
 

 

Abstract— A new approach is studied to calibrate a low-cost, 

microelectromechanical system (MEMS) triaxial 

accelerometer.  The accelerometer is modeled as a linear 

system with inter-axis misalignment correction. 

Mathematically, at least nine different equations, equivalent to 

nine positions of an accelerometer, are needed to solve for nine 

unknowns (3 scale factors, 3 zero bias, 3 misalignment angles). 

However, a new approach is studied to minimize the number of 

positions needed. Three new linear equations corresponding to 

each axis are formulated. To validate the equations, a triaxial 

accelerometer was positioned at twelve known orientations and 

its outputs were measured. All possible combination of 

positions were attempted iteratively. Singularity is identified 

using the principle of matrix rank.  Results from twelve 

positions and six positions were almost identical, suggesting 

that six positions are adequate to solve nine unknowns. 

 
Index Terms— triaxial accelerometer, static calibration, 

scale factors, misalignment, zero bias 

 

I. INTRODUCTION 

MEMS type accelerometers are popular nowadays in lots of 

motion detection applications [1,2] such as navigation 

system, portable gait analysis, etc. Static calibration is 

crucial to determine the coefficient matrix and  zero bias of 

a linear modeled accelerometer before use. Conventionally, 

rotary table is used to calibrate an accelerometer. However a 

precision rotary table is usually expensive and the process is 

time-consuming [3,4]. Some researchers [2,3,6] had 

promoted in-use calibration that optimizes a cost function of  

an accelerometer. However, the accuracy of the estimation 

is greatly dependant on the experiment process, the quasi-

static detection determinant  and the optimization algorithm. 

This paper proposes a possible solution to calibrate a triaxial 

accelerometer that utilizes minimum static positions, using a 

simple test rig. The scale factors, misalignment angles and 

zero bias are assumed to be invariant to time. The outputs is 

assumed to display ignorable Gaussian White noises. 

II. THEORY 

A. Accelerometer 

An inertial measurement unit of five degree of freedom 

(IMU-5DOF) in the form of a PCB breakout (SparkFun 

Inc.) as shown in Fig. 1a was used. It consists of a triaxial 

(X,Y,Z) accelerometer (ADXL335, Analog Device) and a 
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dual axial (XR,YR) gyroscope (IDG500, InvenSense Inc.). It 

is light weight (~2g) and small size (20x23mm). The axes 

assignments follow the recommendation of ADXL335 

datasheet. The direction of axes assignments follow the 

norm that the accelerometer axis points upward against the 

gravity (Fig. 1b). Accelerometer is ratiometric [8], that 

means zero bias and sensitivity varies relative to the input 

voltage change. Investigation of a gyroscope is out of the 

scope of this paper. 

 

 

B. Linear Model With Error Correction 

 
The output precision of an accelerometer suffers from small 

angle inter-axis misalignments (αxy αxz αyx αyz αzx αzy) as 

shown in Fig. 2 between the sensor axis and the platform 

coordinate. Skog [6] showed that the error model can be 

simplified by assuming x
p
 coincides with x

a
 as shown in (1), 

where s
p
 and s

a
 are g-vector in the platform coordinate and 

the sensor axis respectively.    
 
is a transformation matrix or 

named as correction matrix that maps s
a
 to s

p
. 

 

     
 
  ,   

 
  

        

      

   

  (1) 

The sensor can be linearly modeled as (2). 
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Fig. 2: Inter-axis misalignment between an accelerometer 

coordinate and a platform coordinate. Reproduced from [6,7] 
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Fig. 1:  (a) IMU-5DOF, (b) Accelerometer Axis assignment 
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   (2) 

 

where: 

   Output vector [vx vy vz]
T
 at i-sample in volts 

  Diagonal matrix of scale factors. Diag([kx ky kz]) in 

 volts/g 

  
 
 g-force vector in  platform coordinate [gx gy gz]

T
at i-

 sample 

  
 
 inter-axis misalignment correction matrix 

  Zero bias vector of each axis[bx by bz]
T
 in volts  

 

From (2), nine setup parameters as listed in (3) are of 

interest and must be solved. 

 

                        (3) 

 

Mathematically, (2) needs at least nine different samples to 

solve if there exists a solution. However, the author attempts 

to solve the problem with less samples. Equation (2) is 

expanded into (4). 

 

 

  

  

  

 

 

  

    
    

    

  
        

      

   

 

  

 

  

  

  

 

 

 

   

  

  

  

  

 

 

  

  

  

 

 

  

                                   

                 

        

  (4) 

 

It is obvious that Z-axis is the simplest and only two 

unknowns (bz kz), followed by Y-axis with three unknowns 

(by ky αzx) and lastly X-axis with four unknowns (bx kx αyz 

αzy). Hence, using i-number of samples corresponding to the 

number of unknowns in each axis, (4) can be broken into 

three linear equations in Z, Y and X axis accordingly as 

listed in (5), (6) and (7). 
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where: 

    
    

  

 

 

 

   

   
   

   

   

    
       

    
       

 
 

   

   

   

   

    

    

 

 
 
 
 
  

  

    

     
 
 
 

 (7) 

where: 

    
    

  

 

    
    

  

        

Equation (4), (5) and (6) are arranged in the form of a linear 

algebra,     . For known outputs and coefficient matrix, 

solving for x is simply by multiplying the inverse of the 

coefficient matrix with its outputs,       , if there exits 

an solution. A solution of a linear equation is non-singular 

and unique if                                      . 

 

III. EXPERIMENT 

A simple test rig (Fig. 3) consisting of an adjustable platform, 

a cube mounted with a triaxial accelerometer and a V-block, 

was built to perform these twelve positions. The author 

utilizes twelve static known positions proposed by Hung [5], 

to validate (4), (5) and (6). These positions are listed in Fig. 

4. Before experiments, the platform was adjusted 

horizontally using an electronic spirit level (resolution, 

0.1
0
). Theoretically,  it can be any arbitrary known angles 

but for uniformity, all non-orthogonal positions which are in 

±45
0
 with respect to the platform, i.e. positions 

(1,3,5,9,10,12), are experimented, by placing the cube inside 

a V-block. Orthogonal positions (2,4,6,7,8,11) were 

performed without a V-block. The sensor outputs were 

sampled for approximately 10 seconds per position, at 

200Hz sampling rate. G-vectors in the platform coordinate 

in all known positions are listed in Table 1. Mean sensor 

outputs with maximum standard deviation of           

were observed, suggesting ignorable noises at twelve 

positions. Mean sensor outputs at twelve positions are 

illustrated in Fig. 5. 

 

 

Cube and 

accelerometer 

Electronic 

Spirit level 

V-block 

Platform 

Fig. 3: Experiment Setup 
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IV. RESULTS AND ANALYSIS 

A. Analysis Method 

Two set of positions were analyzed for comparison 

purposes, i.e. Set1 (8), all twelve positions and Set2 (9), 

only the orthogonal positions. 

                                  (8) 

                       (9) 

According to the (5), (6), (7), the number of combinations or 

iterations for solutions, can be calculated using (10) and 

they are listed in Table 2. For example, in twelve-known 

positions, two known positions are needed to determine two 

unknowns as referring to (5). The combination of two out of 

twelve positions is  
  
 

 , equivalent to 66 combinations. 

 

 
 
 
  

  

        
 (10) 

 

Each combination will produce a solution if the linear 

equation is non-singular and unique. A Matlab m-file was 

programmed to generate the results iteratively. 

 

B. Results 

Means and standard deviations (µ12, s12) of non-singular 

solutions using twelve positions are listed in Table 3. Low 

variations in both scale factors and zero bias (max. at 

0.0069), suggest that the solutions are consistent for all non-

singular solutions. Although the ratios of mean and standard 

deviation of misalignment angles appear to be larger than 

the ratios of mean and standard deviation of scale factor and 

zero bias respectively, but misalignment angles are still kept 

within small angle range with maximum mean at 0.0101 

radian. This agrees with the initial assumptions during the 

formation of the sensor linear model with error correction. 

Not all combinations will generate a solution. Table 4 lists 

the solution check for the combinations using twelve 

positions. Non-singular solutions occupy a larger portion of 

the possible combinations. No combination is leaved 

unchecked. 

Twelve-known Positions (n) 

 X Y Z 

unknowns (k) 4 3 2 

Combination 495 220 66 

 

Six-known Positions (n) 

 X Y Z 

unknowns (k) 4 3 2 

Combination 15 20 15 

 

Table 2: Combinations for Set1 and Set2 

Fig. 5: Outputs at twelve positions 

Table 1:  G-vector in platform coordinate at twelve 

 positions ((gx, gy, gz in unit of g) 

Pos. gx gy gz 

1 0.7071 0.0000 0.7071 

2 0.0000 0.0000 1.0000 

3 0.0000 0.7071 0.7071 

4 0.0000 1.0000 0.0000 

5 -0.7071 0.0000 -0.7071 

6 0.0000 0.0000 -1.0000 

7 0.0000 -1.0000 0.0000 

8 -1.0000 0.0000 0.0000 

9 0.0000 -0.7071 -0.7071 

10 0.7071 0.7071 0.0000 

11 1.0000 0.0000 0.0000 

12 -0.7071 -0.7071 0.0000 
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Fig. 4: Twelve positions in platform coordinate.  

             Reproduced from [5]  

-g indicates the gravity vector 
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On the other hand, means and standard deviations (µ6, s6) 

of non-singular solutions using six orthogonal positions are 

listed in Table 5. Low variations in scale factors and zero 

biases suggest that the solutions are consistent for all non-

singular solution.  Misalignment angles are kept within 

small angle range. In Table 6, non-singular solutions occupy 

a larger portion of the combinations.  

Comparing to twelve positions, the number of 

combinations in six positions are greatly reduced. Careful 

observations into combinations which produce singularity 

during computation indicate no solution if identical axis 

within a combination is in horizontal plane. E.g. no solution 

for Y-axis in position (2,6,8) since Y-axis in each position is 

in horizontal plane. 

 

 
 

 
For comparison purposes, a percentage difference as defined 

in (8) is formulated. In Table 7, low difference percentages 

in scale factors and zero bias suggest that six positions are 

adequate to calculate the setup parameters. Although one of 

the misalignment angle displayed more than 200% 

discrepancy but in general all misalignment angles are kept 

within small angle range. 

      
      

   
  

(8) 

 
 

V. CONCLUSION 

Static calibration is crucial to determine the setup 

parameters that model a linear equation of a triaxial 

accelerometer. A triaxial accelerometer linear model with 

correction based on previous works is further expanded and 

reorganized. Three new linear models in X, Y and Z-axis are 

reformed in the linear algebra format. Non-singular solution 

could be determined using the principle of matrix rank. An 

experiment was performed to validate this new method. 

Twelve different known positions of a triaxial accelerometer 

are experimented. Collected output data are tested for a set 

of twelve positions and another set of six orthogonal 

positions. The results suggest that using six orthogonal 

positions could solve for nine setup parameters. 
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 kx ky kz 
µ12 0.3223 0.3253 0.3271 
µ6 0.3222 0.3246 0.3274 
Diff 0.02% 0.21% -0.07% 
 αyz αzy αzx 
µ12 0.0101 -0.0037 -0.0017 
µ6 0.0095 -0.0046 -0.0053 
Diff 5.51% -23.26% -213.41% 
 bx by bz 
µ12 1.6199 1.5951 1.6627 
µ6 1.6198 1.5954 1.6626 
Diff 0.00% -0.02% 0.00% 

 

Table 7: Comparison of 12 and 6 positions 

 Singular Non-Singular Total 

X 3 12 15 
Y 8 12 20 
Z 6 9 15 

 

Table 6: Solution Check for 6 positions 

 kx ky kz 
µ6 0.3222 0.3246 0.3274 
s6 0.0006 0.0028 0.0027 
 αyz αzy αzx 
µ6 0.0095 -0.0046 -0.0053 
s6 0.0032 0.0026 0.0091 
 bx by bz 
µ6 1.6198 1.5954 1.6626 
s6 0.0006 0.0028 0.0023 

 

Table 5: Setup Parameters using 6 positions 

 Singular Non-Singular Total 

X 63 432 495 
Y 44 176 220 
Z 17 49 66 

 

Table 4: Solution Check for 12 positions 

 

 kx ky kz 
µ12 0.3223 0.3253 0.3271 
s12 0.0014 0.0069 0.0026 
 αyz αzy αzx 
µ12 0.0101 -0.0037 -0.0017 
s12 0.0049 0.0047 0.0205 
 bx by bz 
µ12 1.6199 1.5951 1.6627 
s12 0.0011 0.0049 0.0017 

 

Table 3: Setup Parameters using 12 positions 
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