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Abstract—A new mathematical model has been developed 

to predict the behaviour of a stranded cable assembly under the 

influence of interfacial lateral contact forces. A single layered cable 

assembly with six helical wires and a straight cylindrical core, all 

made with the same material, steel, has been chosen to explain this 

phenomenon when the assembly is under the influence of wire –

wire lateral contact. An attempt is made in this paper to model the 

strand with a lateral (wire–wire) contact and deduce its equations 

of equilibrium. Numerical analysis of strand force, twisting 

moment, strand stiffness coefficients and contact stresses are 

carried out based on the equilibrium of thin rods, and the results 

are compared with the earlier research work and experimental test. 

The importance of the inclusion of interfacial forces at the contact 

locations and their associated effects of axial and twist slip of the 

helical wires on the wire is highlighted. Few results have been 

reported on the effects of interfacial contact. The behaviour of the 

stranded cable assembly due to the contact force in the lateral 

direction is one more additional feature incorporated in the present 

work.  

 

 

Index Terms—contact stress, friction, cable mechanics.  

 

 

I. INTRODUCTION 

ire strands are playing a very important role in various 

engineering applications such as suspension bridges, 

electrical power transmission lines and pre-stressing 

of concrete etc., apart from hauling, traction, lifting  & other 

allied mechanical engineering applications. They consist of 

groups of wires wound over helically together in a regular 

geometric pattern to form an integral unit to afford axial 

strength and stiffness. It is well known that a major 

advantage of such element is their capacity to support large 

axial loads with comparatively small bending and torsional 

stiffness.  

It is imperative that the nature of the contact that 

occurs between the wires in the strands is vital to determine 

their strength, life and also helps to predict the failures, as 

these interfaces are vulnerable locations during loading & 

functioning. Three important contact modes occur in a single 

layered strand. During axial loading of such strands, the 

wires in the layer, maintain line contact among themselves 

and also with the central core, on which they are wound. 
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This is called the combined contact mode. Depending on the 

geometrical constructions like the diameter, helix of the 

wires in the outer layer strand and the diameter of the inner 

core and the differential contraction between the core and 

the wires, the contact mode may shift to that among the 

wires in the layer only. This is called the lateral contact 

mode and in such case, the central core loses the contact 

with the outer wires and the contact stresses in the helical 

wire interfaces only exist. In wire rope applications, such 

contact mode is generally desired upon, as the central core is 

made up of hemp or fibrous material, offering more 

flexibility in working on a drum or sheave pulleys/shackles. 

In the third mode of contact, called as core-wire contact, the 

helical wires in the layer loose contact among themselves 

and retain contact only with the core. This paper focuses the 

mechanism that occurs in a lateral contact mode on a single 

layered metallic wired strand with a central core of the same 

material. 

Love [1] outlines the basic formulations of the theory 

of thin rods under bending & torsional loads that form the 

mathematical basis for such stranded cables. Costello & 

Phillips [2, 3] have made significant contributions to explain 

the contact mechanisms of cables under lateral contact mode 

and have derived expressions for the contact forces that 

occur in the wire interfaces. The same authors in their 

further works [4& 5] presented more exact expressions for 

the contact angle and also predicted the effective modulus of 

the twisted wire cables in the lateral contact mode. Costello 

& Sinha [6] investigated the torsional stiffness of a single 

layered wired strand in the lateral contact mode. The above 

findings and the mathematical relations concerned with the 

mechanics of wires of stranded cables under different modes 

of contact have been reported in detail by Costello [7] in his 

book. Kumar et al [8] have summarised the analytical 

expressions reported by the above authors to explain the 

phenomenon of combined tension and torsion loadings and 

derived expressions for the contact stresses in such cables. 

All the literature mentioned above have independently 

handled one or the other mode of contact with or without the 

presence of a metallic core or with fibrous core. In reality, in 

stranded cables under loading, none of these contact modes 

occur in isolation to consider as though that only exists. 

Depending on the geometry like diameters , helix angle , the 

extent of contraction of the wires and the core that prevail 

during each stage of loading , the contact mode changes 

from one to the other and hence knowledge of the mechanics 

connected with each of these modes become important. 

Gnanavel et al [9] have presented an analytical model to 

explain the importance of the interfacial loads and their 

effects in coupled contact and identified the threshold limit 

at which the contact mode changes from a coupled 

arrangement to the arrangement of core-wire radial contact 

and analysed further a radial contact mode in their works 
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[10]. However these works were confined to a coupled and 

radial contact mode single straight cored helical strand.     

The present paper presents exclusively the lateral 

contact mode modelling with its complete analytical 

development in the lines of the above authors but considers 

the effect of the frictional forces at the contact interface, 

hitherto not considered fully. The effect of the distributed 

contact force in the normal direction and their association in 

the tangential directions due to friction are the significant 

contributions of this paper. Further, the interaction of the 

distributed moments in the normal and axial (tangential) 

direction of the helical wires and their effects in the response 

of the cables are the distinct features of this work. 

Consideration of all these parameters brings out expressions 

for the wire force in the normal direction, which was 

generally treated as zero by the other investigators.  Detailed 

experimental work has also been carried out in one of the 

research laboratories dealing with cables used for electrical 

power transmission.  

 

II. ANALYTICAL FORMULATION OF THE LATERAL CONTACT 

IN A SEVEN WIRE STRAND 

In the following analysis, each wire is considered in 

the strand as a long slender curved rod. Figures 1 and 2 

depict the cross section and the developed geometry of a 

seven wire strand, in the lateral contact. The forces and 

moments that act in the helical wires along the normal, 

binormal and tangential directions are as shown in Figure 3. 

The components of the force resultant acting on the cross 

section of the wire are denoted by N, N', T and the 

components of moment acting on the cross section are 

denoted by G, G', H. The components of the distributed 

force per unit length of the wire are X, Y and Z and the 

components of the distributed moment per unit length of the 

wire are K, K' and Θ. Along any line of contact between the 

helical wires, there exists the normal distributed force U and 

the tangential distributed forces V and W as shown in Figure 

4.  

 

Fig. 1 Strand geometry 

  

 

 

 

 
Fig. 2 Wire helix geometry 

 
Fig. 3 Forces and moments on a helical wire 

 
Fig. 4 Distributed loads on a helical wire 

 

The above interfacial forces can be related to the 

forces and moments in the normal, binormal and tangential 

directions of the wire, as under: 

cos2UX  , cos2VY  , 0Z                                             (1) 

sin2 0wWRK  , 0K , 
02 wVR                                  (2) 

where Rw0 is the radius of the wire, β is the contact angle, 

which locates the lines of action of the line contact loads U 

on a wire due to its adjacent wires. The contact angle can be 

determined from the intersection of the projection of the 

cross section and the projection of the line of contact. 
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Costello et al (1974) derived the expressions for the contact 

angle as given by 
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where m is the number of wires in that layer, α0 is the helix 

angle.   

The equations of equilibrium of all the forces and the 

moments acting on an infinitesimal element of the wire are 

obtained from the theory of slender curved rods by Love [1].  

Since the strand is considered long, all the derivatives of 

stress resultants and moments with respect to the arc length 

of the wire are neglected. Since the helical wire is wound on 

a straight cylindrical core, the normal curvature and the 

associated normal bending moment of the wire are zero. 

Hence, the equations of equilibrium are written as, 

000  XTN-                                          (4) 

00 YN                                                  (5) 

0'0  ZN                                              (6) 

000  KNHG                                       (7) 

0 KN                                                  (8) 

0                                                         (9) 

where 
0'  is the binormal curvature and 0  is the twist of 

the wire. 

The principal binormal curvature and twist of the 

centre line of the wire are given by, 
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where 0r is the helix radius. 

 The helix radius in the lateral contact mode as 

derived by Costello [6] is given by 
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When the slipping between helical wires during the 

extension of the strand is considered, the tangential 

distributed forces at the wire interfaces are given by, 

V=μU ;W=μU                                              (13) 

where  is the coefficient of friction between the wire - wire. 

  

 Combining Equation (13) with the above mentioned 

equations, the wire force in the normal and binormal 

directions are respectively are obtained as follows:-      
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The axial forces in the wire, bending moment in the 

binormal direction and twisting moment of the wire are 

found by the following relations:-     
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where E is the Young’s modulus,  is the Poisson’s ratio, 

w  is the wire axial strain,   is the change in binormal 

curvature and  is the change in twist.  The wire axial 

strain, change in binormal curvature and the change in twist 

are used as given by Gnanavel et al [10]  

The resultant axial force and the axial twisting 

moment acting on the outer layers of the strand are given by, 
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The axial force Fc and the axial twisting moment Mc 

acting on the centre core are given by the expressions  
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where 
0cR  is the core radius, ε is the strand axial strain, 





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h

d
 is the strand angle twist per unit length,   

The total axial force F and the total twisting moment 

M acting on the strand can be written as  

wc FFF                              (23) 

wc MMM                             (24) 

The above expressions can also be expressed in 

terms of strand axial strain,   and angle of twist per unit 

length strand,  hd   as follows 
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where 
F ,

F , 
M  and 

M   are the stiffness coefficients of 

the strand. On substitution of the equations 14 to 18 and 

rearranging, the following stiffness constants are obtained. 
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The movement of the wires along the lines of contact 

occur depending on the resisting friction force developed at 

the interface.  From equations (4) & (1), the resultant force 

due to contact in the lateral contact mode is given by, 









sin2sin2sin2 00

0

0

0

www R

N

R

H

R

G
U





                (30) 

The maximum normal contact stresses at the wire 

interfaces are obtained using Hertzian  theory and presented 

as under.   
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A. Numerical Example  

A stranded cable comprising a layer of six wires 

wound around a central core is considered to explain the 

lateral contact arrangement and its effects.  The core and the 

helical wires are chosen with the same material steel with 

Young’s modulus of elasticity as 2  10
5
 N/mm

2
. An 

arrangement of an earth wire used in electrical power 

transmission lines is chosen for the study and that consists of 

six helical wires of radius 3.5 mm wound around a central 

core of radius 3.5 mm. 

Numerical computations are carried out for a lay ratio 

of 18.48 of the cable considered. The lay ratio is defined as 

the ratio between the axial lengths (pitch) of a complete turn 

of the helix formed by a helical wire in a strand to the 

external diameter of strand and has been usually maintained 

as a geometric reference parameter to describe cables and 

overhead transmission line conductors as per International 

standards. Since the lay ratio is a geometrical parameter 

connecting the helix angle of the wire, a lay ratio of 18.48 

yielded a helix angle of 83.5º.  The above geometry has 

yielded lateral contact mode as given by equation (12). To 

explain the behaviour of the cable due to radial contraction 

and the interfacial friction forces, a Poisson’s ratio 0.3 and a 

friction coefficient of 0.5 have been used in the present 

work. Since the stranded cable assembly used is an earth 

wire in overhead transmission applications, it is non-

lubricated and generally follows Coulomb’s law of friction 
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on dry surface, and hence a coefficient friction of 0.5 has 

been used.  

B. Experimental Work  

The experimental setup consists of a test rig 

of 40 m span with the end fixtures to support a 

cable and exert a pulling force up to 100 kN.  A 

double acting hydraulic actuator of 100 kN 

capacity was used to impart the tensile force in the 

strand. Figure 5(a) shows the hydraulic actuator 

and Figure (5b) shows the end fixture 

arrangement. To measure the mechanical response 

of earth wire strand specimens, a force transducer, 

and a dial gauge are used as shown Figures (5c & 

5d).  The strand specimen is 11000 mm in length 

and is clamped by two sockets at its ends. A dial 

gauge  set up is mounted at the centre of the earth 

wire strand as shown in Figure 5d and the axial 

extension of the cable is measured. The least 

count of the dial gauge is ±0.01 mm. The 

measurement procedure as recommended by 

Bureau of Indian Standards (BIS) has been 

adopted. 

 

 
Fig. 5a Tensile testing machine 

 

 
Fig. 5b Tensile testing machine – RHS 

   
Fig. 5c Tensile testing machine – LHS     

 

 
Fig. 5d Dial gauge mounting with test specimen 

 

C. Comparison of Analytical Models and Experimental 

Test  

Using the numerical data of the strand given above, 

the results of strand stiffness coefficients, strand axial force, 

strand twisting moment and contact stress are obtained for 

the fixed end condition. In the fixed end condition, there is 

no rotational strain on the strand.  The results of the present 

model are compared with the experimental work and that of 

Costello model [7].  The variations in the above results are 

shown as a function of strand axial strain in Figures 6 to 12. 

Figure 6 is establishing the axial stiffness coefficient as a 

function of the strand axial strain. Axial stiffness coefficient 

registers no deviation between of results of the present 

model and Costello model. The effect of interfacial force has 

not affected the axial response in the lateral contact mode.  

However these results are 5.4% greater than the 

experimental value.  Figure 7 shows the tension – torsion 

coupling stiffness coefficient of the present model and 

Costello model. The present model estimates 4.6% greater 

than that of the Costello model. Figure 8 explains the 

torsional – tension coupling stiffness coefficient of the 

present model and Costello model. The present model 

torsion - tension   coupling stiffness coefficient is 5.9% less 

than the Costello model.  Figure 9 shows the strand torsional 

stiffness coefficient of the present model and Costello model 

respectively.  The present model registers an 1.1% increase 

than the Costello model. Figure 10 explains the strand axial 

force response of the present model, Costello model and 

Proceedings of the World Congress on Engineering 2011 Vol III 
WCE 2011, July 6 - 8, 2011, London, U.K.

ISBN: 978-988-19251-5-2 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2011



 

experimental test. The present model and Costello model 

register same values but are 4.8% less than the experimental 

results.  The strand twisting moment of the cable is shown in 

Figure 11. The present model predicts an increase of 1.1% 

than the Costello model. Figure 12 shows the distribution of 

the contact stresses of the present model and Costello model. 

However there is no deviation of the results in both the 

models. The deviation in the results of the above parameters 

between the present model and the Costello model are due to 

the inclusion of the frictional effects at the lateral con tact 

interfaces, their associated distributed moments about the 

normal and the axial direction of the helical wires. Though 

the axial response has not shown a difference between the 

present model and the Costello model, the change of results 

of the individual parameters are expected to play a 

significant role in estimating the energy dissipation of such 

cables.  
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The experimental results generally agree with the 

results of the present model but registers about 4.8% 

increase in the strain ranges considered. This deviation is 

due to the role of the friction coefficient at the contact 
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interface. As the conditions of the friction coefficient in the 

experimental sample and the assumed value of friction 

coefficient in the present model are not exactly equal, the 

deviation in the experimental result is bound to be 

acceptable. 

 

III.  CONCLUSION 

A new model has been developed to calculate the 

axial response of a single layered strand taking the frictional 

effects at the interface into account.  A strand with lateral 

contact is analysed. The present work considered the 

inclusion of the frictional forces at the contact interface and 

has predicted the various parameters that contribute to the 

cable response. The analytical results of the present model, 

when compared with that of Costello and other similar 

researchers register deviation in the individual parameters, 

though the overall axial response is in agreement. The 

deviation of the results in the individual parameters is 

attributed to the consideration of tangential frictional forces 

and their associated moments. 

From both the analytical results and the experimental 

findings, it is concluded that cable behaviour of the wire 

strand has an important role on the friction coefficient. It is 

hoped that the findings of the present work will help in the 

optimal design of stranded cables. The result can be useful 

to estimate the wear at metallic interfaces and further 

research in these directions are in progress.   
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Nomenclature 

E  Young’s modulus of the core and the helical wire, 

N/mm
2
  

F  Axial stiffness coefficient, N 

F  Tension – torsion stiffness coefficient, Nmm 

cF  Axial force of the core, N 

wF  Axial force of the wire, N 

F  Axial force of the strand, N 

G  Bending moment of the wire along the binormal 

direction, Nmm 

H  Wire twisting moment along axial direction, Nmm 

0h  Initial strand length, mm 

K  Distributed wire unit moment about normal 

direction of wire, Nmm/mm 

K   Distributed wire unit moment about binormal 

direction axis of wire, Nmm/mm 

0l  Initial length of the helical wire, mm 

wM Wire twisting moment about strand axial direction, 

Nmm 

M Torsion – tension coupling stiffness coefficient, 

Nmm 

M Torsional stiffness coefficient due to axial load 

Nmm
2
 

cM Twisting moment of the core, Nmm 

m  Number of the wire 

NN ,  Wire force along the normal and binormal 

direction, N 

QP,  Tangential distributed force between wire to 

wire contacts, N/mm 

0wR  Undeformed radius of helical wire, mm 

0cR  Undeformed radious of the core, mm 

0r  Initial helical radious, mm 

T  Axial force of the helical wire, N  

ZYX ,,  Distributed wire unit force in normal, 

binormal axial direction, N/mm 

  Distributed wire unit moment in axial direction, 

Nmm/mm 

 ,0  Intital and change in twist of the helical wire, 

rad/mm 

   ,0 Initial and change in binormal curvature, 

rad/mm 

0  Initial helix angle, Degree 

  Coefficient of friction 

    Poisson’s ratio 

h

d
 Angle of twist per unit length of the strand, 

rad/mm 

   Strand axial strain 

ww Normal contact stress, Pa 

  Angle of outering sweep out in a plane 

perpendicular to the axis of the strand, Degree 

w  Helical wire axial strain 
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