = ρ−2

[
ρp+

γ − 1

2
(ρv) · (ρv)

]
. (9)

Equations (6)-(8) apply in any subdomain Ω of the compu-
tational domain, namely in any smooth surface Γ contained
in the computational domain; and conversely, imposing these
equations in all elementary cells in the computational do-
main, provides a good (finite volume) approximation of the
solution. Using this, the residual is defined as

H =

NE∑
k=1

5∑
i=1

√
|EQi(Γk)|+

NBC∑
m=1

5∑
i=1

√
|BCi(xm, ym, zm)|,

(10)
where BCi and EQi are as defined in (2), (6)-(8), re-
spectively, and in principle the sums are extended to NE

elementary cells and the NBC points in the boundary of
the computational mesh. In the following subsections some
improvements will be introduced in the residual.

If the expressions inside the square roots in (10) were
squared, then a definition more alike to the L2 norm would
be obtained, but such expression would be more sensitive to
CFD localized errors, which can be somewhat large. This has
been discussed by Alonso et al. (see [6], [15]) in a related
incompressible fluid dynamics problem, comparing various
possible definitions of the residual.

B. Using a few elementary cells in a projection window to
calculate the residual and the covariance matrix

As anticipated above, the POD-mode amplitudes are cal-
culated minimizing the function

H = H(A1, . . . , An), (11)

which is obtained substituting the expansions (2) into (10).
The most computationally expensive part of the process is
the calculation of the residual, which involves a number of
operations comparable to the total number of points (∼ 3·106
in the HTP application below). This computational cost can
be reduced noting that: (i) minimizing (11) can be seen as
solving n equations, (ii) the residual involves information
from NE elementary cells, and (iii) the total number of
elementary cells in the computational domain is selected by
the CFD solver to fulfill numerical requirements, while the
number of retained modes is related to the true aerodynamic
information that is present in the snapshots. Thus, calculating
POD modes and the residual does not require information
from all mesh points. Instead, the number of surface integrals
in (4) and (11) will be taken just somewhat larger than the
number of retained modes. The selected elementary cells
can be either scattered over the computational domain or
concentrated in a projection window. The latter is generally
a better choice if the projection window includes the relevant
aerodynamic information, subject to only mild limitations:

i. Since the residual is based on the Euler equations,
excluding boundary layers is a good choice.

ii. Excluding regions of large concentrated CFD errors is
also convenient to avoid the spurious effect of these.

In the application to the HTP below, the O-mesh around the
HTP surface will be taken as projection window, excluding

both the boundary layer and a portion of the O-mesh near
the HTP tip, where CFD errors are concentrated; 208 surface
integrals scattered in the resulting projection window will be
considered in the computation of both the residual (10) and
the inner product (4).

C. Division of the projection window into subdomains

As noticed and explained by [16], the aerodynamic flow
near an aircraft part may behave in an independent fashion
(as the parameters are varied) in various subdomains of the
computational domain. In this case, the number of POD
modes needed to describe the complete flow field for a
required accuracy is approximately equal to the product of
the numbers of modes required in the subdomains. Thus, di-
vision into subdomains reduces the effective number of POD
modes. As an additional advantage, the resulting process is
easily parallelized.

Now, in the HTP application, we note that the suction and
pressure sides behave fairly independently of each other as
the angle of attack and the Mach number are varied. Thus, we
consider two disjoint subdomains in the O-mesh that cover
the suction and pressure sides. The boundary between both
regions is close to the stagnation point, whose surroundings
bear quite important information on the complete flow field
and sharp flow variables gradients. This means that the recon-
structions in these subdomains may show discontinuities at
the common boundary. The latter are smoothed out projecting
the reconstructed flow distributions onto a set of POD modes
calculated for the whole computational domain.

D. Using a local POD manifold

Local definition of the POD modes in the parameter space
reduces the number of required POD modes. Here, at each
point of the parameter space, (AoA,M), local modes will
be defined applying POD to those snapshots that are closest
to the point. This is made in three steps, as follows:
(i) A first approximation, q̃, of the state vector is obtained

using Shepard’s interpolation [17] of neighboring snap-
shots.

(ii) A distance from each snapshot (labeled with the index
j) to q̃ is defined as the orthogonal projection

Dj = 1− 〈q̃,qj〉√
〈q̃, q̃〉

√
〈qj ,qj〉

, (12)

where the inner product is that used to calculate the
POD modes, see eq.(4). The N1 nearest snapshots are
considered, where N1 must be somewhat large than the
required number of POD modes (say, twice as much).
Then, a number of POD modes, Ñ1, is selected using
the a priori error estimate (5), to keep root mean square
errors (RMSE) within a specified bound εLM .

(iii) A safety factor F > 1 is defined and the N2 = FÑ1

nearest snapshots are retained to evaluate the POD
manifold that is finally used to calculate the residual.
Note that N2 can be either smaller or larger than N1.

The local manifold in each subdomain (see subsection III-C),
results from applying POD to the local snapshots, retaining
the appropriate number of modes to keep the a priori error
estimate (5) smaller than a required error bound εGA.
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E. Summarizing the ROM derivation method

The method to calculate the flow variables for given values
of the parameters proceeds in seven steps:

1. N0 snapshots are CFD calculated for representative
values of the parameters in a given parameter range.

2. Some elementary cells are selected in a projection
window (as explained in subsection III-B) to calculate
the surface integrals appearing in (10) and (4). The com-
putational domain is divided into various subdomains,
as explained in subsection III-C.

3. A local selection of snapshots is made using the algo-
rithm described in subsection III-D. Such selection is
performed for each subdomain independently.

4. The flow variables are expanded (in each subdomain)
in POD modes as in eq.(2). The POD-mode amplitudes
Ai depend on the subdomain but are common to the
five flow variables.

5. The number of retained modes within a prescribed
accuracy εGA can be obtained using equation (5). An
initial guess for the amplitudes values is obtained via
POD plus interpolation.

6. The amplitudes are calculated in each subdomain mini-
mizing the residual (10) with a genetic algorithm (GA).

7. The state variables are reconstructed in each subdomain
of the projection window using their associated set of
amplitudes. The flow field in the whole computational
domain is obtained merging the solutions in the various
subdomains as explained in subsection III-C, and pro-
jecting the resulting merged solution onto a set of most
energetic global POD modes, obtained in the whole
computational domain applying POD to the complete
set of N0 snapshots.

IV. RESULTS

Let us now check the ability of the method developed
in last section to provide the aerodynamic flow around the
HTP described in section II. The various parameters of the
method (which have been left free in the description above)
are chosen after some calibration for the HTP as follows:

• The upper bounds of the RMSE required to chose
the number of modes and the dimension of the local
manifold are εGA = εLM = 10−3; the initial guess
of the dimension of the local manifold and the safety
factor used in subsection III-D are N1 = 40 and F =
2.5, respectively.

• The GA parameters are as follows. The total number
of individuals is 10,000, with a discretization of 10 bits
per POD-mode amplitude of each individual; the span
allowed around the POD+I initial solution equals 50%,
and 2% of elite individuals that go straight into the next
generation. The crossover probability is equal to 0.8 and
5,000 bits are mutated in each generation. Convergence
is acheived if the residual remains constant along 100
generations.

Using the ELSA code, 117 snapshots have been calculated
at all combinations of the 13 equispaced values of the angle
of attack and the 9 equispaced values of the Mach number
indicated in Fig.2. In addition, the 28 test points (indicated
in in Fig.2 will be used to test the performance of the ROM.
These are denoted as PTX1X2, where X1 = 1, . . . , 8 labels

Fig. 2. The parameter space, with the test points (filled circles) and the
snapshots in combination #1 (cross points of the net).

the following values of the Mach number M = 0.4, 0.5,
0.525, 0.6, 0.7, 0.725, 0.75, and 0.775, and X2 = 1, . . . , 4
labels the following values of the angle of attack −2.25◦,
−1.25◦, 1.25◦ and 2.25◦; note that not all combinations of
these values of M and AoA are considered.

Three combinations of snapshots will be used to calculate
the POD manifold:

• Combination #1 consists of the whole set of 117 calcu-
lated snapshots.

• Combination #2 contains the (7 × 5 =) 35 snapshots
resulting from reducing in combination #2 the 9 cases
in the Mach number to the 5 equispaced values between
0.4 and 0.8.

• Combination #3 contains the (5 × 5 =) 25 snapshots
resulting from reducing in combination #2 the 13 cases
in the Mach number to the 5 equispaced values between
−3◦ and 3◦.

The ROM provides the flow variable distributions in the
whole computational domain. Such distributions allow for
calculating any property of the aerodynamic flow. The ability
of the ROM to provide load distributions is checked consid-
ering the lift, pressure drag, and lateral force coefficients,
defined in terms of surface integrals over the HTP surface as

(CL, CPD, Cy) =

∫∫
SHTP

(nL, nPD, ny)Cp dS (13)

where n = (nx, ny, nz) is the outward unit wall normal to
the HTP surface, SHTP , nL = −nx sinAoA+ nz cosAoA,
nPD = nx cosAoA + nz sinAoA, and Cp is the pressure
coefficient, defined as

Cp = 2
p− 1

γM2
(14)

in terms of the specific heat ratio, γ. Similarly, the roll, pitch,
and yaw moment coefficients are defined as

(CR, CM , CN ) = −
∫∫

SHTP

(x− x0)× nCp dS (15)

where x = (x, y, z) is the position vector and x0 =
(0.25, 0, 0) is the reference point to calculate moments.

The RMS and maximum errors of the reconstructed aero-
dynamic coefficients are shown table I. The first two columns
show the errors resulting from calculating the residual and the
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#1 #1 #2 #3
O-mesh reduced reduced reduced

CL 0.39(1.06) 0.40 (1.28) 1.40 (2.76) 2.18 (6.39)
CPD 4.62(12.77) 4.85 (14.49) 4.96 (11.12) 7.17 (18.05)
CY 2.01(5.81) 2.05 (5.93) 2.34 (5.80) 2.97 (7.43)
CM 0.30(0.73) 0.28 (0.84) 1.00 (2.00) 1.47 (3.74)
CR 0.37(0.97) 0.39 (1.17) 1.32 (2.59) 2.07 (5.90)
CN 4.12(11.93) 4.31 (13.02) 2.09 (4.80) 4.10 (7.90)

TABLE I
RMS ERRORS (IN %) IN THE 28 TEST POINTS RESULTING FROM

CALCULATING THE SIX AERODYNAMIC COEFFICIENTS WITH THE THREE
COMBINATIONS OF SNAPSHOTS; MAXIMUM ERRORS ARE ALSO GIVEN IN

PARENTHESIS.

#1 #2 #3
ρu 0.38(0.01) 0.60(0.03) 1.02(0.03)
ρv 0.40(0.00) 0.60(0.00) 0.93(0.00)
ρw 0.18(0.14) 0.22(0.25) 0.31(0.27)
ρ 0.23(0.01) 0.30(0.02) 0.40(0.02)
p 0.25(0.01) 0.33(0.02) 0.42(0.02)

TABLE II
RMS ERRORS (IN %) OF THE FLOW VARIABLESIN THE O-MESH FOR THE

FIVE COMBINATIONS OF SNAPSHOTS; RMS ERRORS IN THE WHOLE
COMPUTATIONAL MESH ARE GIVEN IN PARENTHESIS.

covariance matrix using all elementary cells in the O-mesh
(first column) and 208 of them (second column). Note that
errors are comparable. The two combinations of snapshots
are compared (using 208 elementary cells) in the remaining
columns, which show that:

1) The errors resulting from using the whole O-mesh and
208 surface integrals are comparable.

2) The errors in CPD, CY , and CN are larger than the
errors in the remaining coefficients, which is due to
the fact that their actual values of these coefficients
are smaller than the remaining coefficients.

3) Maximum errors are at most three times larger than
the RMS counterparts.

4) Combination #1 generally yields better results than
ccombination #2, and this provides smaller errors than
combination #3, which was to be expected. It is re-
markable that combination #3 provides results that are
good enough in industrial applications.

5) It is clear that if the snapshots were appropriately
located in in the parameter space, then the results
would further improve using a smaller number of
snapshots, reducing the required CPU time. This is
important since POD+GA calculations are quite fast
compared to the CFD calculation of the snapshots,
which is by far the slowest part of the process.

In order to compare (both in the O-mesh and in the whole
computational domain) the results provided by the various
combinations of snapshots on the whole aerodynamic flow,
the RMS error in each variable for the 28 test points are
considered. The RMSE is defined as

RMSE =

√√√√ 1

28〈1, 1〉

28∑
k=1

〈Ek, Ek〉 (16)

where Ω is either the O-mesh around the HTP or the whole
computational domain and the pointwise error is defined for

x/c
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Fig. 3. ρu and ρw (thick and thin lines, respectively) along the lines
y = 0, z = 0 (up-left), x = 0, z = 0 (up-right), and x = 0, y = 0 (down)
at test point PT84. CFD and ROM results using combinations #1 and #6
are plotted using solid, dashed, and dot-dashed lines, respectively.

each flow variable φ as

E(x, y, z) =
|φCFD(x, y, z)− φ̃ROM(x, y, z)|

max |φCFD|
. (17)

Here, the subscripts CFD and ROM refer to the CFD and
ROM approximations, respectively, and max |φCFD| denotes
the maximum, absolute (CFD) value of the flow variable in
Ω.

Results on the flow variables distribution are given in terms
of RMS errors in table II and show that:

1) The RMS errors in the O-mesh are always larger than
their counterparts in the whole computational domain.

2) The larger the number of snapshots, the better the
results.

3) RMS errors are below 1% for all the combinations,
which is more than enough in most industrial applica-
tions.

In order to illustrate the approximation of the aerodynamic
field in the whole computational domain, three distributions
of the pressure are shownin Fig.3 along the indicated straight
lines, as calculated using combinations #1 and #5. Note that
the approximation is quite good (ROM and CFD results are
plot indistinguishable) except for some small discrepancies
in the wake. This is a quite strong result, taking into account
that the ROM was constructed from aerodynamic information
on a limited set of points near the HTP surface, which
did not included the wake, and confirms that the wake is
somewhat slaved to the upstream flow topology. In addition,
the reconstruction of the aerodynamic field in the boundary
layer near the HTP surface is illustrated in Fig. 4, considering
the test point PT84. In this figure, the x-velocity is plotted vs.
the wall-normal co-ordinate at four representative points on
the HTP surface. Note that the results are quite good (CFD
and ROM results are almost indistinguishable) in three of
the points (cases (a), (b), and (d)). This is because these
three points are not in a vicinity of a shock wave. The fact
that these results are so good could be seen as surprising
at first sight because ROM calculations were based on the
Euler equations, which do not apply in the boundary layer.
The reason is that the boundary layer structure is somewhat
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(a) PS:(4.66, 4.09) (b) SS: (4.91, 4.09)

(c) SS: (8.89, 10.56) (d) PS: (8.89, 10.60).

Fig. 4. x-velocity distribution calculated for PT84 using combination #1
along the wall-normal co-ordinate in the boundary layer at four points (x, y)
on the HTP surface, as indicated. PS and SS refer to the pressure and suction
sides, respectively. CFD and ROM results are plotted using solid and dashed
lines, respectively.

slaved (along the wall-normal direction) to the outer flow.
Thus, if the latter is well calculated (which occurs if no
nearby shock wave is present), then the boundary layer is
well approximated too, since the correct coupling between
both is present in the CFD calculated snapshots. Case (c)
instead corresponds to a point that is under a shock wave,
and the approximation is just reasonable.

V. CONCLUDING REMARKS

A method has been developed to construct ROMs of three
dimensional, steady aerodynamic fields of industrial interest
depending on various parameters. The method is based on
the calculation of various aerodynamic fields (called the
snapshots), for representative parameter values. The CFD
solver is a typical RANS solver used in the aeronautic
industry. The ROM is constructed minimizing a properly
defined residual based on the governing equations and bound-
ary conditions. The method has been tested considering the
aerodynamic field around a commercial aircraft horizontal
tail plane, depending on two parameters, the Mach number
and the angle of attack, in a range that included transonic
flows. Various improvements have been presented to improve
computational efficiency:

• It is the conservative Euler equations and not the
RANS equations that are used to calculate the residual.
This makes the method independent of the turbulence
model/numerical stabilizers that might have been used.

• Both the residual and the covariance matrix of the
snapshots set are calculated using only a limited number
of mesh points that are concentrated in a projection
window. This strongly improves the computational cost
maintaining precision, provided that the projection win-
dow includes relevant aerodynamic information. Local-
ized CFD errors can be avoided excluding them from
the projection window.

• Residual minimization was made using a genetic al-
gorithm. Computational efficiency would be further
improved using faster gradient-like methods, which is
the object of current research.

• The POD manifold can be defined locally in the pa-
rameter space, and calculations can be made in various
subdomains of the projections window, which makes the
method quite flexible.

• In spite of these simplifications, the method provides
quite good approximations in the whole computational
domain, including the boundary layers and the wake.

• Location of the snapshots in the parameter space is very
important, which suggests that a method to select the
snapshots position would further increase the computa-
tional efficiency. Again, this is currently under research.

The reduced order model developed above has been designed
keeping in mind its industrial use, which would improve the
somewhat rough, ad hoc methods that are used nowdays in
industry to cope with multiparameter aerodynamic flows.

REFERENCES

[1] B. Galletti, C. Bruneau, C. Zannetti, and A. Iollo, “Low-order mod-
elling of laminar flow regimes past a confined square cylinder,” J. Fluid
Mech., vol. 503, pp. 161–170, 2004.

[2] S. Sirisup and G. Karniadakis, “A spectral viscosity method for
correcting the long term behaviour of pod models,” J. Comput. Phys.,
vol. 194, pp. 92–116, 2004.

[3] J. Burkhard, M. Gunzburger, and H. Lee, “Pod and cvt
based reduced order modeling of navier-stokes flows,” Com-
put. Method. Appl. Mech. Engrg., vol. 196, pp. 337–355, 2006.

[4] M. Rapun and J. Vega, “Reduced order models based on local pod
plus galerkin projection,” J. Comput. Phys., vol. 229, pp. 3046–3063,
2010.

[5] P. LeGresley and J. Alonso, “Investigation of nonlinear projection for
pod based reduced order models for aerodynamics,” in AIAA 2001-
16737, 39th Aerospace Science Meeting & Exhibit, January.

[6] D. Alonso, A. Velazquez, and J. Vega, “Robust reduced order modeling
of heat transfer in a back step flow,” Int. J. Heat Mass Tran., vol. 52,
pp. 1149–1157, 2009.

[7] Y. Rouizi, J. Favennec, Y. Ventura, and D. Petit, “Numerical model
reduction of 2d steady incompressible laminar flow: application on
the flow over a backward facing step,” J. Comput. Phys., vol. 228, pp.
2239–2255, 2009.

[8] E. Bache, J. Vega, and A. Velazquez, “Model reduction in fluid-thermal
problems with variable geometry,” Int. J. Therm. Sci., vol. 49, pp.
2376–2384, 2010.

[9] D. Alonso, J. Vega, and A. Velazquez, “Reduced order model for
viscous aerodynamic flow past an airfoil,” AIAA J., vol. 48, pp. 1946–
1958, 2010.

[10] L. Cambier and M. Gazaix, “ELSA: An efficient object-oriented
solution to CFD complexity.” AIAA Paper, no. 02-0108, 2002.

[11] S. Ben Kheli, J. Gervois, G. Carrier, F. Moens, and P. Viscat, “Assess-
ment of ELSA software through civil transport aircraft configurations.”
CEAS Aerospace Aerodynamics Research Conference. Cambridge,
UK., Tech. Rep., January 2002.

[12] J. Tannehill, D. Anderson, and R. Pletcher, Computational Fluid
Mechanics and Heat Transfer. Taylor & Francis., 1997.

[13] J. Edwards and S. Chandra, “Comparison of eddy viscosity transport
turbulence models for three dimensional, shock separated flow fields,”
AIAA J., vol. 34, no. 4, pp. 756–763, 1996.

[14] P. Spalart and S. Allmaras, “A one-equation turbulence model for
aerodynamic flows,” AIAA Paper, no. 92-0439, 1992.

[15] D. Alonso, A. Velazquez, and J. Vega, “A method to gen-
erate computationally efficient reduced order models,” Com-
put. Method. Appl. Mech. Engrg., vol. 198, pp. 2683–2691, 2009.

[16] L. Lorente, J. Vega, and A. Velazquez, “Compression of aerody-
namic databases using high order singular value decomposition,”
Aerosp. Sci. Technol., vol. In Press, Uncorrected Proof, 2009.

[17] D. Shepard, “A two-dimensional interpolation function for irregularly-
spaced data,” Proceedings of the 1968 ACM National Conference,
Tech. Rep., 1968.

Proceedings of the World Congress on Engineering 2011 Vol III 
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-5-2 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011




