
 
 

 

  
Abstract - The evolution of  pneumatic tires has been 

alongside the evolution of  the automobiles. The demand of  
the modern automotive industry has been driving the tire 
industry to come with high performance tire. The tire 
construction and geometry are very complex in nature 
especially tire design and stress analysis are very dif f icult. 
The study of tire perf ormance and def ormation are very 
challenging owing to the non-linearity associated with 
geometry as well as composition of  material. The tire 
material is a cord-rubber composite, its properties 
anisotropic in nature. Failure analysis of  cord-reinf orced 
rubber composite tires may be useful to predict the lif etime 
of  a tire. In this background, the present attempt is to analyze 
the tire using artif icial neural network. The shear modulus 
and the temperature are measured against various 
f requencies. The above properties are analysed using 
artificial neural network. The study has been undertaken 
using MATLAB  sof tware. The results were compared with 
those of dynamic moduli master curves obtained through 
f requency–temperature reduction of  data measured by a 
commercial dynamic mechanical thermal analyser (DMTA), 
by scanning temperature at various f requencies in the range 
0.3–30 Hz. The results obtained by DMTA are trained in the 
Neural Network. Very good agreement of  the data obtained 
by the two diff erent approaches was f ound. 
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I. INTRODUCTION 

  This work describes the research into thermal properties of 
tire as a non-homogeneous composite material [1]. The 
primary purpose of this work is to derive a neural network 
model for temperature and shear modulus at different 
frequencies.  Dynamic properties of composite tires for different 
frequencies were obtained experimentally [2]. A Neural 
Network model has been developed for the experiment based 
dynamic properties. Furthermore, a computer implementation  
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of this algorithm to interpret experimental result and neural 
network result has been generated. 
 

A. Thermal Conductivity and Heat Capacity 
T he thermal conductivity is the property that describes 

the heat transfer capacity within the materials. In tests where 
tire are used the voids are also included in the heat transfer. T he 
specific heat capacity is the amount of energy required to rise 
one degree Celsius. The thermal conductivity of glass belted 
tire was roughly 15% lower than the values for the steel belted 
tires at the same density.  

T he thermal property constants must be predicted for both 
modeling and computer implementation purposes, and are 
related by the following formula: 

 
where α is thermal diffusivity, k is the thermal conductivity, ρ  
is the material density, and c is specific heat. Density is found 
from the mass and volume of a given tire, whereas thermal 
conductivity and specific heat must be predicted.   
 

B. Tire Composition  
T ire materials vary greatly between manufacturers. For 

proprietary reasons, most tire manufacturers are reluctant to 
publish information concerning the composition of the tires 
they produce.  T his composition includes the following 
elements: natural rubber (44.32%), butadiene compounds 
(15.24%), aromatic oils (1.85%), various carbon black 
substances (30.47%), stearic acid (1.07%), antioxidants 
(0.83%), and sulfur (1.42%) [3]. T hose not listed are of 
negligible proportion. 

 

C.  Elastic Properties  
The elastic modulus is used as a measure of stiffness of a 

material, i.e., the elastic deformation under stress. In general 
the elastic modulus for tire material is not a constant but 
assumed constant in a specified stress interval. In general, the 
elastic modulus is defined as 
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T able 1 Material Properties 

Material 
T hermal 

Conductivity 
W/m K 

Specific 
Heat 

kJ/kg K 
Natural Rubber 0.055 0.001683 
Butadiene 
Compounds 0.042 0.006518 

Aromatic Oils 0.053 0.006304 
ISAF Black    (1) 0.124 0.002759 
GPF 
Black      (2) 0.126 0.00278 

FEF 
Black      (3) 0.126 0.002795 

Silica 0.531 0.004835 
Stearic Acid 0.056 0.008981 
Antioxidant    (4) 0.044 0.009027 
Sulfur  0.047 0.00017 

 

II. DYNAMIC TESTING OF RUBBER COMPOUNDS 

A. Dynamic Properties  
T he overall performance of rubber components is 

governed by the dynamic behavior of the material, such as 
stiffness and damping. Due to the viscoelastic nature of rubber, 
their dynamic and thermal behavior is significantly dependent 
on frequency and temperature [1]. The material stiffness and 
hysteretic effects, associated with the energy dissipation and 
consequent heating within the material, are usually described 
in terms of the complex dynamic modulus E. T he storage and 
loss components of the rubber composite respectively depend 
on temperature and frequency of the applied load [2]. T he high 
content of carbon black is usually incorporated together with 
other additives within the compounds to optimize the 
mechanical performances of the rubber components [4]. 
Characterization of the dynamic moduli of elastomeric 
materials is usually performed using commercial Dynamic 
Mechanical Thermal Analyzers (DMT A) that enable testing 
by scanning temperature and frequency. These data were found 
consistent with the results of dynamic moduli master curves 
determined through frequency–temperature reduction of 
experimental data obtained by a DMT A apparatus, by 
scanning temperature at various frequencies in the range 
0.3–30 Hz [1]. 

 
Dynamic tests were also carried out by a Dynamic 

Mechanical Thermal Analyser (DMTA) by Tire manufacture 
Laboratories that can perform dynamic testing by scanning 
temperature and frequency simultaneously [5]. T ests were 
performed at five different frequencies, 0.3, 1, 3, 10, 30 Hz and 
scanning temperature in the range from – 80 °C to +100 °C, at 
a heating rate of 0.4 °C/min. 

 

III. NEURAL NETWORK MODEL  
 

A neural network is a computational structure inspired by 
the study of biological neural processing. A layered 
feed-forward neural network has layers, or subgroups of 

processing elements.  A layer of processing elements makes 
independent computations on data that it receives and passes 
the results to another layer. The next layer may in turn make 
its independent computations and pass on the results to yet 
another layer. Finally, a subgroup of one or more processing 
elements determines the output from the network.  Each 
processing element makes its computation based upon a 
weighted sum of its inputs.  The first layer is the input layer 
and the last the output layer.  The layers that are placed 
between the first and the last layers are the hidden layers. T he 
processing elements are seen as units that are similar to the 
neurons in a human brain, and hence, they are referred to as 
cells, neurons, or artificial neurons. A threshold function is 
sometimes used to qualify the output of a neuron in the output 
layer. Synapses between neurons are referred to as connections, 
which are represented by edges of a directed graph in which the 
nodes are the artificial neurons. Back-Propagation algorithm is 
employed in the present work. 

 
 

 
x- input neuron           w- weight for Input layer 
y- output neuron        k- weight for Output layer 

 
Figure 1 Multilayer network 

 
 

IV. RESULT AND DISCUSSION  

 
T he results obtained from the DMT A test for various 

frequencies against the temperature are trained in the Neural 
Network. Based on the training, for every frequency a new set 
of T emperature and shear modulus were obtained and are 
tabulated in T able 2. T hese values are plotted against each 
frequency and are given in the Figure 2 -11. From the Figure 
12 and Figure 13 it is evident the results generated by Neural 
Network and by the experimental DMTA coincide.   

 
For any unknown value of the temperature, the 

corresponding shear modulus or vice versa can be obtained 
from this training model, even if the values are beyond the 
tested values. Here the test value of temperature varies from +5 
to –80.  Using the neural network model, shear modulus can 
be obtained even for the temperature higher or lower than +5 to 
–80. 
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Figure 2 Neural Network T rained Values -DMTA analysis 

for frequency 0.3 Hz 
 
 

 
 Figure 3 Neural Network result for Frequency 0.3 Hz 

T emperature Vs Shear modulus 
 
 

  
Figure 4 Neural Network T rained Values -DMTA analysis 

for frequency 1.0 Hz 
 
 

 
 Figure 5 Neural Network result for Frequency 1.0 Hz 

Temperature Vs Shear modulus 
 
 

 
 

Figure 6 Neural Network Trained Values -DMT A analysis 
for frequency 3.0 Hz 

 
 
 

 
   Figure 7 Neural Network result for Frequency 3.0 Hz 

Temperature Vs Shear modulus 
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Figure 8 Neural Network T rained Values -DMTA analysis 
for frequency 10 Hz 

 
 
 

 
 Figure 9 Neural Network result for Frequency 10 Hz 

T emperature Vs Shear modulus 
 
 
 

 
 

Fig 10 Neural Network Trained Values -DMT A analysis for 
frequency 30 Hz 

 
 

 
Figure 11 Neural Network result for Frequency 30 Hz 

Temperature Vs Shear modulus 
 
 
 

 Figure 12 Neural Network T rained Result of T emp Vs Shear 
Modulus for Various Frequencies 

 
 

 
  

 Figure 13 DMT A T est Result of T emperature Vs Shear 
Modulus for Various Frequencies 
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Table 2 Temperature against shear modulus 

Shear 
Modulus 

Fre 
quenc

y 
0.3 Hz 

Fre 
quenc

y 
1 Hz 

Fre 
quenc

y  
3 Hz 

Fre 
quenc

y  
10 Hz 

Fre 
quency  
30 Hz 

0 5 5 5 10 5 

150 -17 -15 -12 -10 -5 
300 -19 -17 -14 -11 -8 
450 -21 -18 -15 -12 -10 

600 -22 -18 -16 -14 -12 
750 -22 -18 -17 -14 -13 
900 -22 -19 -18 -15 -13 

1050 -23 -20 -18 -16 -14 

1200 -24 -20 -20 -17 -15 
1350 -25 -21 -21 -18 -15 
1500 -26 -22 -22 -20 -18 

1650 -27 -24 -24 -22 -20 
1800 -28 -27 -28 -26 -25 
1950 -47 -50 -50 -44 -40 
2040 -80 -80 -80 -80 -80 

 

V. CONCLUSION 
T his work mainly deals with thermal properties of 

cord rubber composite extended to tire. The thermal properties 
are analysed using neural network. Here, the thermal properties 
like temperature are measured against shear modulus. The test 
results of temperature and shear modulus are trained in the 
neural network, and the results are obtained. For any unknown 
value of the temperature, the corresponding shear modulus or 
vice versa can be obtained from this training model, even if the 
values are beyond the tested values. Here the test value of 
temperature varies from +5oC to –80oC. Using the neural 
network model, shear modulus can be obtained even for the 
temperature higher or lower than +5oC to –80oC. 
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