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Abstract—An efficient method for the analysis of nonlinear
elastic systems under the action of parametric forces in the form
of Gaussian random stationary processes is suggested. Spectral
densities of input random stationary processes are assumed in
the form of rational functions. The method is based on the
simulation of stochastic processes and the numerical solution
of differential equations, describing the motion of the system.
Considering a sample of solutions, statistical characteristics
of trajectories can be found. The effect of parameters of
input random processes on indicated statistical characteristics
is investigated. A special attention in the work is devoted to
the investigation of the stability of the unperturbed motion of
systems. To analyze the stability of the unperturbed motion the
motion due to perturbations of initial conditions is considered.
The method of the stability investigation is based on the
numerical solution of differential equations, describing the
perturbed motion of the system, and the calculation of top
Liapunov exponents. The method results in the estimation of the
stability with respect to statistical moments of different orders.
It is remarked that in some cases the impose of a stochastic noise
on the deterministic periodic excitation can render a stabilizing
effect on the motion of elastic systems.

Index Terms—Elasticity, nonlinear oscillations, stability, top
Liapunov exponents, random stationary processes

I. INTRODUCTION.

The behavior of nonlinear mechanical systems, subjected
to random loads in the form of random stationary processes,
was considered in works [1] - [3], where an extensive
enough review of investigations in the indicated direction is
contained. As a rule, these investigations were developed at
different restrictions. They imposed on the character of sta-
tionary processes. (For example, sometimes these processes
were assumed as narrow-band processes and in this case the
method for the solution was used, which is similar to the
method of the harmonic balance. In other cases the level
of the nonlinearity was presupposed as small. In such case
the method of stochastic averaging was applied [1], [2]. For
the estimation of the reliability of nonlinear systems, the
Melnikov stochastic process is used in the book [3].
Some questions of the stability of elastic and viscoelastic
systems, subjected to random loads in the form of ran-
dom stationary process, were considered in the work [4].
There was suggested a numerical method of the solution for
nonlinear problems with help of the method of canonical
expansions of stationary processes. The present paper is
devoted to a numerical analysis of nonlinear oscillations of
elastic systems under the stochastic excitation in the form
of a Gaussian stationary process with a rational spectral
density. The analysis is based on the numerical simulation
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of the input stationary process, on a numerical solution of
differential equations, describing the motion of the system,
and, in a case of the stability investigation of this motion, on
the calculation of the top Liapunov exponent. On the example
of a plate, subjected to a random stationary load acting in the
middle plane, peculiarities of the application of the proposed
method are considered. A particular attention is devoted to
”the interaction” of a deterministic periodic and stochastic
excitations from the stability point of view of the motion.
It is shown that in some cases the impose of a ”colored”
noise can render a stabilizing effect on the motion of elastic
deterministic systems.

II. STATEMENT OF THE PROBLEM.

The dynamic behavior of an elastic system with regards to
finite deflections provided that strains are small, is described
by the system of nonlinear partial differential equations.
Using different methods, for example, the method of finite
elements, the method of finite differences, the Bubnov-
Galerkin method etc., this system can be replaced by a sys-
tem of ordinary differential equations. Then by the expansion
of the phase space the indicated system can be substituted
by a system of nonlinear differential equations of the first
order

ż = F(z, α(t), t), (1)

where z is the vector of unknowns, α(t) = α∗(t) + αo(t),
α∗(t) is a deterministic function, αo(t) is a random stationary
process, t is the time.
The point denotes the derivative with respect to time t.
The random stationary process αo(t) is presupposed as a
Markov process, which is a result of passing of the Gaussian
white noise through a linear filter of the m - th order, i.e.
the function αo(t) is the solution of the stochastic differential
equation

αo(m)
+ d1 αo(m−1)

+ .. + dm−1α̇
o + dmαo = hξ(t), (2)

where dk, (k = 1, 2, ...,m), h are constants, ξ(t) is the
Gaussian white noise.
For the analysis of the behavior of the system the method
of statistical simulation is used, which is based on the
numerical solution of differential equations (by the Runge-
Kutta method) in the combination with a numerical method
of obtaining of realizations of random stationary processes.

III. OSCILLATIONS OF THE PLATE UNDER THE ACTION
OF THE RANDOM LOAD IN THE MIDDLE PLANE.

For the illustration of the present method let us consider
transverse oscillations of a thin rectangular plate hinged
along all edges and subjected to an uniformly distributed
load applied in the plate plane to two opposite edges (Fig.
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Fig. 1. The rectangular plate under loads applied to its middle plane.

1). It is presupposed that opposite edges of the plate can be
removed in direction of axes x1 and x2, but the edges remain
parallel to one another.
If the material of the plate is isotropic, then the equations

of the plate oscillations for the case of finite deflections of
von Karman type [5] is written in the following form

D54 w−h(Φ,22w,11−2Φ,12w,12 +Φ,11w,22) = −γẅ−kẇ
(3)

(1/E)54 Φ = (w2
,12 − w,11w,22), (4)

where w is the deflection of the plate, Φ is the function of
stresses, acting in the middle surface of the plate, h is the
thickness of the plate, γ is the mass per unit area of the plate,
k is the damping coefficient, 54 is the biharmonic operator,
E is the Young modulus, µ is the Poisson coefficient.
If the form of the plate is near to square and initial conditions
have the form

w(t, x1, x2)|t=o = f0 sin
π

a
x1 sin

π

b
x2,

ẇ(t, x1, x2)|t=o = v0 sin
π

a
x1 sin

π

b
x2, (5)

then the deflection of the plate can be found in the similar
shape

w(t, x1, x2) = f(t) sin
π

a
x1 sin

π

b
x2. (6)

Really, even for initial conditions, given by expressions (5),
the solution of equations (3, 4) has a more complicated
form. However, since we focus on the qualitative aspect
of the problem rather than the quantitative one, we restrict
the consideration to the function w(t, x1, x2), given by the
formula (6). Substituting relation (6) in the right-hand side
of Eq. (4) and solving it with respect to the function Φ, we
will obtain

Φ =
a2

32b2
E f2(t)

(
cos

2π

a
x1 +

b4

a4
cos

2π

b
x2

)
− qx2

1

2h
. (7)

It is not difficult to prove that the boundary conditions
concerning the parallelism of opposite edges are fulfilled [4].
To find the plate deflection amplitude f(t) let us use the
Bubnov-Galerkin method and to this end we multiply both
sides of Eq. (3) by sin(π/a)x1 sin(π/b)x2 and integrate the
resultant relation over the plate area. Then we obtain the
differential equation

z′′ + 2εz′ + z − αz +
3
4
(1− µ2)

a4 + b4

(a2 + b2)2
z3 = 0. (8)

Here z = f/h, 2ε = k/(γω), ω is the fundamental frequency
of plate oscillations

ω2 =
D

γ

(
π2

a2
+

π2

b2

)2

, α =
π2q

Db2

(
π2

a2
+

π2

b2

)−2

.

The prime denotes the derivative with respect to dimension-
less time t1 = ωt.
If a = b and µ = 0.3, then Eq. (8) acquires the form

z′′ + 2εz′ + z − αz + 0.34125z3 = 0. (9)

Introducing new variables z1 = z, z2 = z′, we replace the
differential Eq. (9) by the system of first-order differential
equations

z′1 = z2, z′2 = −2εz2 − (1− α)z1 − 0.34125z3
1 . (10)

The solution of these equations should satisfy the initial
conditions

z1(0) = f0/h, z2(0) = v0/h.

Let us express the function α(t) in the form of the sum

α(t) = α0 + α1sinωt + αo(t),

where α0, α1 are deterministic constants, ω is a frequency
of the deterministic periodic part of the load, αo(t) is a sta-
tionary random process with zero mathematical expectation
〈αo(t)〉 = 0 and the correlation function

K(τ) = σ2 exp(−δ|τ |) [cos θτ + (δ/θ)sin θτ ] , (11)

where τ = t1 − t2, σ2 is the dispersion of the process, δ, θ
are parameters, characterizing the scale of the correlation and
the frequency of the implicit periodicity respectively.
Here and further angle brackets denote the operation of the
mathematical expectation.
The spectral density S(ω) in this case has the form

S(ω) =
2σ2δ

π

δ2 + θ2

(ω2 − θ2 − δ2)2 + 4δ2ω2
.

The considered random process is differentiable and Eq. (2)
is written in the following way [5, 6]

α̈o − a2α̇
o − a1α

o = b2σξ(t), (12)

where a1 = −(δ2+θ2), a2 = −2δ, b2 =
√

2(δ2 + θ2), ξ(t)
is the Gaussian white noise, simulated by the expression

ξ(t) =
√

2δ/∆ ε∆(t).

Here
ε∆(t) = εi, t ∈ [i∆, (i + 1)∆],

εi is a sequence of normally distributed uncorrelated numbers
with zero mean value and 〈ε2〉 = 1; ∆ = ∆t is the step
of time.
Further let us consider some results, obtained at ε = 0.1, δ =
0.5, θ = ω = 1.4, ∆t = 0.1 by means of the numerical
solution of equations (12) by the fourth-order Runge-Kutta
method. The number of increments n and initial conditions
in all cases were assumed the same, namely, n = 104,
z1(0) = 1.0, z2(0) = 0.
Fig. 2 shows the most typical trajectories of the plate motion
on the phase plane z1 ∼ z2. For each of these trajectories
the limits of the variation of values z1 and z2 are indicated.
These results can be explained as follows.
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Fig. 2. Trajectories of the plate motion in the phase plane.

If the load is deterministic and constant with time, then the
quantity z, corresponding to an equilibrium state of the plate,
can be found from the cubic equation

(1− α0)z + 0.34125z3 = 0. (13)

If α0 < 1, then this equation has only one root z = 0, which
corresponds to the unbent equilibrium configuration of the
plate, and this state is known to be stable.
If α0 > 1, then Eq. (13) has three roots

z(1) = 0, z(2),(3) = ±
√

(α0 − 1)/0.34125.

It can be shown, that the solution z(1) is unstable and
nontrivial solutions z(2) and z(3) are stable. The quantity
α0 = 1 is critical for an elastic plate.
The results for the dynamic (deterministic or stochastic)
statement of the problem are similar. Indeed, if parameters
α0, α1, σ are sufficiently small, then, obviously, oscillations
perform in the neighborhood of the trivial equilibrium state.
This statement is confirmed by plots in Fig. 2,a, obtained at
α0 = 0; α1 = 1.0; σ2 = 0.09 and they damp with time.
But if the same parameters α0, α1, σ are sufficiently large,
then the plate motion becomes much more versatile. The
plate can oscillate in a neighborhood of a certain equilibrium
(Fig. 2, b at α0 = 1.0; α1 = 0; σ2 = 0.04) or jump between
two equilibria (Fig. 2, c at α0 = 0.5; α1 = 1.0; σ2 = 0.01)
and (Fig. 2, d at α0 = 0.5; α1 = 0.5; σ2 = 0.25); moreover,
in some cases the plate motion is chaotic (Fig. 2, e at
α0 = 1.0; α1 = 1.0; σ2 = 0.25). It should be said that in
such cases with increasing of time the solution of nonlinear
equations becomes steady-state and moreover different initial
conditions may lead to different steady-state solutions.
The variation of the deflection z1 with time (Fig. 4), which
correspond to the same plate (Fig. 2, e), is presented in Fig.
3.

In Fig. 4 the histogram of the value z1 is shown, corre-
sponding to the same input data and obtained at n = 105

(〈z1〉 and σ1 are the mean value and the mean square
scattering of z1).
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Fig. 3. Realizations of the generalized displacement z1 = f(t).
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Fig. 4. The histogram of the value z1 .

IV. STABILITY OF NONPERTURBED MOTION OF THE
SYSTEM.

For the analysis of the stability of nonperturbed motion of
the system, describing by Eq. (1), let us consider the per-
turbed motion, caused by perturbations of initial conditions.
In a case of the perturbed motion the solution of equations
(1) has the form

y = z + δz,

i. e.
ẏ = F(y, α(t), t), (14)

where z = {z1, z2, ..., zn}T is the vector of unknowns, cor-
responding to unperturbed motion of the system, the vector
y = {y1, y2, ..., yn}T , corresponding to the perturbed motion
and the vector of perturbations δz = {δz1, δz2, ..., δzn}T .
Let us expand the right-hand side of Eq. (14) in the Taylor
series in the neighborhood of the solution z(t)

F(z + δz, α(t), t) = F(z, α(t), t) + F′(z, α(t), t)δz + ...

Restricting in this expansion to two first terms and taking
into account Eq. (1), we obtain a linearized equation

δż = F′(z, α(t), t)δz. (15)

The solution of the equation should satisfy to initial condi-
tions δz(0) = δz0, δz0 = {δz01, δz02, ..., δz0n}T .
For the estimation of the stability of the system the method
of top Liapunov exponent is used, which is calculated for
each couple of realizations - α(t) and of the corresponding
realization of the process z(t).
Now, many different definitions of the stability of stochastic
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systems are well known. Further, the stability with respect
to statistical moments is considered.
(i) The solution δz(t) ≡ 0 is called p - stable, if for any
ε > 0, such ∆ > 0 can be found, that at t ≥ 0 and
|δzi(0)| < ∆, (i = 1, 2, ... n), where n is the number
of differential equations of the first order in the system of
equations (15)

|〈δzp
i (t)〉| < ε.

(ii) The solution δz(t) ≡ 0 is called asymptotically p -
stable, if it p - stable and, in addition, for a small enough
|δzi(0)|, (i = 1, 2, ... n)

lim
t→∞

|〈δzp
i (t)〉| = 0.

At p = 1 the stability in the mean takes place (with respect
to the mathematical expectation), and at p = 2 - stability in
the mean square.
The growth of the vector δz(t) can be estimated with help
of the top Liapunov exponent λ, which is defined by the
expression

λ = lim
t→∞

1
t

ln
‖δz(t)‖
‖δz(0)‖ ,

where ‖δz(t)‖, ‖δz(0)‖ are norms of the vector δz(t) in the
Euclidean space at instants t and t = 0.
The value λ can be found numerically with help of the
method, proposed in the paper [7]. With this purpose let us
divide a large enough time interval [0, t] for m equal intervals
∆t = tj+1 − tj , (j = 1, 2, ... m).
Let us assume, that the system (15) is deterministic and at
t = tj the norm of the vector ‖δz(tj)‖ is equal to unit. Using
this vector as the vector of initial conditions, let us obtain the
solution of the system (15) for the instant tj+1 with the norm
‖δz(tj+1‖ = dj+1. Continuing the solution of the system
(15) with new initial conditions δzi0(tj+1)/dj+1, we will
find the sequence of values dj and then the top Liapunov
exponent can be found as the limit

λ = lim
m→∞

1
m∆t

m∑

i=1

ln dj . (16)

Because the system of equations for statistical moments of
functions δzi(t) in a case of ”colored” noises αo(t) can’t be
obtained in a closed form, let us use for their find by the
method of statistical simulation [4], [8].
The estimation of statistical moments < δzp

i > for instants
tj can be obtained as a result of statistical averaging of
values 〈δzp

i 〉, found from equations (15) for sufficiently large
number of realizations q

〈δ̃zp
i (tj)〉 =

1
q

q∑
m=1

[δzp
i (tj)]

(m) (17)

where [δzp
i (tj)]

(m) is the quantity δzp
i (tj), corresponding to

m-th realization of the solution of Eq. (15).
Let us presuppose, that the norm of the vector

〈δzp(tk)〉 = {〈δzp
1(tk)〉, 〈δzp

2(tk)〉, ..., 〈δzp
n(tk)〉}T

in the Euclidean space for the instant tk is equal to unit. The
norm of the vector 〈δz(t)p〉 becomes equal to d̃k+1 at the
instant tk+1 = tk +∆t. Further the system of equations (15)

z
1

z
1

z2

z

z
1

2

OO

OO

-2.394 2.433

-2.428 3.243 z

z
1

2
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OO

-3.259 2.513

-2.450 4.177

z2a) b)

Fig. 5. Trajectories of the elastic plate motion in the phase plane at
deterministic (a) and stochastic (b) treatments of the problem.

is solved for each realization of the matrix F′(z, α(t), t) with
initial conditions

δzi0(tk+1) = δzi(tk+1)/
(
d̃k+1

)1/p

.

Repeating the stated procedure we obtain the sequence of
values d̃k, with help of which the estimation of the top
Liapunov exponent can be found

Λ̃ = lim
l→∞

1
l∆t

l∑

k=1

ln d̃k.

Let us illustrate general arguments about the investigation of
the stability of geometric nonlinear systems on the example
of the plate, which was considered earlier.
Eq. (8), linearized with respect to perturbations δz, has the
following form

δz′′ + 2εδz′ + 1.02375 z2δz = 0. (18)

Introducing new variables z5 = δz, z6 = δz′, let us
write the equation (18) as a system of first-order differential
equations

z′5 = z6, z′6 = −2εz6− (1−α)z5− 0.34125 3z2
1z5, (19)

If the plate subjected to a deterministic periodic load, then at
some values of input parameters the motion of the plate can
be chaotic (unstable) [9]. It is confirmed by the trajectory
of the motion of the elastic plate on the phase plane z1 ∼
z2, shown in Fig. 5,a, which is obtained at ε = 0, 1; α0 =
0.5; ; α1 = 2.0; ω = 1, 4, ∆t = 0.1 and the number of
increments n = 104.

The value of the top Liapunov exponent at t = 6.104 is
equal to λ = 0.165 (Fig. 6,a), which confirms the chaos (the
instability) of the plate.
If we will impose on the deterministic load a random
noise in the form of Gaussian stationary process αo(t) with
characteristics σ2 = 0.01; δ = 0.5; θ = 1.4, then the plate
becomes stable with respect to statistical moments of the
first (Fig. 6, b) λ1 = −0.082 and of the second order (Fig.
6,c) λ2 = −0.164. These estimates of the top Liapunov
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Fig. 6. Changes in the estimate of the top Liapunov exponent for the elastic
plate at deterministic (a) and stochastic (b, c) treatments of the problem.

exponents are obtained as a result of averaging of results
at 20 realizations and at t = 6.104. One of realizations of
trajectories on the phase plane in this case, obtained at the
number of steps in time n = 104, is shown in Fig. 5, b.
If we increase the time interval to 105, then the same values
assume quantities λ1 = −0.088 and λ2 = −0.180. At last,
if the number of realizations is assumed equal to 40, then at
t = 105 we will find λ1 = −0.087 and λ2 = −0.177.
Let us remark, that the stabilizing effect of the unstable
system was discovered for the first time at the investigation
of the stability of the first-order differential equation [10],
[11]

Ẋ = (b + σξ)X, (20)

where b, σ are constants, ξ is a Gaussian white noise in Ito’s
sense .
It was shown, that the trivial solution of the equation (20)
stable at b < σ2/2, what was estimated as a contradicted
to physical intuition [11]. On this base the conclusion was
made that the white noise in Ito’s sense is ”physically
unrealizable”.
If ξ(t) is a white noise in Stratonovich’s sense, then the effect
of the stabilization disappears [11] and it was remarked, that
the unstable deterministic system ẋ = bx(b > 0 − const)
can’t be stabilized by ”physically realizable” perturbation of
its parameter.
However, in the same work Khasminskii R.Z. [11] showed,
that in systems of differential equations of the more higher
order the white noise in Stratonovich’s sense can render
too a stabilizing effect on an unstable deterministic system.

Particularly, the trivial solution of the equation of the 2-th
order

z̈ + (k + σξ)ż + ω2z = 0,

where k, ω2 are constant, at definite quantities of the pa-
rameter σ can be stable, although the same solution of the
deterministic equation (at the same magnitudes of values
k, ω2)

z̈ + kż + ω2z = 0

is unstable.
It should be said, that white noises in Ito’s and in
Stratonovich’s sense are mathematical idealizations, which
can’t be realized physically (a physical process with an
unlimited power doesn’t exist). From this point of view
the smooth in the mean square process, used in the present
paper, can be consider as a physically realizable process.
By Arnold L. with co-workers [12] it were shown that
deterministic differential equations can be stabilized (in
sense of the almost sure stability) by stochastic wide-band
stationary processes. The result, obtained for the plate in the
present paper, demonstrates that a ”physically realizable”
(”colored”) noise can render a stabilizing effect (in sense
of the stability with respect to statistical moments) at the
analysis of the stability of elastic systems, the motion of
which is described by nonlinear differential equations.

V. CONCLUSION

In the present paper an effective method of the investiga-
tion of nonlinear oscillations and of the stability of elastic
systems at stochastic excitations is proposed. Loads are
assumed in the form of Gaussian random stationary processes
with rational spectral density (”colored” noises). The method
is based on the numerical simulation of random processes,
the numerical solution of differential equations, describing
the motion of the considered system, and on the calculation
of the top Liapunov exponent. It is remarked that in some
cases the addition of a stochastic noise on the deterministic
periodic excitation can render a stabilizing effect on the
motion of elastic plates.
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