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Abstract—Kingpin axis geometry is crucial to the design of a 

suspension system. Suspension construction is truly 
three-dimensional, and the screw axis theory allows for a more 
accurate kinematic analysis. This study aims to present a dual 
quaternion analysis (DQA) method for calculating the kingpin 
axis geometry. The corresponding parameters include the 
caster angle, SAI angle, toe angle, caster trail and scrub radius. 
An ADAMS/Car simulation model for the strut-SLA suspension 
is employed to assess the efficiency of the proposed method. 
Two distinctive marker sets and the marker coordinates are 
extracted from the kinematic model. In addition, the finite 
screw axis (FSA) method is employed for purposes of 
comparison with the DQA method. The results reveal that the 
marker distribution has a significant effect on calculating the 
position of the screw axis. In contrast to the FSA method, the 
DQA analysis is immune to any singularities because it enables 
the simultaneous matrix of rotation and translation. Thus, the 
proposed method is suitable for determining the kingpin axis 
and its related parameters in a K&C test. 
 

Index Terms— suspension system, kingpin axis, dual 
quaternion analysis, finite screw axis 
 

I. INTRODUCTION 
HE kingpin axis (steering axis) geometry and its related 
parameters are crucial to the design of a suspension. 

Many driving characteristics, such as straight running 
stability, steering response, steering self-alignment, required 
steering force, breaking response and rolling response, are 
affected significantly by this virtual axis. SAE defines the 
kingpin axis as “the axis of rotation of the knuckle relative to 
the vehicle sprung mass when steered [1].” The kingpin axis 
is typically determined when the steering system is free of 
loads. Owing to the suspension kinematics and compliances, 
however, the kingpin axis may shift as the steering angle 
changes.  
    In general, a 3D rigid body motion can be defined by a 
combination of rotations about an axis and a translation 

parallel to that axis. Several screw axis methods, such as the 
finite displacement screw axis (FSA) and the instant screw 
axis (ISA) have been widely used in the field of robotics and 
biomechanics [2-4]. However, the error in the direction and 
on the position of the FSA is much higher than the error of 
the measurement system. In addition, the information of the 
first derivative of the displacement signal is required for ISA 
analysis, which limits the use of ISA calculations in various 
practical measurements [5]. 
    The measurement of the kingpin axis benefits an 
awareness of the characteristics of a car’s motion. 
Geometrical calculation and analytical method based on the 
FSA and ISA have been used for analyzing the imaginary 
kingpin axis [6]. ADAMS/Car, for example, offers geometric 
and instant axes methods for calculating the kingpin axis [7]. 
These methods always need the geometric data of the 
suspension system. Kinematic and compliance (K&C) test 
machines cannot measure directly the locations of suspension 
hard points. Therefore, wheel orientations, such as toe, 
camber and spin, are usually taken for calculating the kingpin 
axis parameters [8-10]. 
    In this paper, the dual quaternion algebra (DQA) method 
for the kinematic analysis of the kingpin axis of a suspension 
has been presented. For this method, a dual quaternion 
representing a rotation and translation of a rigid body in 3D 
space was estimated, and this method has been proven to 
consistently outperform the singular value decomposition 
method. This approach was first utilized in the kingpin axis 
analysis of a car, with the landmark coordinates extracted 
from the kinematic model of ADAMS/Car. A strut-SLA 
suspension was analyzed. Then, the results of the proposed 
method were compared to those of the FSA and ADAMS 
analyses. 

II. KINGPIN AXIS AND RELATED SUSPENSION PARAMETERS 
   Figure 1 shows the kingpin axes for ordinary types of 
suspensions. On an SLA or strut-SLA suspension, the 
kingpin axis is an imaginary line running through the center 
of the ball joints of the upper and lower control arms. On a 
strut suspension, the line runs through the upper strut mount 
and the lower ball joint. However, for a multi-link suspension, 
such as a five-link suspension, the kingpin axis cannot be 
determined geometrically [11]. 
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camber as well during cornering if it is not zero. This is 
referred to as the camber roll. A camber roll can wear both 
edges of a tire, and changes in the camber always cause 
changes in the toe. 

SAI is another important directional control angle for the 
car. SAI and caster are somewhat similar in their effects 
because both of them are defined by the same kingpin axis. 
The kingpin axis offset at the ground is called scrub radius. A 
larger scrub radius makes the steering stiffness and tire wear 
increase. Moreover, whether the scrub radius is positive or 
negative will influence the toe specifications and braking 
stability. 

 

 
 
          Fig. 1. Kingpin axes for ordinary types of suspensions 
 

 
 
              Fig. 2. Kingpin axis geometry (front and side view) 
 

 
 
                      Fig. 3. Kingpin axis geometry (top view) 

III. DUAL QUATERNION ALGEBRA ANALYSIS 

Due to the intrinsic shortcomings of FSA and ISA, an 
alternative method for the DQA for the kingpin axis 
calculation has been proposed in this study. 3D rotations can 
be represented as 3 numbers (Euler angles), but such a 
representation is non-linear and difficult to work with. Once 
the 3D space of the rotations is mapped to a 4D hypersphere, 
it becomes linear. Quaternion algebra is one possible way to 
represent 3D orientation or other rotational quantity 
associated with a solid 3D object. It is easier to interpolate 
between quaternions. Moreover, quaternions are easier to 
normalize than matrices; that is, quaternion algebra can 
cancel out a build up of small rounding errors [12-14].   

Quaternions have 4 dimensions, also known as Euler 
symmetric parameters, one real dimension and 3 imaginary 

dimensions. Quaternions are limited to representing rotation 
in a full 3D transformation; therefore, the translation vector 
must be expressed by another quaternion. A dual quaternion, 
however, provides a framework that can be used to represent 
both rotation and translation. Thus, the screw motion of a 
rigid body can be described as a dual angular displacement 
about a dual vector axis. Figure 4 shows the screw 
transformation for a dual quaternion.  

 

 
 
               Fig. 4. Screw transformation for a dual quaternion 
 

A dual quaternion, , can be defined as: q̂
s rq̂ ε+=                                                                   (1) 

where r and s are real quaternions and ε is defined as ε2 =0. r 
and s denote the real part and the dual part, respectively. The 
unit dual quaternion can be written as: 
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where  and  are the dual angle and the dual vector of the 
screw axis, respectively. They can be expressed as: 

θ̂ n̂

d ˆ εθθ +=                                                                   (3) 
np nn̂ ×+= ε                                                             (4) 

where θ and d are the angle rotating about the screw axis and 
the distance translating along the screw axis, respectively. In 
addition, the unit direction vector of n and a point p on the 
screw axis geometrically define the screw axis position. The 
resulting transformation of a screw axis in space then can be 
expressed directly as: 

*' q̂ n̂ q̂n̂ =                                                       (5) 

where  is the transformed dual vector of the screw axis 
and  is the conjugate of . Calculating from Eqns. (1)-(4), 
r and s can be easily obtained. Simultaneously, the two 
constraints, as below, will be satisfied: 
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1rrT =                                                              (6) 
0srT =                                                             (7) 

The two matrices for quaternion q, W(q) and Q(q), derived 
from a rotation matrix are defined as: 
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where qs and qv represent the scalar and vector parts of the 
quaternion, respectively. I is the unit matrix and K(qv) is the 
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skew-symmetric matrix. If, with the exact data, the position 
quaternions of a set of landmarks are denoted as p0i, when 
they move into the next configuration with the rigid body, the 
position quaternions are denoted as p0i′. The transformation 
becomes: 

0i
TT

0i Q(r)pW(r)sW(r)p +=′                              (11) 
Inherently, all measurements may contain experimental or 
numerical errors. Let pi and pi′ be the measured quaternions 
in the first and second configurations, respectively. pi can be 
expressed as: 

⎥
⎦

⎤
⎢
⎣

⎡
=

0
P

2
1p i

i
                                                       (12) 

where Pi is the position vector of the landmark. An estimate 
of the r and s is made to minimize the error function subject to 
the constraints of Eqs. (6) and (7). Three matrices, C1, C2 and 
C3, are computed from pi and pi′: 

)W(p)pQ(-2C i
T

ii1 ∑ ′= α                                   (13) 

∑= IC i2 α                                                      (14) 

∑ ′= )]pQ(-)[W(p2C iii3 α                                 (15) 

where αi is the weight factor reflecting the reliability of the 
data points. A 4×4 symmetric matrix, A, then, can be 
computed from C1, C2 and C3: 

)]C-C-C)C(C[C (1/2)A T
113

-1T
22

T
3 +=               (16) 

r rA λ=                                                          (17) 
The quaternion r is an eigenvector of matrix A and λ is the 
corresponding eigenvalue. If the largest positive eigenvalue 
is selected, the error is minimized. Once r is obtained, 
quaternion s can be derived using the following equation: 

r C)C-(Cs 3
-1T

22 +=                                         (18) 
Then, the transformation matrix can be derived from r and s: 
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where R is the rotation matrix and t is the translation vector. 
The orientation vector of rotation axis n, rotation angle θ, 
translation distance d and point p on the axis also can be 
calculated as: 

r/r n v=                                                         (21) 

)r/(r 2cos s
-1=θ                                             (22) 

/2)/sin(2sd s θ=                                             (23) 

/2)/2)n]/sin((d/2)cos(-[sK(-n)p -1 θθ=           (24) 

where rv and rs represent the vector and scalar parts of 
quaternion r, respectively. 

IV. KINEMATIC ANALYSIS 
The front strut-SLA suspension was modeled by 

ADAMS/Car software, as shown in Fig. 5. Steering analysis 
is usually employed to investigate how the suspension and 
steering characteristics change through the steering range of 
motion of the suspension. A steering analysis steers the 
wheels over the specified steering-wheel angle or rack travel 
displacement from the upper to the lower bound. The 

application of steering motion results in a wheel 
displacement at the specified wheel height. In this study, the 
geometrical method was adopted for the ADAMS/Car 
steering analysis.  

The steering analysis was completed with a steering-wheel 
input of -540°~540° and, the gear ratio for the strut-SLA 
suspension was 0.11. Let the distinctive three points on the 
clamp of the front wheel be one set of landmarks. Depending 
on the curve of the steered wheel, the upright rotated around a 
virtual axis in space. The successive positional data of the 
landmarks with the interval of one degree steering-wheel 
were extracted for analytic screw analysis. As shown in Fig. 
6, two sets of landmarks, denoted as Am and Bm, were entered 
into the calculation of the kingpin axis. The arrangement of 
the landmark locations in this model was similar to that of a 
real K&C test machine, thus providing a compatible base for 
future data analysis. 

 

    
    Fig. 5. Kinematic model of the         Fig. 6. Wheel clamp and marker  

          strut-SLA suspension                        set positions 

V. VALIDATION OF RESULTS 
The simulation results were primarily used to validate the 

calculated results from the DQA analysis. The kingpin axis 
locations and the related parameters, including caster, SAI, 
caster trail and scrub radius, were compared systematically. 
Moreover, the FSA method was selected in order to compare 
its effectiveness with the DQA method. To simplify the DQA 
analysis, the weight factor αi was set to 1. A Matlab code with 
the DQA algorithms was developed to compute all the 
matrices and eigenvalue, then the kingpin axis locations.   

A. Orientations of Kingpin Axis 
Based on the DQA and FSA analyses for the strut-SLA 

suspension, the caster, SAI and rotation (toe) angles during 
the steering motion were calculated from the screw axes. 
Figures 7-12 show the comparison of those curve-fitting data 
with the ADAMS/Car results. 

 
                                  Fig. 7. Caster angle (marker set A) 
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                                     Fig. 8. Caster angle (marker set B) 

 

 
                                    Fig. 9. SAI angle (marker set A) 

 

 
                                   Fig. 10. SAI angle (marker set B) 

 

   
                                 Fig. 11. Toe angle (marker set A) 

 

 
                                  Fig. 12. Toe angle (marker set B) 
 

The castor and SAI angle are responsible for the change of 
camber angle when steering. It can be seen that the shift of 
the kingpin axis was rather small in the total range of steering. 
In the ADAMS/Car analysis, there was about a 0.35% and 
0.64% maximum change for the caster and SAI angles, 
respectively. The difference in the calculating algorithms of 
the DQA, FSA and ADAMS/Car analyses reflected the 
difference of the caster and SAI angles, which also led to a 
variation in the results of the different marker sets used. 

Figures 13 and 14 show the non-smoothed caster and SAI 
angles calculated from the position data of the marker set Am. 
The perturbed caster and SAI curves caused by cyclic 
changes of the matrices’ components were found in the DQA 
and FSA analyses. However, they were reasonably close to 
the ADAMS/Car results while smoothing. It is noticed that 
the perturbations were much stronger when the marker set Bm 
was used, an example as shown in Fig. 15. The reason was 
that the variations of the successive markers’ positions in 
each coordinate axis were too close for two markers in turn. 
Figures 16 and 17, respectively; show the coordinate changes 
of marker set A and B. The fitted caster and SAI curves also 
matched well to the ADAMS/Car results due to the symmetry 
of perturbations. The rotation angles of the kingpin axis 
calculated from both screw axis methods, however, agreed 
very well with the toe angle results of ADAMS. 
 

 
                      Fig. 13. Caster angle (marker set A, non-smoothed) 
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Figure 18 shows the camber angle results. The values 
computed from the planes of both marker sets were near the 
same with those of ADAMS/Car except around the wheel 
lock position of left-turn. This might be caused by the 
inconsistent camber change rate due to the slightly toe angle 
variations. 

                       Fig. 14. SAI angle (marker set A, non-smoothed) 

 
                 Fig. 15. Caster angle (marker set B, non-smoothed) 
 

 
                       Fig. 16. Coordinate changes of marker set A   
 

 
                       Fig. 17. Coordinate changes of marker set B 

 
              Fig. 18. Camber angles (marker sets A and B) 
 
Using the FSA method to describe the kinematics of 

kingpin axis geometry has a drawback in that the orientation 
and position of the screw axis are dependent on the 
coordinate system. Furthermore, it is considerably sensitive 
to the direction of the marker’s displacement. If the direction 
is nearly parallel to the screw axis, significant fluctuations 
may appear in the successive calculated data. The latter 
situation happens occasionally and is not easy to control; as, 
for example, when using the same marker set to calculate the 
roll axis in a K&C test machine (the author’s previous study). 
The DQA method was immune to any singularities because it 
enabled the simultaneous matrix of rotation and translation. 
In addition, it cooperated this way to deal with the noisy data. 
The efficiency of the DQA method has been confirmed in this 
study. Having the advantages as mentioned, the DQA method 
can be used for calculating kingpin axis successfully. 

B. Parameters Related to the Kingpin Axis 
Figures 19-22 show the caster trail and scrub radius with 

respect to the steering wheel angle for the strut-SLA 
suspension. These fitted data resulted from the DQA, FSA 
and ADAMS analyses separately. 
 

 
                          Fig. 19. Caster trail (marker set A) 
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                         Fig. 20. Caster trail (marker set B) 
 

   
                          Fig. 21. Scrub radius (marker set A) 
 

 
                            Fig. 22. Scrub radius (marker set B) 
 

The caster offset, also referred as the mechanical trail, 
generates a movement around the z-axis of the steering axis 
during cornering. In the DQA and FSA analyses, the caster 
trails calculated from the two marker sets of Am and Bm were 
nearly equal. However, there was a constant difference of 5% 
from the ADAMS results. This discrepancy was the 
consequence of the different measurement methods for the 
wheel contact point.  

With regard to the scrub radius, the results of DQA method 
were also close to those of FSA. But an evident deviation 
from ADAMS was found when making a right turn of the 
wheel. Same as the caster trail, this variation was related to 
the different positions of kingpin axes and wheel contact 
points. The scrub radius for the strut-SLA suspension 
changed only slightly. It was used to calculate the influence 
of braking and driving forces on the steering wheel. The 
marker distribution proved to have a significant effect on 

calculating the screw axis. Thus, a stronger perturbation of 
the caster trail and scrub radius curves were also found when 
using marker set Bm. 

VI. CONCLUSION 
This paper has presented a new application for calculating 

the kingpin axis of a strut-SLA suspension during steering 
motion by the method of DQA. The conclusions for this 
study are summarized as follows: 
1. The marker distribution proved to have a significant effect 

on calculating the screw axis, but the rotation angle was 
insensitive to it. 

2. The perturbations were found on caster and SAI curves in 
the DQA and FSA analyses. It was caused by the cyclic 
changes of the matrices’ components. However, these 
curves were reasonably close to the ADAMS/Car results 
while smoothing. 

3. In contrast to the FSA method, the DQA analysis enabled 
the simultaneous matrix of rotation and translation. Thus, 
it was immune to any singularities. This method can be 
used to calculate the kingpin axis geometry successfully. 
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