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Abstract - The evolution of pneumatic tires has been
alongside the evolution of the automobiles. The demand of
the modern automotive industry has been driving the tire
industry to come with high performance tire. The ftire
construction and geometry are very complex in nature
especially tire design and stress analysis are very difficult.
The study of tire performance and deformation are very
challenging owing to the non-linearity associated with
geometry as well as composition of material. The ftire
material is a cord-rubber composite, its properties
anisotropic in nature. Failure analysis of cord-reinforced
rubber composite tires may be useful to predict the lifetime
of atire.In this background, the presentattempt is to analyze
the tire using artificial neural network. The shear modulus
and the temperature are measured against \arious
frequencies. The above properties are analysed using
artificial neural network. The study has been undertaken
using MATLAB software. The results were compared with
those of dynamic moduli master curwes obtained through
frequency-temperature reduction of data measured by a
commercial dynamic mechanical thermal analyser (DMTA),
by scanning temperature at various frequencies in the range
0.3-30 Hz. The results obtained by DMTA are trained in the
Neural Network. Very good agreement of the data obtained
by the two different approacheswas found.
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. INTRODUCTION

This work desaibes the research into thermal properties of
tire as a non-homogeneous composite materiad [1]. The
primary purpose of this work is to derive a neural network
model br temperature and shear modulus at different
frequencies. Dynamic propertiesofcompositetiresfor different
frequencies were obtained experimentally [2]. A Neural
Network model ha been developed for the experiment based
dynamicproperties. Furthemore, a computer implementation
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of this algorithm to intempret experimental result and neural
network result has been generaed.

A. Thermal Condudivity and Heat Capadity

T he thermal conductivity is the property that describes
the heat transfer capadty within the maerids. In tests where
tireare usedthe voidsare dso included in theheat transfer. T he
specific heat capacity is the amount of energy required to rise
one degree Celsius. The thermal conductivity of glass belted
tirewas roughly 15% lower than the values br the steel belted
tires at the same density.

T he thermal property constants must bepredicted for both
modeling and computer implementation purposes, and are
relaed by the following formula:
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where o.is thermal difusivity, k is the therma condudivity, p
is the material density, and c is specific heat. Density is found
from the mass and volume of a given tire, whereas themal
conductivity and specific heat must be predicted.

B. Tire Composition

Tire materials vary greatly between manufacturers. For
proprietary reasons, most tire manufacturers are reluctant to
publish information concerning the composition of the tires
they produce. This composition includes the following
elements: natura rubber (44.32%), butadiene compounds
(15.24%), aromatic oils (1.85%), various carbon black
substances (30.47%), stearic add (1.07%), antioxidants
(0.83%), and sulfur (1.42%) [3] Those not listed ar of
negligible proportion.

C. Elastic Properties

The elastic modulus is used as a measure of stifiness of a
materia, i.e, the elastic deformation under stress. In general
the elastic modulus for tire material is not a constant but
assumed constant in aspecified stress interval. In general, the
elastic modulus is defined as

E= > ()
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Table 1 Material Properties

Therma Specific
Material Conductivity Heat
Wim K kl/kg K
Natural Rubber 0.055 0.001683
Butadiene
Compounds 0.042 0.006518
Anmaic Oils 0.053 0.006304
ISAF Black (1) 0.124 0.002759
GPF
Black () 0.126 0.00278
FEF
Black  (3) 0.126 0.002795
Silica 0.531 0.004835
Stearic Acid 0.056 0.008981
Antioxidant (4 0.044 0.009027
Sulfur 0.047 0.00017

Il. DYNAMIC TESTING OF RUBBERCOMPOUNDS

A. Dynamic Properties

The overall performance of rubber components is
governed by the dynamic behavior of the material, such as
stifiness and damping. Dueto the viscoelasticnature ofrubber,
theirdynamicandthermal behavior is significantly dependent
on frequency and temperature [1]. The material stifiness and
hysteretic effects, assodated with the energy dissipation and
consequent heating within the material, are usually described
in terms ofthecomplex dynamic modulus E. T he storage and
losscomponents of the rubber composite respectively depend
on temperature and frequency ofthe applied load [2]. T he high
content of carbon black is usually incorporated together with
other additives within the compounds to optimize the
mechanical performances of the rubber components [4].
Characterization of the dynamic moduli of elastomeric
materials is usudly performed using commercial Dynamic
Medhanical Thermal Analyzers (DMT A) tha enable testing
by sanning temperature and frequency. These data were found
consistent with the results of dynamic moduli master curves
detemined through frequency—temperature reduction of
expeimental data obtained by a DMTA apparatus, by
scanning temperature at various fequencies in the range
0.3-30 Hz [1].

Dynamic tests were also carried out by a Dynamic
Medhanical Thermal Analyser OMTA) by Tire manufacture
Laboratories that can perform dynamic testing by scanning
temperature and frequency simultaneously [5]. Tests were
performed at five different frequencies, 0.3,1, 3, 10, 30 Hz and
scanning temperature intherange from— 80 °Cto+100°C, at

a heaing rate of 0.4 °C/min.

I1l. NEURAL NETWORK MODEL

A neural network is a computational structure inspired by
the study of biological neural processing. A layered
feedforward neural network has layers, or subgroups of
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processing elements. A layer of processing elements makes
independent computations on datathat it receives and passes
the results to another layer. The next layer may in turn make
its independent computations and pass on the results to yet
another layer. Finally, a subgroup of one or more processing
elements determines the output from the network  Each
processing element makes its computation based upon a
weighted sum ofits inputs. The frst layeris the input layer
and the last the output layer. The layers that ar placed
betweenthefirstand the last layers are the hidden layers. T he
processing elements are seen a units that are similar to the
neurons in ahuman brain, and hence, they are referred to as
cells, neurons, or artificial neurons. A threshold function is
sometimes used to qualify the output ofa neuron in the output
layer. Synapses between neurons are referred to as connections,
which are represented by edges ofa directed graph in which the
nodes are theartificial neurons. Back-Propagationalgorithm is
employed in the present work.

INPUT LAYER HIDDEN LAYER OUTPUT LAYER

[Z ¥

b <15

w- weight for Input layer
k- weight for Output layer

X- input neuron
y- output neuron

Figure 1 Multilayer network

IV. RESULT AND DISCUSSION

The results obtained from the DMTA test for various
frequendes against the temperature are trained in the Neural
Network. Basedon the training, for every frequency a new set
of Temperature and shear modulus were obtained and are
tabulated in Table 2. These values are plotted against each
frequency and are given in the Figure 2 -11. From the Figure
12and Figure 13 it is evident the results generated by Neural
Network and by the experimental DMTA oincide.

For any unknown vdue of the temperature, the
corresponding shear modulus or vice versa can be obtained
from this training model, even ifthe values are beyond the
tested values. Here the test value oftemperature varies from +5
to —80. Using the neural network model, shear modulus can
beobtained even for the temperaturehigher or lower than +5 to
-80.
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Figure2 Neural Network T rained Values DMTA analysis
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Figure 3 Neural Network result for Frequency 0.3 Hz
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for frequency 1.0 Hz
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Figure 5 Neural Network result for Frequency 1.0 Hz
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Figure 6 Neural Network Trained Vaues -DMT A analysis
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Table 2 Tem perature @ainst shear modulus [13] Lee, K.Y., Cha, Y.T., and Park J.H., “Short-terms lbad forecasting
using an artificial neural network” IEEE Transactions on Power
Fre Fre Fre Fre
Shear | quenc  quenc | quenc | quenc Fre Sysems, Vol.71992, pp, 124-132.
Modulus y y y y quency [14] Peng, T.M,, Hubele, N.F, and Karady, G.G., “Advancement in the
03Hz 1Hz | 3Hz | 10Hz | 3012 application of neuralnetworks for short-term load forecasting.” IEEE
0 5 5 5 10 5 Transactions on Power Systems, Vol.7 1992, pp, 250-257.
[15] Chen, ST., Yu, D.C., and Moghaddamjo, “Weather sersitive
150 - -5 -12 -10 -5 short-term loadforecasting using nonfully conrectedartificial neural
300 -19 -7 -14 -11 -8 work” IEEE Transactions on Power Systems, Vol.7 1992, pp,
450 -21 -18 -15 -12 -10 1098-1105.
600 7 .18 -16 -14 -12 [16] Hsu, Y.Y., and Yang, C.C, :Design of artificial neural network for
750 2 18 17 14 13 short—term Ioagforgcastirg. Part1: Self.—Organising feature maps for
dayty peidentification,” IEEE proceeding, Partc Vol.123, 1991, pp,
900 -2 -19 -18 -15 -13
414-418.
1050 3 -0 -18 -16 -14 [17] Jews, O, Hagan, M.T., 2001. Backpropagation through time for a
1200 -24 -2 -20 -17 -15 gereralclassof recurrent network Proceeding of the International
1350 -5 21 221 -18 -15 Joint Conference on Neural Networks 4, 2638-2643.
1500 %6 _» 22 ) 18 [18] Hopfied, J.J.,1982, Neural Networls and phy sical systems with
emergent colective computationalabilities. Proceedings of the
1650 2 2 24 22 -20 National Academy of Sciences 79, 2554-2558.
1800 -B -2 -28 -26 -25 [19] Kapur, K.C., Lamberson, L.R, 1977, Reliability in Engineering
1950 -47 -50 -50 -44 -40 design, Wiley, New York
2040 -80 -80 -80 -80 -80 [20] Lu,C.,Wu,H.,Vemmuri,S., 193, Neural Network based short-term
load forecasting. IEEE Transactions on Power Systems, Vol8(1)
336-342.

[21] Wang.,X.G., Tang, Z, Tamura, H., Ishii, M., 2004. A modifiederror
V. CONCLUSION function for the backpropagation Algorithm. Neuro com puting, new
This work mainly deas with thermal properties of aspectsih Neuro com puting: 10" European sy mposium on Artfficial
cord rubber compositeextended to tire. The therma properties Neural Networks. 57(1 -4), 477-484. _
are analysed using neural network. Here, the thermd properties  [24 W4 F.Y., Yen K.K,, 199, Application of newal networkin
liketemperature are measured againstshear modulus. The test regression analy sis IEEE Transactons on Power Systems 23 (1-4).

results of temperaure and shear modulus are trained in the 9395

neural network, and theresults are obtained. For any unknown

value of the temperature, the corresponding shear modulus or

viceversacan be obtained fom this training model, even if the

values are beyond the tested values. Here the test value of

temperature varies from +5°C to -80°C. Using the neural

network model, shear modulus can be obtained even for the

temperature higher or lower than +5°C to —80°C.
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