
 
Abstract—A proof of the formulae used in the conjugate

directions method for solving linear algebraic systems of
equations is presented. The proof is based on the minimization
of a functional connected with a change of variables, and
differs from the proofs presented by other authors. It permits
an accessible but deep understanding of the procedure
removing some confusions of literature, and allowing new
remarks. Some results may be easily verified by using Maple-
soft programs.

Index Terms—Linear algebraic systems of equations;
conjugate directions method; conjugate gradient method.

I. INTRODUCTION

Among the methods for solving linear algebraic
systems of equations, one of the best is the conjugate
gradient method (for which we shall also use the
denomination of conjugate directions method that
seems more adequate), a good example being its use in
the finite element method [1-3], where large systems of
equations occur. The formulae used for applying this
method have been derived in literature in various
ways. We should add that there are various sets of
formulae proposed by different authors. We shall
shortly recall the typical variants for establishing the
used formulae.

In a first variant [4, Part 2, p. 167, 171], the formulae
have been obtained by a congruent transformation
containing a dyadic decomposition and an endogenous
transformation, in fact by multiplying the matrix of
coefficients with a normalization matrix and the
transpose of the matrix of coefficients. Hence a
normalization of the system is performed. Then, the
obtained quadratic matrix is transformed into a
diagonal one.

In a second variant, a set of formulae [5, p. 243] has
been established by utilizing the iterative method with
common steps and convergence acceleration
coefficient, i.e., the method of Richardson, and putting
the condition that the rests (residuals) of the system of
equations be conjugate versus a certain symmetric
matrix.
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In a third variant [3], we have considered that for
establishing the set of formulae it would be convenient
to utilize the minimization of a functional. We have
chosen for applying this procedure, the set of formulae
of [5] (for which we prepared a computer program),
which we found very efficient in many numerical
experiments concerning practical applications in
calculation of electromagnetic devices [2].

The procedure of [3] was criticised in Zentralblatt
für Mathematik and the main argument has been that
“The recursion relation for the conjugate gradient
method is derived from a local optimization property.
Optimality in the entire Krylov subspace is claimed in
an indirect way, but it is not proved“. We consider that
this argument contains two inaccuracies as follows:
1° The minimization of a functional (there has been no
optimization in general) or of a function of several
variables is a problem of mathematical analysis and
has nothing to do with Krylov subspace; 2° In several
cases, the local minimum coincides with the global
minimum. In fact, in the known papers in literature,
many manners of presenting the method do not show a
consistent procedure. Some of them start with the
statement that the formulae would be based on a
minimization procedure, and the necessary functional
is written in the known form. However, further the
derivation of many formulae is carried out by resorting
to linear algebra including eigenvectors and assuming
that rounding errors do not exist. Also, the finite
number of necessary iterations is established by the
same way. For this reason, since the conclusions are
obtained for the case in which rounding errors do not
exist, a supplementary proof should be included for to
prove that the minimization of the functional takes
place even in the case when rounding errors exist.
Moreover, several questions remain unproved, for
instance in the case of a symmetric positive definite
matrix of coefficients, the pre-conditioning matrix
should also be positive definite. Therefore, the usual
manner of studying the method could be estimated as
eclectic.

We consider that a consistent manner for deducing
the formulae and studying the method should be based
on the same principle for each property.

Having in view the mentions above, we consider
that it would be useful to present a derivation of the
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concerned set of formulae, based consequently on a
minimization procedure connected with a change of
variables, which is a general one, without resorting to
proper values or to Krylov subspace, and proving that
it leads to the global minimum, hence removing the
mentioned doubts. The used procedure also allows for
several analyses.

II. PRINCIPLE FOR ESTABLISHING THE COMPUTATION
FORMULAE

Further on, we shall denote the square matrices by
capital bold upright letters and the column matrices
(vectors) by small bold upright letters. Let:

,bxA = (1)
be a system of linear equations, where A is a
symmetric positive definite matrix with n rows and n
columns. The solution of the system of equations (1)
minimizes the functional:

( ) [ ]ij
TT aF =−= AbxxAxx ,

2
1 . (2)

In all formulae, the product of two vector matrices is
performed via transposition.

As known, F being a function of several variables,
the values of these which rend the minimum must
satisfy several conditions, the first being the following:

[ ]ni
x
F

i
,1,0 ∈∀=

∂
∂ . (3)

From relations (2) and (3) there follows:

[ ]nibxa ijij

nj

j
,1,

1
∈∀=∑

=

=

. (4)

Therefore the values of ix  which could minimize
the function F represent just the solution of (1). In the
considered case, the solution is unique, and the
minimum should be a global one.

There remains to establish a procedure for to
minimize the concerned function. For this purpose, an
iterative procedure has been chosen. Let us use for the
first step (iteration) the formula:

)0(
0

)0()1( pxx a+= , (5)

where )0(x  represents the starting (initial) value
attributed to the vector (column matrix) of the
unknowns to be determined. Also, 0a  and further ma
are coefficients to be determined for the functional (2)
to be minimized, whereas )0(p  is a starting vector.
Any further iteration of order 1+m  will be:

)()()1( m
m

mm a pxx +=+ , (6)

and the expression of the rest (residual) of iteration m
will be:

,)()()1()1( m
m

mmm a pAxAbxAbr −−=−= ++ (7)
therefore:

,)()()1( m
m

mm a pArr −=+ (8)

where the following symbols have been used:
ma  – coefficient at iteration m;

m   – iteration ordinal number;
n    – number of equations;

)(mp  – column matrix (vector) at iteration m;
)(mr  – column matrix (vector) of the rest (residual) at

iteration m.
For any iteration of order 1+m , we may write:

( ) ( ) ( )
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(9)

III. THE CHANGE OF VARIABLES

In order to fix the ideas, and facilitate some remarks,
without losing the generality, we shall consider the
case 3=n . We shall take )0(x  as starting value and
we shall write the first three iterations:

.
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(10 a, b, c)

Correspondingly, the rests of the form
xAbr −= (11)

are:
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;

;
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and in general, the last equation above becomes:
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(13)

We may remark that for to minimize (2), in the case
in which 3=n , we need to know the values of three
quantities 321 ,, xxx  that constitute vector x. The
vector x of (1) that is constituted by those three
quantities can be expressed in function of the other
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three quantities of the set 210 ,, aaa  considered as
exogenous variables.

For this purpose, we shall use relation (10 c). From
formulae (10 a, b, c), it results that the solution
represented by vector sets x is expressed in a vector
basis formed by the set of three vectors )2()1()0( ,, ppp
assumed, firstly, as exogenous variables. If the
quantities of the two sets are related to each other, we
can consider the quantities )(ia  as exogenous, while
the quantities )(ip  as endogenous. Therefore the
variables [ ]3,1∈∀ixi  will be changed (replaced) by
the variables [ ]2,0∈∀iai , in expression (9).

The function to be minimized ( )321 ,, xxxF
becomes ( )210 ,, aaaF :
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or in general, for the case of a system with n equations:
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By replacing expression (10) into (3), and ia  instead
of ix  we obtain:
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(16 a, b, c)

where we have had in view the symmetry of matrix A,
and relation (7).

There follows:
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IV. THE COMPUTING FORMULAE

A. Particular Case
From relations (17 a, b, c), we can determine the

values of 210 ,, aaa  so that, every other quantity being
supposed with fixed value, the relations will be
fulfilled. We shall obtain:
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(18 a, b, c)

According to the structure of matrix A, it may be
possible that )2(p  of (17 a, b, c) be equal to zero.
Then, the solution will be given by relations (17 a, b).
This circumstance means that the solution represented
by vector x is obtained in a vector basis formed by the
two vectors )1()0( , pp .

B. General Case
Further on, we shall consider the case of a system

with n equations. For more precision, a supplementary
unknown coefficient mc  and a vector )(mz  will be
introduced by the following relation set:

,

;

;

)0(1)0(

)1()()(

)()(

rMp

pzp

zMr

−

−

=

+=

=
m

m
mm

mm

c (19 a, b, c)

where M has been chosen as an invertible symmetric
matrix of the same order as A, in particular it might be

AM = . But, this case is not interesting because if we
knew 1−M , the solution would be immediate. For
reasons further shown, after formula (25), M should be
positive definite. By this formula, each iteration
includes the results of the previous two. Also, we
should add that in accordance with relations (19 a, b, c)
the vectors of the form )(ip  will be partially

exogenous variables, if )0(p  has to be introduced.
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With the above described relations, the expression of
the functional can be written as follows:

( )[ ]
( )[ ]

( )[ ] .
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(20)

The first condition of minimum requires that the
derivatives of the first order of the functional with
respect to the unknown coefficients ma  and mc  are
equal to zero. Therefore we have
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and
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be zero. Multiplying relation (8) by )1( −mp , we get:

( ) ( ) ( ) .)()1()()1()1()1( mTm
m

mTmmTm a pAprprp −−+− −=
(23)

Taking into account expressions (21 d) and (22 d),
relation (23) yields:

( ) .0)()1( =− mTm pAp (24)

The other conditions require the calculation of the
derivatives of the second order of the functional.
Taking into account relations (8), (19 b) and (21), we
shall obtain:
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and since (25 b) is positive because the matrix A has
been chosen positive definite, the expression (25 i)
must also be positive, hence matrix M should be
positive definite.

Similarly, we shall obtain:
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Taking in view relations (21), (6), (19 b), (7), (22 d)
and (24), we shall obtain:
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From the three relations above, there follows that the

conditions of minimum are fulfilled as below:
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From relation (21 a) and (19 b), there follows:
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wherefrom:

( )
( )

.
)()(

)()(

mTm

mTm

ma
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= (30)

From relation (22 d), there follows:

( ) .0)1()1( =+− mTm rp (31)

From relations (27 a), (7), (19 b), (21 d) and (24),
there follows:
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wherefrom:
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Multiplying relation (19 b) by )1( +mr , we have:

( ) ( ) ( ) ,0)1()1()1()()1()( =+= +−++ mTm
m

mTmmTm c rprzrp
(34)
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and considering relations (21 d) and (22 d), we find:

( ) .0)1()( =+mTm rz (35)

Multiplying relation (19 b) by )(mr , and taking into
account (21 d), there follows:

( ) ( ) .)()()()( mTmmTm rzrp = (36)

We shall now use relation (36) for obtaining other
expressions for ma  and mc  emphasising the matrix M.
If we replace expression (36) into (30), we shall get:

( )
( ) .

)()(

)()(

mTm

mTm

ma
pAp

rz
= (37)

Multiplying both sides of (8) by )(mp  and
considering expression (21 d), we get:

( ) ( ) .)()()()( mTm
m

mTm a pAprp = (38)

We may mention that relation (35) also yields:

( ) ,0)()1( =+ mTm zr (39)
and

( ) .0)()1( =+ mTTm zMz (40)

The expression (33) can also be modified like (30).
We shall start from relation (8) in the form:

,)1()()( +−= mmm
ma rrpA (41)

where the index m has to be changed into (m-1). We
can write:

( ).1 )()1(
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)1( mm

m

m

a
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−

− (42)

We shall multiply both sides of (42) by )(mz , use
expression (37) for replacing 1−ma  and remark that
according to relation (39), the first term in parenthesis
vanishes. Replacing the result into (33), we shall get:
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and finally:
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By minimizing the system of equations (1) with
respect to the quantities 210 ,, aaa , the minimum, i.e.,

bxT

2
1

− , will be the same as minimizing with respect

to the quantities ,,, 321 xxx  because we performed
only a change of variables.

Using the formulae (6), (17 a, b, c) and (18 a, b, c)
for the case with three variables, it follows that we
achieved the minimization along three directions

)2()1()0( ,, ppp .
Therefore, we may expect that after the third

direction we reached the solution of minimum. It
results that we have used a procedure with a finite
number of arithmetic operations. The number of
iterations, except the introduction of starting quantities
will be 1−n , in the examined case, namely 2.

The final value, in the general case, after 1−n
iterations, will be:

.
1

0

)()0()( ∑
−=

=

+=
ni

i

i
i

n axx pA (45)

However, it remains to prove that the obtained
solution after 1−n  iterations corresponds just to the
minimum, as explained in the next section.

If the precision is not satisfactory, the precision
could be improved by continuing the iterations. No
other proofs are necessary for these conclusions unlike
the case in which the proof of formulae had been
established using the properties of conjugation with
respect to a symmetric positive definite matrix.

V. VERIFYING THE SOLUTION CONDITIONS

For the expression (45), together with (19 a, b, c),
(37), (44), to represent the solution of (1), it suffices
that the conditions:

( ) ( ) [ ] jinjijTijTi ≠∈∀== ,,0,;0;0 )()()()( pAprp
(46)

are satisfied, as clearly specified, further, after formula
(54).

For to verify it, there is necessary to establish the
general relations between the pairs of quantities

)()( , ji rr , and )()( , ji pp , and also between the
quantities of both pairs. For this purpose, we shall start
from relations (21) and (22).

By using those relations, we can obtain the results
that we can put into two sets, according their form,
related to (21 d), (22 d), or (24) respectively. The first
example: From relation (21), putting 0=m , there
follows:

( ) ,0)1()0( =rp
T (47)

and we put the result of (47) into the first set. From
relation (22), putting 1=m , there follows:

( ) ,0)1()0( =pAp
T (48)

and we put the result of (48) into the second set.
Now, we shall consider relations (8), (21 d) and

(22 d), and look for
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and we put the result of (49 d) into the first set.
Similarly, considering the relations (8), (21), (19),

(48) and (49), we have:
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(50 a-f)

but according to (19 a-c), and taking in view that
matrix M is symmetric, we obtain:
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(51 a-j)
and we put the result of (51 j) into the first set.

Taking into account (50 a), (8), (49 d), we shall
obtain:

( ) ( ) ( )
( ) ,0

,0
)2()0(

)2(
2

)2()0()3()0(

=

=−=

pAp

pArprp
T

TT
a

(52 a, b)

and we put the result of (52 b) into the second set.
Afterwards, we can repeat the calculations starting

with the factor )1(p , and so on.
Finally, we can write, for the first set, the general

relations:

( ) [ ] [ ] ,;,1;1,0;0)()( jinjnijTi <∈−∈∀=rp (53)

and

( ) [ ] [ ] .;,1;1,0;0)()( jinjnijTi <∈−∈∀=pAp (54)

The relation (54) remains valid even if the order of
superscripts indices is taken conversely.

Multiplying both sites of relation (13) with
[ ]1,0,)( −∈∀ niip , taking into account relations (53)

and (54), it results that the right-hand side is zero, and
if the projections of a vector with n components on n
independent directions is zero, it means that the
considered vector, i.e., )(nr  is zero. Therefore the
global minimum has been reached.

All relations from this section can be easily verified
by using Maple-soft programs, [6], prepared by the
author for systems of linear equations. For instance, in
the case of a linear system of algebraic equations with
all coefficients rational numbers, the relations of type
(54) are exactly fulfilled being an obvious
confirmation of the deduction carried out.
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