
 

 
Abstract—This paper describes the development of a tool 

wear monitoring system using AE signals acquired during 
drilling on mild steel work-piece. The acquired AE signals 
were filtered through digital band pass filter to avoid the 
affects of low frequency vibration. The filtered AE signals were 
analyzed in time-domain and time-frequency domain to extract 
features which are sensitive to drill wear. Root means square 
(RMS) value which is also a representative parameter for total 
AE energy of the signal has shown increasing trend with 
increasing drill wear. In time-frequency domain, wavelet 
packet transform has been applied to the AE signals, and RMS 
values of the wavelet coefficients in selected frequency bands 
are considered as the monitoring features which also show 
similar increasing trends. The relationships among the features 
and wear values are found to be non-linear. Artificial neural 
networks (ANN) are efficient tools to map such non-linear 
relationships if effectively trained through experimental data. 
An ANN model trained through back propagation learning 
algorithm has been developed here to correlate the extracted 
features to tool wear at different cutting conditions. 
Experimental results show that drill wear prediction of ANN 
model based on wavelet packet features is more accurate 
compared to that based on time domain features.  
 

Index Terms— Drilling, tool wear, acoustic emission, 
artificial neural network, wavelet packet 
 

I. INTRODUCTION 

It is important to develop a tool condition monitoring 
(TCM) system to increase productivity and promoting 
automation in metal cutting process. Many attempts have 
been made in the past to develop such systems using signals 
from various sensors such as dynamometer, current, 
accelerometer, acoustic emission (AE), speed, etc. But the 
successes of different sensor based systems are limited due 
to the complexity of tool wear process. The research is still 
ongoing for improved TCM system with applications of 
advance signal processing techniques and artificial 
intelligent models.  Among various sensing methods, AE is 
one of the effective means for sensing tool wear.  Acoustic 
emission (AE) in metal cutting is a transient elastic wave 
generated by dislocation in the primary shear zone and 
sliding friction in the secondary shear zone. As the cutting 
tool wears, additional friction between the tool flank and the 
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work-piece also creates AE [1]. Iwata & Moriwaki [2] were 
the first to use an AE signal to monitor tool wear condition. 
Power spectrum of AE signal up to 350 kHz increases with 
the increase of tool wear and then becomes stable. The total 
count of AE events, i.e., the number of occurrences of AE, 
was found to be closely related to the tool wear. Since then 
many attempts were made to establish AE-based tool wear 
or fracture monitoring systems [3-4], which were mainly 
confined to turning process. Application of AE-based 
methods for tool condition monitoring of turning tools are 
reviewed in [5]. 
 Only few attempts have been made to apply AE-based 
methods for TCM of drilling process. Braun et al. [6] 
proposed a point process for extracting drill wear sensitive 
features from the acoustic signals in the frequency range of 
0-25 kHz. Konig et al. [7] discussed the advantages of using 
AE in monitoring drill wear, especially that of small drills. 
The acquired signal was analyzed in the frequency range of 
1-5 kHz. Quandro & Branco [8] performed drilling tests 
with HSS drills with and without TiN coating, and 
monitored the AE signal in the range of 100-1000 kHz. 
Velayudham et al. [9] applied wavelet packet transform to 
determine tool wear monitoring indices from the acoustic 
emission signals in drilling of composite materials. Gomez 
et al [10] correlated AE mean power to the torque obtained 
during drilling and related this feature to different degree of 
drill wear.  The main objective of the present work is to 
develop an effective tool wear monitoring system based on 
artificial neural network (ANN) using AE signals acquired 
during drilling experiments on mild steel work-piece by 
high speed steel drill bits.  

  

II.  EXPERIMENTAL PROCEDURE 

Drilling experiments have been performed at different ranges 
of cutting speed, feed-rate and drill diameter as shown in 
Table 1. The schematic diagram of the experimental set-up 
for the drill wear monitoring system is shown in Fig. 1. The 
drilling was performed using column type drilling machine 
(HMT make). During each drilling operation, AE signal was 
acquired through an AE sensor (Dunegan Engineering 
Company Inc. Make, SE900-MWB) which was fitted to the 
work-piece in the vertical direction. The analog sensor 
outputs were converted to digital signals by an A/D board 
(Measurement Computing make, PCI–DAS 4020/12) fitted 
to an IBM PC. An inverted metallurgical microscope 
(RADICAL make, model RMM77B) has been used to 
measure the drill flank wear each time a drilling experiment 
was performed.  
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TABLE 1 

EXPERIMENTAL CUTTING CONDITIONS  
 

Cutting tool  Drilling parameters  Work-piece 

Two-fluted twist drill 
Diameter: 8, 10 and 12 
mm 
Tool material: High 
speed steel (HSS) 

Spindle speed: 630, 
900 and 1250 rpm 
Feed rate: 0.1, 0.16 
and 0.25 mm/rev 
Dry cutting 

 Material: Mild steel 

 

 

Fig. 1. Schematic view of the experimental set-up 

III. SIGNAL ANALYSIS AND FEATURE 

EXTRACTION 

     It has been observed from literature that Acoustic 
emission (AE), which is a transient signal, is mostly 
analyzed in the frequency range of 100-1000 kHz. 
Therefore, AE analysis requires high sampling rate, noise 
filtering, huge data storage and memory retrieval, and speed 
of processing and analysis. There is also example of the AE 
sensor signal analysis in the low frequency (1-5 kHz) range 
[7]. The present work tries to extract wear sensitive features 
from the analysis of AE sensor signals at low frequency 
range to avoid huge data storage and retrieval memory 
requirements for high frequency analysis. The acquired AE 
signals were filtered through Chebyshev-1 band pass (500 
Hz - 50 kHz) digital filter. Time-domain representation of 
the filtered AE signal for a particular case is shown in Fig. 
2, and the FFT plot of the corresponding signal is shown in 
Fig. 3. Most of the AE signal energy is concentrated in 1 
kHz to 5 kHz frequency range, as shown in the FFT plot. 
The time-domain representation and the FFT plot of the 
vibration signal acquired during the same drilling 
experiment are shown in Fig. 4 and Fig. 5, respectively. It is 
seen that the vibration signal is mainly concentrated to 
frequency range lower than 500 Hz. So the lower limit of 
the Chebyshev-1 band pass has been taken as 500 Hz to 
avoid the affect of low frequency vibration in the acquired 
AE signal. The upper limit is set at half of the sampling rate, 
i.e., 50 kHz.  

 

A.  Time-domain feature 

 RMS value of the AE signal ( rmsAE ) under each cutting 

condition is determined. The variation of RMS value with 

average flank wear under a particular cutting condition is 
shown in Fig. 6. It ( rmsAE ) shows an overall increasing 

trend with the average flank wear. Hence, this feature has 
been selected as one of the input parameters in drill wear 

monitoring system. 
 

 
Fig. 2. Time-domain representation of AE signal 

 

 
Fig.  3. FFT plot of AE signal  

 

 
 

Fig. 4. Time-domain representation of vibration signal 
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Fig. 5. FFT plot of vibration signal 

 

 
Fig. 6. Variation of RMS value of AE with average flank wear 

B. Wavelet packet features 

 
The filtered AE signal from each drilling experiment was 
decomposed into optimum number of wavelet packets. The 
extracted feature from each optimum packet shows an 
overall increasing trend of similar nature with average flank 
wear as shown in Fig. 7. These features, listed below, are 
the RMS values of the wavelet coefficients in each of the 
optimum packets.  

    AWC10 is the feature of packet (1,0), i.e. 
frequency band (0-25 kHz)   

    AWC20 is the feature of packet (2,0), i.e. 
frequency band (0-12.5 kHz)   

   AWC30  is the feature of  packet (3,0), i.e. 
frequency band (0-6.25 kHz)   

   AWC31 is the feature of packet (3,1), i.e. 
frequency band (6.25- 12.5 kHz) 

From the FFT plot of the AE signal, shown in Fig. 3, it is 
observed that the AE signal is mostly concentrated in packet 
(3,0) and in packet (3,1). Hence, AWC30 and AWC31 are 
selected from these four features.    

 
 

Fig. 7. Wavelet packet features vs. average flank wear 
 
 

IV. ANN MODEL FOR DRILL WEAR MONITORING 

Due to the complexity of the drill wear mechanism, it is 
very difficult to achieve online monitoring of wear based on 
analytical wear model. The present trend in tool wear 
monitoring is in the direction of applying artificial neural 
network (ANN) techniques which can very efficiently map 
the nonlinear relationship between different sensor signals 
and the tool wear. Artificial neural network is a collection of 
simple, interconnected nodes, which operate in parallel and 
store the knowledge through connecting weights between 
the adjacent layers of nodes. Artificial neural network 
models have become very popular in industry because of 
their classification and prediction capabilities [11]. Neural 
network may be seen as an attempt to automate the process 
of building a monitoring system. In principle, neural 
network can be trained to model the non-linear 
dependencies of manufacturing process parameters with tool 
wear and failure.  

The ANN model applied here is the most widely tested 
multilayer feed forward network with back propagation 
learning. This model is trained and tested with datasets 
produced during the drilling experiments as described in 
section 2. Two data sets, dataset#1 and dataset#2, have been 
prepared from time-domain feature and wavelet packet 
features, respectively, from 75 numbers of drilling 
experiments under different cutting conditions as shown in 
Table 1. Four input parameters and one output parameter 
form a pattern in dataset#1, whereas five input parameters 
and one output parameter form a pattern in dataset#2; and 
there are 75 such patterns in both data sets.  Four input 
parameters for dataset#1 are drill diameter (D), cutting 
speed (V), feed-rate ( f ) and RMS value of AE ( rmsAE ). 

For dataset#2, first three input parameters, i.e., D , V and f   

are same to those of the dataset#1 and other two input 
parameters are the extracted wavelet packet features 
( 30AWC  and 31AWC ). For both datasets, the values of the 

output parameter, i.e., the average flank wear, are same.  
Topologies of neural networks for both datasets are shown 
in Fig. 8 and Fig. 9, respectively. All the input and output 
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parameters in both datasets are normalized in the range of 
0.1 to 0.9. The normalization is done using the following 
equation. 














minmax

min8.01.0
xx

xx
xnorm                                           (1)                                                         

where, maxx  is the maximum value of any parameter in the 

dataset under consideration, minx  is the minimum value of 

the parameter, x  is the actual value of the parameter for 

any pattern, and normx  is the corresponding normalized 

value. For both datasets, the first 65 data patterns have been 
used for training the networks, while the remaining 10 
patterns have been used for testing these trained networks.  
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Fig. 8. Topology of neural network for dataset#1 (time-domain 

approach) 
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Fig. 9. Topology of neural network for dataset#2 (wavelet packet 
approach) 

V. RESULTS AND DISCUSSION  

 
ANN models are evaluated for different numbers of hidden 
nodes, as well as at different learning rates (LR), to arrive at 
the best possible performance of the same in terms of mean 
prediction error. The best ANN architecture using dataset#1, 
i.e., patterns containing time-domain feature and process 

parameters is found to be 4-5-1. The best architecture for 
wavelet packet approach (dataset#2) is found to be 5-15-1. 
The comparison of the wear prediction performances of 
these two approaches are shown in Table 2. The mean error 
of wear prediction by the wavelet packet approach is 9.41%, 
whereas the same by time-domain approach is 15.32%.  

TABLE 2 
COMPARISON OF TOOL WEAR PREDICTION PERFORMANCES 

 
Dataset Best 

ANN 
architect-
ture 

Learning 
rate (LR) 

Iterations Mean 
square 
error in 
training 

Predicted 
error (%) 

Dataset#1 4-5-1 0.3 200000 0.01221 15.32 
Dataset#2 5-15-1 0.4 250000 0.01044 9.41 

 
The prediction performances of both approaches for each of 
the 10 testing cases are plotted against the experimentally 
measured values of flank wear as shown by Fig. 10 and Fig. 
11, respectively.  

 
 

 
 

Fig. 10. Predicted vs experimental flank wear for dataset#1 (time-
domain approach) 

 

 
Fig. 11. Predicted vs experimental flank wear for dataset#2 (wavelet 

packet approach) 

From the above figures, it has been seen that maximum 
numbers of testing patterns from wavelet packet approach 
(dataset#2) are predicted within 10% error line, as compared 
to the same from time-domain approach (dataset#1). This 
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may be due to the fact that compared to the time-domain 
features, the wavelet packet features are less sensitive to 
cutting condition and external noises [12]. 

 

VI. CONCLUSION 

The experimental results presented in this paper clearly re-
affirmed the applicability of AE sensor as an effective 
means for drill wear monitoring. The results have also 
justified the need of using one of the most advance methods 
in signal processing technique, i.e. wavelet packet transform 
for feature extraction from the acoustic emission signal. 
Considering the complexity of the drill wear process, the 
performance of the proposed ANN model based on the 
extracted features through the wavelet packet is reasonably 
good. Hence, it has been concluded that ANN model based 
on wavelet packet features from the AE sensor can be 
applied as drill wear monitoring system for automated 
drilling process. 
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